Faster exponential time algorithms for the shortest vector problem

Panagiotis Voulgaris Daniele Micciancio

University of California, San Diego

January 19, 2010, SODA

Applications of lattice algorithms

Useful in a number of fields:

- Combinatorial Problems:
 - Knapsack problems, Integer Programming, ...
- Algebraic Number Theory:
 - Factoring polynomials with rational coefficients, ...
- Cryptanalysis applications:
 - Ntru, Special cases of RSA, . . .
- Cryptography based directly on Lattices:
 - LWE variants, Fully Homomorphic crypto, . . .

SVP is a foundational lattice problem:

- Exact SVP is known to be NP-complete
- In most applications approximations are enough
- However approx. algorithms utilize exact SVP for lower dimensions

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- Final Remarks
 - Summary

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- Final Remarks
 - Summary

• Given a linearly indep. basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$

- Given a linearly indep. basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$
- Lattice is the closure of **B** under (+,-): $\mathcal{L}(\mathbf{B}) = \{ \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}$

- Given a linearly indep. basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$
- Lattice is the closure of **B** under (+,-): $\mathcal{L}(\mathbf{B}) = \{ \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, \ \|\vec{s}\| \leq \|\vec{p}\|$

- Given a linearly indep. basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$
- Lattice is the closure of **B** under (+,-): $\mathcal{L}(\mathbf{B}) = \{ \sum a_i \cdot \vec{b_i}, a_i \in \mathbb{Z} \}$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, \ \|\vec{s}\| \leq \|\vec{p}\|$
- Notice that the basis is not unique

- Given a linearly indep. basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$
- Lattice is the closure of **B** under (+,-): $\mathcal{L}(\mathbf{B}) = \{\sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z}\}$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, \ \|\vec{s}\| \leq \|\vec{p}\|$
- Notice that the basis is not unique
- Shortest Vector Problem:
 Given a basis B, find a shortest lattice point s

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- Final Remarks
 - Summary

1st Approach: Enumeration

Main idea

Given a basis \mathbf{B} , determine a region \mathbf{C} , such that $\vec{s} \in \mathbf{C}$. Enumerate all the points in \mathbf{C}

- Advantages:
 - Minimal space
- Disadvantages:
 - #Points can be $2^{O(n\log n)}$

Main idea

Sample 2^{cn} points, $\|\vec{p}\| \le R_0$ Cover the samples with spheres of radius $R_1 < R_0$ centered at samples Obtain shorter vectors by

Advantages:

subtracting the centers

- #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of 2^{O(n)}
 - Impractical?

Main idea

Sample 2^{cn} points, $\|\vec{p}\| \le R_0$ Cover the samples with spheres of radius $R_1 < R_0$ centered at samples

Obtain shorter vectors by subtracting the centers

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of $2^{O(n)}$
 - Impractical?

Main idea

Sample 2^{cn} points, $\|\vec{p}\| \le R_0$ Cover the samples with spheres of radius $R_1 < R_0$ centered at samples

Obtain shorter vectors by subtracting the centers

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of $2^{O(n)}$
 - Impractical?

Main idea

Sample 2^{cn} points, $\|\vec{p}\| \le R_0$ Cover the samples with spheres of radius $R_1 < R_0$ centered at samples

Obtain shorter vectors by subtracting the centers

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of 2^{O(n)}
 - Impractical?

Time-line: Sieving Algorithms

Year, Authors	Time	Space	Practice
2001, Ajtai, Kumar, Sivakumar	$2^{O(n)}$	$2^{O(n)}$	_
2004, Regev	2^{16n}	2^{8n}	-
2008, Nguyen, Vidick	$2^{5.9n}$	$2^{2.95n}$	Practical
2010, This work	$2^{3.2n}$	$2^{1.33n}$	$> 10^2$ speed-up

Table: Time-line of Sieving Algorithms

Time-line: Sieving Algorithms

Year, Authors	Time	Space	Practice
2001, Ajtai, Kumar, Sivakumar	$2^{O(n)}$	$2^{O(n)}$	_
2004, Regev	2^{16n}	2^{8n}	-
2008, Nguyen, Vidick	$2^{5.9n}$	$2^{2.95n}$	Practical
2010, This work	$2^{3.2n}$	$2^{1.33n}$	$> 10^2$ speed-up
2010, Pujol, Stelhé	$2^{2.46n}$	$2^{1.233n}$	_

Table: Time-line of Sieving Algorithms

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- 3 Final Remarks
 - Summary

Points and halfspaces

Algorithm: Reduce(\vec{p}, \vec{c})

while
$$\|ec{p} - ec{c}\| < \|ec{p}\|$$
 $ec{p} \leftarrow ec{p} - ec{c}$

- \vec{c} defines two half-spaces:
- \vec{c} halfspace: $\|\vec{p} \vec{c}\| < \|\vec{p}\|$
- $\vec{0}$ halfspace: $\|\vec{p} \vec{c}\| \ge \|\vec{p}\|$

Points and halfspaces

Algorithm: Reduce(\vec{p}, \vec{c})

while
$$\| \vec{p} - \vec{c} \| < \| \vec{p} \|$$
 $\vec{p} \leftarrow \vec{p} - \vec{c}$

- \vec{c} defines two half-spaces:
- \vec{c} halfspace: $\|\vec{p} \vec{c}\| < \|\vec{p}\|$
- $\vec{0}$ halfspace: $\|\vec{p} \vec{c}\| \ge \|\vec{p}\|$
- Subtracting \vec{c} , brings any point in the $\vec{0}$ halfspace

Reduce with a list of points

Algorithm: Reduce(\vec{p} , C)

while
$$\exists \vec{c}_i \in C$$
, such that: $\|\vec{p} - \vec{c}_i\| < \|\vec{p}\|$ $\vec{p} \leftarrow \vec{p} - \vec{c}_i$

- Consider a set of points C
- Notice the intersection of the $\vec{0}$ halfspaces

Reduce with a list of points

Algorithm: Reduce(\vec{p} , C)

while
$$\exists \vec{c}_i \in C$$
, such that: $\|\vec{p} - \vec{c}_i\| < \|\vec{p}\|$ $\vec{p} \leftarrow \vec{p} - \vec{c}_i$

- Consider a set of points C
- Notice the intersection of the $\vec{0}$ halfspaces
- When Reduce terminates, \vec{p} is in the intersection of the $\vec{0}$ halfspaces.


```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
   \vec{p} \leftarrow \mathtt{Sample}(\mathbf{B})
   \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
        continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(\mathbf{B}, \|\vec{s}\|)
```

```
C ← {}
while (true) {
    \vec{p} \leftarrow \mathtt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
        continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```


Algorithm: ListSieve(\mathbf{B} , $\|\vec{s}\|$)

```
C ← {}
while (true) {
    \vec{p} \leftarrow \mathtt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
     if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```


Algorithm: ListSieve(\mathbf{B} , $\|\vec{s}\|$)

```
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
     if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```


Algorithm: ListSieve(\mathbf{B} , $\|\vec{s}\|$)

```
C ← {}
while (true) {
    \vec{p} \leftarrow \mathtt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
         continue
     if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
        continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```



```
Algorithm: ListSieve(B, \|\vec{s}\|)
C ← {}
while (true) {
    \vec{p} \leftarrow \texttt{Sample}(\mathbf{B})
    \vec{p}' \leftarrow \text{Reduce}(\vec{p}, C)
    if (\vec{p}' = \vec{0})
        continue
    if (\|\vec{p}'\| \leq \|\vec{s}\|)
        return \vec{p}'
    C \leftarrow C \cup \{\vec{p}'\}
```

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- Final Remarks
 - Summary

Analysis of List Sieve

The analysis has two parts:

- Space Complexity
 Bound #Points in C
- Time Complexity

 Bound the probability of getting $\vec{0}$ (collision)

Lower bounds on angles \Rightarrow upper bound on points.

Let ϕ_{c_1,c_2} angle between c_1,c_2

Lower bounds on angles \Rightarrow upper bound on points.

Let ϕ_{c_1,c_2} angle between c_1,c_2

Theorem:

Kabatiansky, Levenshtein 1978

Let set S such that

 $\forall c_i, c_j \in S : \phi_{c_i, c_j} > \phi_0$ then: $|S| < 2^{k(\phi_0)n + o(n)}$

Divide *C* in subsets with lower bounded angles.

Bounding |C|: Spherical Shells

- Divide space to thin shells: $S_i = \text{Shell}(\alpha^i || \vec{s} ||, \alpha^{i+1} || \vec{s} ||),$ $1 < \alpha < 1.1$
- C is covered by poly(n) such shells
- If $\forall i$ we lower bound the angles of $S_i \cap C$ then: $|S_i \cap C| \leq 2^{kn}$ and $|C| \leq poly(n)2^{kn}$

Bounding the angles of points in C

- Consider one shell S_i
- c_i is a point in $C \cap S_i$

Bounding the angles of points in C

- Consider one shell S_i
- c_i is a point in $C \cap S_i$
- A new point should be in -0-halfspace

Bounding the angles of points in C

- Consider one shell S_i
- c_i is a point in $C \cap S_i$
- A new point should be in 0-halfspace
- Therefore $\phi_{\vec{c}_i,\vec{c}_j}$ is lower bounded

Analysis of List Sieve

The analysis has two parts:

- Space Complexity
 Bound #Points in C
- Time Complexity

 Bound the probability of getting $\vec{0}$ (collision)

• Instead of sampling a lattice point \vec{p}

- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} \vec{\epsilon} \in \mathcal{L}$
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$

- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} \vec{\epsilon} \in \mathcal{L}$
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$
- \vec{p} can correspond to two lattice points
- Reduce is oblivious of $\vec{\epsilon}$,

- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} \vec{\epsilon} \in \mathcal{L}$
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$
- \vec{p} can correspond to two lattice points
- Reduce is oblivious of $\vec{\epsilon}$,
- Lots of collisions \Rightarrow lots of points near \vec{o} (and near \vec{s})
- \Rightarrow non negligible probability of finding \vec{s}

• After Reduce \vec{p}_j is further from \vec{c}_j

- After Reduce \vec{p}_j is further from \vec{c}_j
- But the perturbation decreases the minimum angles

- After Reduce \vec{p}_j is further from \vec{c}_j
- But the perturbation decreases the minimum angles
- This is especially bad for shells near $\vec{0}$

- After Reduce \vec{p}_j is further from \vec{c}_j
- But the perturbation decreases the minimum angles
- This is especially bad for shells near 0
- Perturbations greatly increase space bounds: 2^{0.41n+o(n)} VS 2^{1.33n+o(n)}

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- 3 Final Remarks
 - Summary

Practical variant Gauss Sieve

Practical implementation - Gauss Sieve:

- No perturbations (Proposed in [NV 2008])
- The list *C* is fully reduced:

$$\forall \vec{c}_i, \vec{c}_j \in C \ \|\vec{c}_i - \vec{c}_j\| \ge \|\vec{c}_i\|$$

Therefore $\phi_{\vec{c}_i, \vec{c}_i} \ge 60^{\circ}!$

Running time comparison

Gauss Sieve

- ullet $\simeq 10^2$ to 10^3 faster, $\simeq 70 imes$ less points
- $2^{0.21n+o(n)}$ space bound
- Faster than NTL for dimensions > 40
- Bottleneck is time, not space

Implementation available at http://cse.ucsd.edu/~pvoulgar/

- Background
 - Definitions
 - Existing Algorithms
- 2 Contribution
 - List Sieve
 - Theoretical Analysis
 - Implementation
- Final Remarks
 - Summary

Summary

We improve the work of [AKS 2001] and [NV 2008] with:

- List Sieving:
 - Lower space bounds in theory
 - Faster implementations in practice
 - Better algorithmic intuition
- Connection with spherical codes:
 - Use of powerful theorems for analysis [KL 1978]
- Faster heuristic:
 - Much faster, less space than previous implementation

Open Problems

Open Problems:

- SVP in 2^{cn} time with poly(n) space
- Other lattice problems in 2^{cn} time/space (CVP, SIVP)
- Deterministic variant

Specific to our work:

• Bound time complexity without perturbations

Thank you!

Thank you for attending!