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Applications of lattice algorithms

Useful in a number of fields:

Combinatorial Problems:

Knapsack problems, Integer Programming, . . .

Algebraic Number Theory:

Factoring polynomials with rational coefficients, . . .

Cryptanalysis applications:

Ntru, Special cases of RSA, . . .

Cryptography based directly on Lattices:

LWE variants, Fully Homomorphic crypto, . . .
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Shortest Vector Problem (SVP)

SVP is a foundational lattice problem:

Exact SVP is known to be NP-complete

In most applications approximations are enough

However approx. algorithms utilize exact SVP for lower
dimensions
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Shortest Vector Problem (SVP)

0 ~b1

~b2

Given a linearly indep. basis:
B = {~b1,~b2, . . . ,~bm}

Lattice is the closure of B
under (+,−):
L(B) = {

∑
ai · ~bi , ai ∈ Z}

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique

Shortest Vector Problem:
Given a basis B, find a
shortest lattice point ~s
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1st Approach: Enumeration

0

C

0

Main idea

Given a basis B,
determine a region C,
such that ~s ∈ C.

Enumerate all the points in C

Advantages:

Minimal space

Disadvantages:

#Points can be 2O(nlogn)
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2nd Approach: Sieving

0

Main idea

Sample 2cn points, ‖~p‖ ≤ R0

Cover the samples with spheres
of radius R1 < R0 centered at
samples
Obtain shorter vectors by
subtracting the centers

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical?
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Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, Ajtai, Kumar, Sivakumar 2O(n) 2O(n) –
2004, Regev 216n 28n –
2008, Nguyen, Vidick 25.9n 22.95n Practical
2010, This work 23.2n 21.33n > 102 speed-up

Table: Time-line of Sieving Algorithms
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Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, Ajtai, Kumar, Sivakumar 2O(n) 2O(n) –
2004, Regev 216n 28n –
2008, Nguyen, Vidick 25.9n 22.95n Practical
2010, This work 23.2n 21.33n > 102 speed-up
2010, Pujol, Stelhé 22.46n 21.233n –

Table: Time-line of Sieving Algorithms
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Points and halfspaces

0

~c

Algorithm: Reduce(~p,~c)

while ‖~p − ~c‖ < ‖~p‖
~p ← ~p − ~c

~c defines two half-spaces:

~c halfspace: ‖~p − ~c‖ < ‖~p‖
~0 halfspace: ‖~p − ~c‖ ≥ ‖~p‖

Subtracting ~c , brings any
point in the ~0 halfspace
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Reduce with a list of points

0

~c1

~c2

~c3

~c4

Algorithm: Reduce(~p, C )

while ∃~ci ∈ C, such that:
‖~p − ~ci‖ < ‖~p‖

~p ← ~p − ~ci

Consider a set of points C

Notice the intersection of
the ~0 halfspaces

When Reduce terminates,
~p is in the intersection of
the ~0 halfspaces.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



Reduce with a list of points

0

~c1

~c2

~c3

~c4

Algorithm: Reduce(~p, C )

while ∃~ci ∈ C, such that:
‖~p − ~ci‖ < ‖~p‖

~p ← ~p − ~ci

Consider a set of points C

Notice the intersection of
the ~0 halfspaces

When Reduce terminates,
~p is in the intersection of
the ~0 halfspaces.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
return ~p′

C ← C ∪ {~p′}
}
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Analysis of List Sieve

The analysis has two parts:

Space Complexity
Bound #Points in C

Time Complexity
Bound the probability of getting ~0 (collision)
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Lower bounds on angles ⇒ upper bound on points.

0

c1

c2

φc1,c2

Let φc1,c2 angle between c1, c2
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Lower bounds on angles ⇒ upper bound on points.

0

c1

c2

c3

c4

c5

φc1,c2

Let φc1,c2 angle between c1, c2

Theorem:
Kabatiansky, Levenshtein 1978

Let set S such that
∀ci , cj ∈ S : φci ,cj > φ0 then:

|S | ≤ 2k(φ0)n+o(n)

Divide C in subsets with lower
bounded angles.
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Bounding |C |: Spherical Shells

0

Divide space to thin shells:
Si = Shell(αi‖~s‖, αi+1‖~s‖),
1 < α < 1.1

C is covered by poly(n) such
shells

If ∀i we lower bound the
angles of Si ∩ C then:
|Si ∩ C | ≤ 2kn and
|C | ≤ poly(n)2kn
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Bounding the angles of points in C

0

~ci

αi‖~s‖

αi+1‖~s‖

Consider one shell Si

ci is a point in C ∩ Si

A new point should be in
~0-halfspace

Therefore φ~ci ,~cj
is lower

bounded
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Bounding the angles of points in C

0

~ci
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φ ' 60◦
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Perturbation Technique, AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L
Reduce(~p, C ) and consider
~p′ − ~ε
~p can correspond to two
lattice points

Reduce is oblivious of ~ε,

Lots of collisions ⇒ lots of
points near ~0 (and near ~s)

⇒ non negligible probability
of finding ~s
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Disadvantages of Perturbations

0 ~ci

~pj

After Reduce ~pj is further
from ~cj

But the perturbation
decreases the minimum
angles

This is especially bad for
shells near ~0

Perturbations greatly
increase space bounds:
20.41n+o(n) VS 21.33n+o(n)
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Practical variant Gauss Sieve

Practical implementation – Gauss Sieve:

No perturbations (Proposed in [NV 2008])

The list C is fully reduced:
∀~ci ,~cj ∈ C ‖~ci − ~cj‖ ≥ ‖~ci‖
Therefore φ~ci ,~cj

≥ 60◦!
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Running time comparison
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Gauss Sieve

' 102 to 103 faster, ' 70× less points

20.21n+o(n) space bound

Faster than NTL for dimensions > 40

Bottleneck is time, not space

Implementation available at http://cse.ucsd.edu/~pvoulgar/
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Summary

We improve the work of [AKS 2001] and [NV 2008] with:

List Sieving:

Lower space bounds in theory
Faster implementations in practice
Better algorithmic intuition

Connection with spherical codes:

Use of powerful theorems for analysis [KL 1978]

Faster heuristic:

Much faster, less space than previous implementation
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Open Problems

Open Problems:

SVP in 2cn time with poly(n) space

Other lattice problems in 2cn time/space (CVP, SIVP)

Deterministic variant

Specific to our work:

Bound time complexity without perturbations
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Thank you!

Thank you for attending!
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