
Faster exponential time algorithms
for the shortest vector problem

Panagiotis Voulgaris Daniele Micciancio

University of California, San Diego

January 19, 2010,
SODA

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Applications of lattice algorithms

Useful in a number of fields:

Combinatorial Problems:

Knapsack problems, Integer Programming, . . .

Algebraic Number Theory:

Factoring polynomials with rational coefficients, . . .

Cryptanalysis applications:

Ntru, Special cases of RSA, . . .

Cryptography based directly on Lattices:

LWE variants, Fully Homomorphic crypto, . . .

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

SVP is a foundational lattice problem:

Exact SVP is known to be NP-complete

In most applications approximations are enough

However approx. algorithms utilize exact SVP for lower
dimensions

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

0 ~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}

Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

00 ~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}
Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

00 ~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}
Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖

Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

00 ~b1

~b2
~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}
Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Shortest Vector Problem (SVP)

00

~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}
Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1st Approach: Enumeration

0

C

0

Main idea

Given a basis B,
determine a region C,
such that ~s ∈ C.

Enumerate all the points in C

Advantages:

Minimal space

Disadvantages:

#Points can be 2O(nlogn)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

2nd Approach: Sieving

0

Main idea

Sample 2cn points, ‖~p‖ ≤ R0

Cover the samples with spheres
of radius R1 < R0 centered at
samples
Obtain shorter vectors by
subtracting the centers

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

2nd Approach: Sieving

0

Main idea

Sample 2cn points, ‖~p‖ ≤ R0

Cover the samples with spheres
of radius R1 < R0 centered at
samples
Obtain shorter vectors by
subtracting the centers

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

2nd Approach: Sieving

0

Main idea

Sample 2cn points, ‖~p‖ ≤ R0

Cover the samples with spheres
of radius R1 < R0 centered at
samples
Obtain shorter vectors by
subtracting the centers

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

2nd Approach: Sieving

0

Main idea

Sample 2cn points, ‖~p‖ ≤ R0

Cover the samples with spheres
of radius R1 < R0 centered at
samples
Obtain shorter vectors by
subtracting the centers

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, Ajtai, Kumar, Sivakumar 2O(n) 2O(n) –
2004, Regev 216n 28n –
2008, Nguyen, Vidick 25.9n 22.95n Practical
2010, This work 23.2n 21.33n > 102 speed-up

Table: Time-line of Sieving Algorithms

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, Ajtai, Kumar, Sivakumar 2O(n) 2O(n) –
2004, Regev 216n 28n –
2008, Nguyen, Vidick 25.9n 22.95n Practical
2010, This work 23.2n 21.33n > 102 speed-up
2010, Pujol, Stelhé 22.46n 21.233n –

Table: Time-line of Sieving Algorithms

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Points and halfspaces

0

~c

Algorithm: Reduce(~p,~c)

while ‖~p − ~c‖ < ‖~p‖
~p ← ~p − ~c

~c defines two half-spaces:

~c halfspace: ‖~p − ~c‖ < ‖~p‖
~0 halfspace: ‖~p − ~c‖ ≥ ‖~p‖

Subtracting ~c , brings any
point in the ~0 halfspace

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Points and halfspaces

0

~c

Algorithm: Reduce(~p,~c)

while ‖~p − ~c‖ < ‖~p‖
~p ← ~p − ~c

~c defines two half-spaces:

~c halfspace: ‖~p − ~c‖ < ‖~p‖
~0 halfspace: ‖~p − ~c‖ ≥ ‖~p‖
Subtracting ~c , brings any
point in the ~0 halfspace

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Reduce with a list of points

0

~c1

~c2

~c3

~c4

Algorithm: Reduce(~p, C)

while ∃~ci ∈ C, such that:
‖~p − ~ci‖ < ‖~p‖

~p ← ~p − ~ci

Consider a set of points C

Notice the intersection of
the ~0 halfspaces

When Reduce terminates,
~p is in the intersection of
the ~0 halfspaces.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Reduce with a list of points

0

~c1

~c2

~c3

~c4

Algorithm: Reduce(~p, C)

while ∃~ci ∈ C, such that:
‖~p − ~ci‖ < ‖~p‖

~p ← ~p − ~ci

Consider a set of points C

Notice the intersection of
the ~0 halfspaces

When Reduce terminates,
~p is in the intersection of
the ~0 halfspaces.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Analysis of List Sieve

The analysis has two parts:

Space Complexity
Bound #Points in C

Time Complexity
Bound the probability of getting ~0 (collision)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lower bounds on angles ⇒ upper bound on points.

0

c1

c2

φc1,c2

Let φc1,c2 angle between c1, c2

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lower bounds on angles ⇒ upper bound on points.

0

c1

c2

c3

c4

c5

φc1,c2

Let φc1,c2 angle between c1, c2

Theorem:
Kabatiansky, Levenshtein 1978

Let set S such that
∀ci , cj ∈ S : φci ,cj > φ0 then:

|S | ≤ 2k(φ0)n+o(n)

Divide C in subsets with lower
bounded angles.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding |C |: Spherical Shells

0

Divide space to thin shells:
Si = Shell(αi‖~s‖, αi+1‖~s‖),
1 < α < 1.1

C is covered by poly(n) such
shells

If ∀i we lower bound the
angles of Si ∩ C then:
|Si ∩ C | ≤ 2kn and
|C | ≤ poly(n)2kn

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0

~ci

αi‖~s‖

αi+1‖~s‖

Consider one shell Si

ci is a point in C ∩ Si

A new point should be in
~0-halfspace

Therefore φ~ci ,~cj
is lower

bounded

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0

~ci

αi‖~s‖

αi+1‖~s‖

Consider one shell Si

ci is a point in C ∩ Si

A new point should be in
~0-halfspace

Therefore φ~ci ,~cj
is lower

bounded

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0

~ci

αi‖~s‖

αi+1‖~s‖

~cj

φ ' 60◦

Consider one shell Si

ci is a point in C ∩ Si

A new point should be in
~0-halfspace

Therefore φ~ci ,~cj
is lower

bounded

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Analysis of List Sieve

The analysis has two parts:

Space Complexity
Bound #Points in C

Time Complexity
Bound the probability of getting ~0 (collision)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Perturbation Technique, AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L
Reduce(~p, C) and consider
~p′ − ~ε
~p can correspond to two
lattice points

Reduce is oblivious of ~ε,

Lots of collisions ⇒ lots of
points near ~0 (and near ~s)

⇒ non negligible probability
of finding ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Perturbation Technique, AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L
Reduce(~p, C) and consider
~p′ − ~ε

~p can correspond to two
lattice points

Reduce is oblivious of ~ε,

Lots of collisions ⇒ lots of
points near ~0 (and near ~s)

⇒ non negligible probability
of finding ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Perturbation Technique, AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L
Reduce(~p, C) and consider
~p′ − ~ε
~p can correspond to two
lattice points

Reduce is oblivious of ~ε,

Lots of collisions ⇒ lots of
points near ~0 (and near ~s)

⇒ non negligible probability
of finding ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Perturbation Technique, AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L
Reduce(~p, C) and consider
~p′ − ~ε
~p can correspond to two
lattice points

Reduce is oblivious of ~ε,

Lots of collisions ⇒ lots of
points near ~0 (and near ~s)

⇒ non negligible probability
of finding ~s

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~pj

After Reduce ~pj is further
from ~cj

But the perturbation
decreases the minimum
angles

This is especially bad for
shells near ~0

Perturbations greatly
increase space bounds:
20.41n+o(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~pj

~cj

−~εj

After Reduce ~pj is further
from ~cj

But the perturbation
decreases the minimum
angles

This is especially bad for
shells near ~0

Perturbations greatly
increase space bounds:
20.41n+o(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~cj

≥ ‖~s‖

After Reduce ~pj is further
from ~cj

But the perturbation
decreases the minimum
angles

This is especially bad for
shells near ~0

Perturbations greatly
increase space bounds:
20.41n+o(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~cj

After Reduce ~pj is further
from ~cj

But the perturbation
decreases the minimum
angles

This is especially bad for
shells near ~0

Perturbations greatly
increase space bounds:
20.41n+o(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Practical variant Gauss Sieve

Practical implementation – Gauss Sieve:

No perturbations (Proposed in [NV 2008])

The list C is fully reduced:
∀~ci ,~cj ∈ C ‖~ci − ~cj‖ ≥ ‖~ci‖
Therefore φ~ci ,~cj

≥ 60◦!

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Running time comparison

 0.1

 1

 10

 100

 1000

 10000

 100000

 35 40 45 50 55 60

T
im

e
in

 s
ec

on
ds

 (
Lo

g-
sc

al
e)

Dimension

Running time comparisson

NV Sieve
Gauss Sieve

NTL Schnorr-Euchner with BKZ-20

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Gauss Sieve

' 102 to 103 faster, ' 70× less points

20.21n+o(n) space bound

Faster than NTL for dimensions > 40

Bottleneck is time, not space

Implementation available at http://cse.ucsd.edu/~pvoulgar/

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

1 Background
Definitions
Existing Algorithms

2 Contribution
List Sieve
Theoretical Analysis
Implementation

3 Final Remarks
Summary

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Summary

We improve the work of [AKS 2001] and [NV 2008] with:

List Sieving:

Lower space bounds in theory
Faster implementations in practice
Better algorithmic intuition

Connection with spherical codes:

Use of powerful theorems for analysis [KL 1978]

Faster heuristic:

Much faster, less space than previous implementation

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Open Problems

Open Problems:

SVP in 2cn time with poly(n) space

Other lattice problems in 2cn time/space (CVP, SIVP)

Deterministic variant

Specific to our work:

Bound time complexity without perturbations

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Thank you!

Thank you for attending!

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

	Background
	Definitions
	Existing Algorithms

	Contribution
	List Sieve
	Theoretical Analysis
	Implementation

	Final Remarks
	Summary

