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chat server
business logic of a chat app

Python/Rust

chat client
networking + custom crypto API

Python/Rust

benford’s law
familiar algorithm + matplotlib

Rust + Python

string rewriting
competition task, easy to test

Python/Rust/Haskell/Java
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n = 20

occupation:
15 academia / 5 industry

language proficiency:
occasional / regular / professional

prior Copilot experience:
9 no / 11 yes
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programmer: broke down the task,
has a good idea for this function

pauses
(unintentional prompting)
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copilot: auto-completes current logical unit (line of code)

programmer: “pattern-matches” 
suggestion against expectations;

quickly accepts, 
without leaving flow
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programmer: 
unfamiliar with matplotlib

intentionally prompts 
with a comment;

invokes side panel
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copilot suggests multiple alternatives

programmer: carefully examines suggestions;
compares to gauge confidence in API usage

might cherry-pick parts 
from different suggestions

validates code by executing
or consulting documentation
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promptingunintentional intentional with comments /
invoke side panel

validation“pattern matching”
explicit validation via

examination / execution / 
documentation

scopeunit of focus
(sub-expression / statement)

entire function +
multiple alternatives

mismatch
tolerance

unwilling to edit willing to edit / debug / 
“rip apart” / cherry-pick 
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leap
helping programmers

validate AI-generated code

live exploration 
of ai-generated 

programs
idea: simplify validation using

live programming
(continuous display of runtime values )
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AI suggestions 
+

terminal

AI suggestions 
+

projection boxes

no-PB PB



research questions

how does live programming affect…

1. code correctness
2. over- / under-reliance on AI
3. cognitive load
4. user impressions

35
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pandas
clean dataframe and compute stats

using pandas

bigrams
find most frequent bigram in a string

box plot
overlay scatter plot over boxplot 

using matplotlib

string rewriting
parse rewrite rules and apply to string

fixed prompt

open prompt

API-heavy algorithmic



participants

37

n = 17

occupation:
15 academia / 2 industry

Python usage:
2 occasionally / 
8 regularly / 
7 almost every day
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leap helps validate suggestions
(but does not help fix incorrect ones)
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6 no-PB vs 0 PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on AI
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by lowering the cost of validation,
leap reduces over-/under-reliance on AI

6 no-PB vs 0 PB participants mid-judged correctness of their solution

“it was easy to understand the behavior of a code suggestion because 
the little boxes on the side allowed for you to preview the results.” (P3)

“it saved me the effort of writing multiple print statements.” (P1)
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NASA TLX cognitive load metrics
on Pandas

leap significantly reduced cognitive load of exploring AI 
suggestions on tasks amenable to validation by execution
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users found leap more usable and useful

“Being able to preview, edit, and look at the projection boxes before accepting 
a snippet was very helpful when choosing between multiple suggestions.” (P1)
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