
how programmers interact
with ai assistants

Nadia Polikarpova
DL4Code @ ICLR’23

with Shraddha Barke, Kasra Ferdowsifard, Lisa Huang, Michael B. James, and Sorin Lerner

the new era of programming

2

Github Copilot Chat GPT Amazon CodeWhisperer

and more…

and more…

the new era of programming

3

Github Copilot Chat GPT Amazon CodeWhisperer

this talk

4

grounded
copilot
grounded theory

of AI-assisted programming

leap
helping programmers

validate AI-generated code

[OOPSLA’23] [under review]

this talk

5

1. method

2. theory

3. recommendations

grounded
copilot
grounded theory

of AI-assisted programming

this talk

6

1. methodgrounded
copilot
grounded theory

of AI-assisted programming

grounded theory

7

data
interpretation

theory
development

data
collection

grounded theory

8

data
interpretation

theory
development

data
collection

programming
session +
interview

qualitative
coding

tasks

9

chat server
business logic of a chat app

Python/Rust

chat client
networking + custom crypto API

Python/Rust

benford’s law
familiar algorithm + matplotlib

Rust + Python

string rewriting
competition task, easy to test

Python/Rust/Haskell/Java

participants

10

n = 20

occupation:
15 academia / 5 industry

language proficiency:
occasional / regular / professional

prior Copilot experience:
9 no / 11 yes

this talk

11

1. method

2. theory

3. recommendations

grounded
copilot
grounded theory

of AI-assisted programming

this talk

12

1. method

2. theory
grounded

copilot
grounded theory

of AI-assisted programming

programming, fast and slow

13

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs

programming, fast and slow

14

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

acceleration: example

15

programmer: broke down the task,
has a good idea for this function

pauses
(unintentional prompting)

acceleration: example

16

copilot: auto-completes current logical unit (line of code)

programmer: “pattern-matches”
suggestion against expectations;

quickly accepts,
without leaving flow

programming, fast and slow

17

acceleration
autocomplete++

programmer has a plan
copilot helps them get there faster

exploration
StackOverflow++

programmer is lost
copilot suggests potential solutions

vs

exploration: example

18

programmer:
unfamiliar with matplotlib

intentionally prompts
with a comment;

invokes side panel

exploration: example

19

copilot suggests multiple alternatives

programmer: carefully examines suggestions;
compares to gauge confidence in API usage

might cherry-pick parts
from different suggestions

validates code by executing
or consulting documentation

acceleration vs exploration

20

acceleration vs exploration

21

promptingunintentional intentional with comments /
invoke side panel

validation“pattern matching”
explicit validation via

examination / execution /
documentation

scopeunit of focus
(sub-expression / statement)

entire function +
multiple alternatives

mismatch
tolerance

unwilling to edit willing to edit / debug /
“rip apart” / cherry-pick

this talk

22

1. method

2. theory

3. recommendations

grounded
copilot
grounded theory

of AI-assisted programming

this talk

23

1. method

2. theory

3. recommendations

grounded
copilot
grounded theory

of AI-assisted programming

acceleration vs exploration

24

main
challenges

unexpected suggestions
break flow

acceleration vs exploration

25

main
challenges

unexpected suggestions
break flow

suggestions hard to
validate & debug

multiple suggestions hard to
distinguish

acceleration vs exploration

26

unexpected suggestions
break flow

suggestions hard to
validate & debug

multiple suggestions hard to
distinguish

this talk

27

grounded
copilot
grounded theory

of AI-assisted programming

leap
helping programmers

validate AI-generated code

this talk

28

leap
helping programmers

validate AI-generated code

live exploration
of ai-generated

programs
idea: simplify validation using

live programming
(continuous display of runtime values)

this talk

29

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

this talk

30

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

31

this talk

32

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

this talk

33

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

experimental conditions

34

AI suggestions
+

terminal

AI suggestions
+

projection boxes

no-PB PB

research questions

how does live programming affect…

1. code correctness
2. over- / under-reliance on AI
3. cognitive load
4. user impressions

35

tasks

36

pandas
clean dataframe and compute stats

using pandas

bigrams
find most frequent bigram in a string

box plot
overlay scatter plot over boxplot

using matplotlib

string rewriting
parse rewrite rules and apply to string

fixed prompt

open prompt

API-heavy algorithmic

participants

37

n = 17

occupation:
15 academia / 2 industry

Python usage:
2 occasionally /
8 regularly /
7 almost every day

this talk

38

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

this talk

39

1. demo

2. study

3. findings

leap
helping programmers

validate AI-generated code

rq1: correctness

40

leap helps validate suggestions
(but does not help fix incorrect ones)

rq2: over-/under-reliance

41

6 no-PB vs 0 PB participants mid-judged correctness of their solution

by lowering the cost of validation,
leap reduces over-/under-reliance on AI

rq2: over-/under-reliance

42

by lowering the cost of validation,
leap reduces over-/under-reliance on AI

6 no-PB vs 0 PB participants mid-judged correctness of their solution

“it was easy to understand the behavior of a code suggestion because
the little boxes on the side allowed for you to preview the results.” (P3)

“it saved me the effort of writing multiple print statements.” (P1)

rq3: cognitive load

43

NASA TLX cognitive load metrics
on Pandas

leap significantly reduced cognitive load of exploring AI
suggestions on tasks amenable to validation by execution

rq3: user impressions

44

users found leap more usable and useful

“Being able to preview, edit, and look at the projection boxes before accepting
a snippet was very helpful when choosing between multiple suggestions.” (P1)

this talk

45

grounded
copilot
grounded theory

of AI-assisted programming

leap
helping programmers

validate AI-generated code

[OOPSLA’23] [under review]

	how programmers interact�with ai assistants
	the new era of programming
	the new era of programming
	this talk
	this talk
	this talk
	grounded theory
	grounded theory
	tasks
	participants
	this talk
	this talk
	programming, fast and slow
	programming, fast and slow
	acceleration: example
	acceleration: example
	programming, fast and slow
	exploration: example
	exploration: example
	acceleration vs exploration
	acceleration vs exploration
	this talk
	this talk
	acceleration vs exploration
	acceleration vs exploration
	acceleration vs exploration
	this talk
	this talk
	this talk
	this talk
	Slide Number 31
	this talk
	this talk
	experimental conditions
	research questions
	tasks
	participants
	this talk
	this talk
	rq1: correctness
	rq2: over-/under-reliance
	rq2: over-/under-reliance
	rq3: cognitive load
	rq3: user impressions
	this talk

