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the new era of programming
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Github Copilot Chat GPT Amazon CodeWhisperer

and more…



this talk
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I.
how do 

programmers 
use existing 

tools? 

II.
how can 
we make 
the tools 

more usable?
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how do programmers use existing tools?
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grounded copilot:
grounded theory 

of AI-assisted programming 

[Barke et al, OOPSLA’23]
distinguished paper

https://cseweb.ucsd.edu/%7Enpolikarpova/publications/oopsla23-copilot.pdf


grounded theory
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data 
interpretation

theory
development

data 
collection



grounded theory
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data 
interpretation

theory
development

data 
collection

programming 
session + 
interview

qualitative 
coding



tasks
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chat server
business logic of a chat app

Python/Rust

chat client
networking + custom crypto API

Python/Rust

benford’s law
familiar algorithm + matplotlib

Rust + Python

string rewriting
competition task, easy to test

Python/Rust/Haskell/Java



participants
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n = 20

occupation:
15 academia / 5 industry

language proficiency:
occasional / regular / professional

prior Copilot experience:
9 no / 11 yes



programming, fast and slow
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acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs



programming, fast and slow
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acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster



acceleration: example
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programmer: broke down the task,
has a good idea for this function

pauses
(unintentional prompting)



acceleration: example
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copilot: auto-completes current logical unit (line of code)

programmer: “pattern-matches” 
suggestion against expectations;

quickly accepts, 
without leaving flow



programming, fast and slow
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acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs



exploration: example
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programmer: 
unfamiliar with matplotlib

intentionally prompts 
with a comment;

invokes side panel



exploration: example
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copilot suggests multiple alternatives

programmer: carefully examines suggestions;
compares to gauge confidence in API usage

might cherry-pick parts 
from different suggestions

validates code by executing
or consulting documentation



acceleration                vs                 exploration
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acceleration                vs                 exploration
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promptingunintentional intentional with comments /
invoke side panel

validation“pattern matching”
explicit validation via

examination / execution / 
documentation

scopeunit of focus
(sub-expression / statement)

entire function +
multiple alternatives

mismatch
tolerance

unwilling to edit willing to edit / debug / 
“rip apart” / cherry-pick 



how do programmers use existing tools?
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I.
grounded copilot:

grounded theory 
of AI-assisted programming 

other studies
of existing tools



how do programmers use existing tools?
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other studies
of existing tools

[Ziegler et al, MAPS’22]

[Vaithilingam et al, CHI EA’22]

[Peng et al, arXiv’23]

[Liang et al, arXiv’23]

[Mozannar et al, arXiv’22]

https://arxiv.org/pdf/2205.06537.pdf
https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/pdf/2302.06590.pdf
https://arxiv.org/pdf/2303.17125.pdf
https://arxiv.org/abs/2210.14306


productivity
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[Ziegler et al, MAPS’22]

• analysis of 2531 survey responses + telemetry from Copilot
• measure perceived productivity

results:
• programmers perceive themselves

more productive
• correlated with acceptance rate
• average acceptance rate ~30%

https://arxiv.org/pdf/2205.06537.pdf


productivity (objective)

• 24 participants (mostly students)
• 3 programming tasks (easy to hard)
• within subjects
• Copilot vs IntelliSense

results:
• no improvement in task completion rate 

or time
• but most participants preferred Copilot

• 95 developers recruited through UpWork
• task: HTTP server in JavaScript
• between subjects
• Copilot vs regular IDE

results:
• completion time improved by 55.8%
• rate also improved but not significantly
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[Vaithilingam et al, CHI EA’22] [Peng et al, arXiv’23]

https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/pdf/2302.06590.pdf


usage patterns
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[Liang et al, arXiv’23]

• survey of 410 developers using Copilot / ChatGPT / CodeWhisperer /etc
• quantitative data to complement our findings

• for example: prevalence of validation strategies related to their time cost

• extensive list of requested features

https://arxiv.org/pdf/2303.17125.pdf


usage patterns
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[Mozannar et al, arXiv’22]

• observed 21 programmers using Copilot

• developed the CUPS taxonomy of user states
• refinement of our two modes

• collected stats on prevalence of states 
and transitions

• users spend the most time (22.4%) 
validating suggestions

• users often validate after “accepting” 
(e.g. to see syntax highlighting)

https://arxiv.org/abs/2210.14306
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we make 
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how can we make the tools more usable?
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1. help with validation
2. eliminate distractions
3. give user more control
4. navigating solution spaces



how can we make the tools more usable?
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1. help with validation
leap:

validating AI-generated code
with live programming



the validation challenge

“In the context of Copilot, there is a shift from writing code to understanding code“
 Taking Flight with Copilot, ACM Queue, Dec 22

• validation is hard
• [Vaithilingam et al] observed 8 cases of over-reliance: bugs due to skipped validation

• validation is a bottleneck 
• single most prevalent activity according to [Mozannar et al]

• prevalence of a validation strategy depends on its cost [Liang et al]
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to help with validation, we need to lower its cost

https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/abs/2210.14306
https://arxiv.org/pdf/2303.17125.pdf


leap

31

lowers the cost of validation by execution 
using live programming

demo



user study
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AI suggestions 
+

terminal

AI suggestions 
+

live programming

no-LP LP



research questions

how does live programming affect…

1. over- / under-reliance on AI
2. validation strategies
3. cognitive load

33



tasks
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pandas
clean dataframe and compute stats

using pandas

bigrams
find most frequent bigram in a string

box plot
overlay scatter plot over boxplot 

using matplotlib

string rewriting
parse rewrite rules and apply to string

fixed prompt

open prompt

API-heavy algorithmic



participants
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n = 17

occupation:
15 academia / 2 industry

Python usage:
2 occasionally / 
8 regularly / 
7 almost every day



rq1: over-/under-reliance
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6 no-PB vs 0 PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on AI



rq1: over-/under-reliance
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by lowering the cost of validation,
leap reduces over-/under-reliance on AI

6 no-PB vs 0 PB participants mid-judged correctness of their solution

“it was easy to understand the behavior of a code suggestion because 
the little boxes on the side allowed for you to preview the results.” (P3)

“it saved me the effort of writing multiple print statements.” (P1)



rq2: validation strategies
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percentage of time spent in 
Suggestion Panel

leap participants spent less time reading code

“I didn’t look too closely in the actual code, 
 I was just looking at the runtime values on the side.” (P1)



rq3: cognitive load
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NASA TLX cognitive load metrics
on Pandas

leap significantly reduced cognitive load of AI-assisted 
programming on tasks amenable to validation by execution



how can we make the tools more usable?
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1. help with validation
II.

leap:
validating AI-generated code

with live programming

other designs
for new tools



how can we make the tools more usable?
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1. help with validation 
[Vasconcelos et al, NeurIPS’22]
• highlight parts of the suggestion that will require editing
• show that using LLM confidence scores doesn’t work
• train a separate model to predict this

https://helenavasc.com/static/HCAI_NeurIPS_2022.pdf


how can we make the tools more usable?
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1. help with validation
2. eliminate distractions

[Sun et al, ICSE’23]
• train a lightweight model to predict low-return prompts
• helps save 5-20% of computational cost

https://ieeexplore.ieee.org/document/10172653


how can we make the tools more usable?
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1. help with validation
2. eliminate distractions
3. give user more control

[Ross et al, IUI’23]
• conversational programming assistant
• initiative with the user
• user controls the context (via selection)

https://dl.acm.org/doi/10.1145/3581641.3584037


how can we make the tools more usable?
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1. help with validation
2. eliminate distractions
3. bla
4. navigating solution spaces



navigating solution spaces
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Copilot’s multi-suggestion pane



our ongoing work
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how can we make the tools more usable?
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1. help with validation
2. eliminate distractions
3. give user more control
4. navigating solution spaces
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Michael James Shraddha Barke Kasra Ferdowsi Lisa Huang

Sorin Lerner

Emmanuel Anaya
Gonzalez

who did all the work
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