Constraint Solvers for the Working PL Researcher

Nadia Polikarpova
The SAT/SMT Revolution

- hardware verification
- software verification
- software synthesis & repair
- network configuration synthesis
- biological modeling
- architecture
Boolean SATisfiability

\[(\text{gin} \lor \text{tonic}) \land (\text{minor} \Rightarrow \neg \text{gin}) \land \text{minor}\]

Solution:

\[
\begin{align*}
\text{minor} & \mapsto T \\
\text{gin} & \mapsto F \\
\text{tonic} & \mapsto T
\end{align*}
\]
Satisfiability Modulo Theories

\[(\text{gin} \lor \text{tonic}) \land (\text{age} \leq 21 \Rightarrow \text{abv} = 0) \land (\text{age} = 17) \land (\text{gin} \Rightarrow \text{abv} \geq 40)\]

Solution:

- \text{age} \mapsto 17
- \text{abv} \mapsto 0
- \text{gin} \mapsto F
- \text{tonic} \mapsto T

theory of Linear Integer Arithmetic
Popular Solvers

Microsoft

Stanford

SRI

JKU Linz, Austria

SMT competition: http://smtcomp.sourceforge.net

```
(declare-fun (Int) age)
(declare-fun (Int) abv)
```
Plan for Today

How to use Z3 for:
1. Constraint programming
2. Program verification
3. Program synthesis
Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

$N = 8$

$P = 4$

SZ_1 SZ_2 SZ_3 SZ_4
Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

$N = 10$

$P = 4$

sZ_1 sZ_2 sZ_3 sZ_4
Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

$N = 10$

Can we always make them differ by at most 1?
to the rescue!
CEGIS

\[N_0 \rightarrow \text{synthesize} \rightarrow C \rightarrow \text{verify} \rightarrow \{N_0, N_1, \ldots, N_k\} \rightarrow \text{verified for all } N! \rightarrow \text{wrong for } N = N_k \]