
how programmers interact
with ai assistants

Nadia Polikarpova
UPenn Seminar, November 2023

the new era of programming

2

Github Copilot Chat GPT Amazon CodeWhisperer

and more…

this talk

3

I.
how do

programmers
use existing

tools?

II.
how can
we make
the tools

more usable?

this talk

4

I. II.
grounded copilot:

grounded theory
of AI-assisted programming

other studies
of existing tools

leap:
validating AI-generated code

with live programming

other designs
for new tools

our work

how do programmers use existing tools?

5

grounded copilot:
grounded theory

of AI-assisted programming

[Barke et al, OOPSLA’23]
distinguished paper

https://cseweb.ucsd.edu/%7Enpolikarpova/publications/oopsla23-copilot.pdf

grounded theory

6

data
interpretation

theory
development

data
collection

grounded theory

7

data
interpretation

theory
development

data
collection

programming
session +
interview

qualitative
coding

tasks

8

chat server
business logic of a chat app

Python/Rust

chat client
networking + custom crypto API

Python/Rust

benford’s law
familiar algorithm + matplotlib

Rust + Python

string rewriting
competition task, easy to test

Python/Rust/Haskell/Java

participants

9

n = 20

occupation:
15 academia / 5 industry

language proficiency:
occasional / regular / professional

prior Copilot experience:
9 no / 11 yes

programming, fast and slow

10

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs

programming, fast and slow

11

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

acceleration: example

12

programmer: broke down the task,
has a good idea for this function

pauses
(unintentional prompting)

acceleration: example

13

copilot: auto-completes current logical unit (line of code)

programmer: “pattern-matches”
suggestion against expectations;

quickly accepts,
without leaving flow

programming, fast and slow

15

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs

exploration: example

16

programmer:
unfamiliar with matplotlib

intentionally prompts
with a comment;

invokes side panel

exploration: example

17

copilot suggests multiple alternatives

programmer: carefully examines suggestions;
compares to gauge confidence in API usage

might cherry-pick parts
from different suggestions

validates code by executing
or consulting documentation

acceleration vs exploration

19

acceleration vs exploration

20

promptingunintentional intentional with comments /
invoke side panel

validation“pattern matching”
explicit validation via

examination / execution /
documentation

scopeunit of focus
(sub-expression / statement)

entire function +
multiple alternatives

mismatch
tolerance

unwilling to edit willing to edit / debug /
“rip apart” / cherry-pick

how do programmers use existing tools?

21

I.
grounded copilot:

grounded theory
of AI-assisted programming

other studies
of existing tools

how do programmers use existing tools?

22

other studies
of existing tools

[Ziegler et al, MAPS’22]

[Vaithilingam et al, CHI EA’22]

[Peng et al, arXiv’23]

[Liang et al, arXiv’23]

[Mozannar et al, arXiv’22]

https://arxiv.org/pdf/2205.06537.pdf
https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/pdf/2302.06590.pdf
https://arxiv.org/pdf/2303.17125.pdf
https://arxiv.org/abs/2210.14306

productivity

23

[Ziegler et al, MAPS’22]

• analysis of 2531 survey responses + telemetry from Copilot
• measure perceived productivity

results:
• programmers perceive themselves

more productive
• correlated with acceptance rate
• average acceptance rate ~30%

https://arxiv.org/pdf/2205.06537.pdf

productivity (objective)

• 24 participants (mostly students)
• 3 programming tasks (easy to hard)
• within subjects
• Copilot vs IntelliSense

results:
• no improvement in task completion rate

or time
• but most participants preferred Copilot

• 95 developers recruited through UpWork
• task: HTTP server in JavaScript
• between subjects
• Copilot vs regular IDE

results:
• completion time improved by 55.8%
• rate also improved but not significantly

24

[Vaithilingam et al, CHI EA’22] [Peng et al, arXiv’23]

https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/pdf/2302.06590.pdf

usage patterns

25

[Liang et al, arXiv’23]

• survey of 410 developers using Copilot / ChatGPT / CodeWhisperer /etc
• quantitative data to complement our findings

• for example: prevalence of validation strategies related to their time cost

• extensive list of requested features

https://arxiv.org/pdf/2303.17125.pdf

usage patterns

26

[Mozannar et al, arXiv’22]

• observed 21 programmers using Copilot

• developed the CUPS taxonomy of user states
• refinement of our two modes

• collected stats on prevalence of states
and transitions

• users spend the most time (22.4%)
validating suggestions

• users often validate after “accepting”
(e.g. to see syntax highlighting)

https://arxiv.org/abs/2210.14306

this talk

27

I.
how do

programmers
use existing

tools?

II.
how can
we make
the tools

more usable?

how can we make the tools more usable?

28

1. help with validation
2. eliminate distractions
3. give user more control
4. navigating solution spaces

how can we make the tools more usable?

29

1. help with validation
leap:

validating AI-generated code
with live programming

the validation challenge

“In the context of Copilot, there is a shift from writing code to understanding code“
 Taking Flight with Copilot, ACM Queue, Dec 22

• validation is hard
• [Vaithilingam et al] observed 8 cases of over-reliance: bugs due to skipped validation

• validation is a bottleneck
• single most prevalent activity according to [Mozannar et al]

• prevalence of a validation strategy depends on its cost [Liang et al]

30

to help with validation, we need to lower its cost

https://dl.acm.org/doi/abs/10.1145/3491101.3519665
https://arxiv.org/abs/2210.14306
https://arxiv.org/pdf/2303.17125.pdf

leap

31

lowers the cost of validation by execution
using live programming

demo

user study

32

AI suggestions
+

terminal

AI suggestions
+

live programming

no-LP LP

research questions

how does live programming affect…

1. over- / under-reliance on AI
2. validation strategies
3. cognitive load

33

tasks

34

pandas
clean dataframe and compute stats

using pandas

bigrams
find most frequent bigram in a string

box plot
overlay scatter plot over boxplot

using matplotlib

string rewriting
parse rewrite rules and apply to string

fixed prompt

open prompt

API-heavy algorithmic

participants

35

n = 17

occupation:
15 academia / 2 industry

Python usage:
2 occasionally /
8 regularly /
7 almost every day

rq1: over-/under-reliance

36

6 no-PB vs 0 PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on AI

rq1: over-/under-reliance

37

by lowering the cost of validation,
leap reduces over-/under-reliance on AI

6 no-PB vs 0 PB participants mid-judged correctness of their solution

“it was easy to understand the behavior of a code suggestion because
the little boxes on the side allowed for you to preview the results.” (P3)

“it saved me the effort of writing multiple print statements.” (P1)

rq2: validation strategies

38

percentage of time spent in
Suggestion Panel

leap participants spent less time reading code

“I didn’t look too closely in the actual code,
 I was just looking at the runtime values on the side.” (P1)

rq3: cognitive load

39

NASA TLX cognitive load metrics
on Pandas

leap significantly reduced cognitive load of AI-assisted
programming on tasks amenable to validation by execution

how can we make the tools more usable?

41

1. help with validation
II.

leap:
validating AI-generated code

with live programming

other designs
for new tools

how can we make the tools more usable?

42

1. help with validation
[Vasconcelos et al, NeurIPS’22]
• highlight parts of the suggestion that will require editing
• show that using LLM confidence scores doesn’t work
• train a separate model to predict this

https://helenavasc.com/static/HCAI_NeurIPS_2022.pdf

how can we make the tools more usable?

43

1. help with validation
2. eliminate distractions

[Sun et al, ICSE’23]
• train a lightweight model to predict low-return prompts
• helps save 5-20% of computational cost

https://ieeexplore.ieee.org/document/10172653

how can we make the tools more usable?

44

1. help with validation
2. eliminate distractions
3. give user more control

[Ross et al, IUI’23]
• conversational programming assistant
• initiative with the user
• user controls the context (via selection)

https://dl.acm.org/doi/10.1145/3581641.3584037

how can we make the tools more usable?

45

1. help with validation
2. eliminate distractions
3. bla
4. navigating solution spaces

navigating solution spaces

46

Copilot’s multi-suggestion pane

our ongoing work

47

how can we make the tools more usable?

48

1. help with validation
2. eliminate distractions
3. give user more control
4. navigating solution spaces

this talk

49

I.
how do

programmers
use existing

tools?

II.
how can
we make
the tools

more usable?

50

Michael James Shraddha Barke Kasra Ferdowsi Lisa Huang

Sorin Lerner

Emmanuel Anaya
Gonzalez

who did all the work

	how programmers interact�with ai assistants
	the new era of programming
	this talk
	this talk
	how do programmers use existing tools?
	grounded theory
	grounded theory
	tasks
	participants
	programming, fast and slow
	programming, fast and slow
	acceleration: example
	acceleration: example
	programming, fast and slow
	exploration: example
	exploration: example
	acceleration vs exploration
	acceleration vs exploration
	how do programmers use existing tools?
	how do programmers use existing tools?
	productivity
	productivity (objective)
	usage patterns
	usage patterns
	this talk
	how can we make the tools more usable?
	how can we make the tools more usable?
	the validation challenge
	leap
	user study
	research questions
	tasks
	participants
	rq1: over-/under-reliance
	rq1: over-/under-reliance
	rq2: validation strategies
	rq3: cognitive load
	how can we make the tools more usable?
	how can we make the tools more usable?
	how can we make the tools more usable?
	how can we make the tools more usable?
	how can we make the tools more usable?
	navigating solution spaces
	our ongoing work
	how can we make the tools more usable?
	this talk
	who did all the work

