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Abstract—We extend a mathematical model illustrating the
effects of retinal fixational drift motion on color perception and
shape reconstruction. By taking into account the lateral inhibition
of the H1 cell network and properties of the retinal cone
mosaic, we are able to create a biologically-plausible model for
estimating the retina position and spatio-chromatic information
of a natural visual stimulus. Results suggest that a model taking
into account lateral inhibition is better able to reconstruct higher-
contrast regions of the image, and could potentially show more
improvement with a well-chosen dictionary prior.

Index Terms—fixational drift, horizontal cells, eye movement,
lateral inhibition, sparse coding

I. INTRODUCTION

Although human visual perception is incredibly rich and
informative, work is still being done to understand how
underlying biological mechanisms in the early visual pathway
enable rich and coherent percepts. Light is first projected onto
the cones in the retinal cone mosaic where three types of
cones, each responding with varying sensitivities to light of
different wavelengths, process and relay this information to
downstream regions in the retina and the visual cortex. Imag-
ing experiments performed with adaptive optics have shown
that retinal cone mosaics contain a non-uniform distribution of
cone types, random spatial arrangement of cones, and varying
cone densities, [3], [4], [17]. To alleviate the negative effects
of these attributes, fixational retinal drift motion has been
proposed as a mechanism through which inhomogeneities in
the retina can be smoothed out by sharing input information
across the retina [1], [4].

A. Role of Retinal Fixational Drift Motion

During visual fixation the human eye makes microscopic
movements, continuously altering the retinal projection of the
visual stimuli and photoreceptor cell responses. Despite this
motion, humans maintain a stable and high-acuity percept of
the stimuli. Earlier work described how this eye movement
was a hindrance and further neural computation was nec-
essary to remove the blurring effect caused by this motion
[10]. However, more recent experiments done by Ratnam,
et al. [4], which indicated that humans were more likely to
correctly identify the orientation of a moving stimulus than
of a stationary stimulus, concluded that the visual system is
able to construct higher-resolution percepts by incorporating

Fig. 1. An illustration of the center-surround receptive fields of midget retinal
ganglion cells [18]. Stimulation of the center and lack of stimulation in the
surround of an ON cell’s receptive field results in an increase in the firing
rate of the ganglion cell. Moderate firing response in retinal ganglion cells
occur when both the center and surround are stimulated.

information about the eye’s movement. To corroborate the ex-
perimental results demonstrating the utility of retinal motion,
Anderson, et al. [1] proposed a mathematical model to explain
the neural mechanisms that utilize retinal movement to provide
high-acuity vision by jointly estimating the stimuli shape and
position of the retina.

B. Horizontal Cell-Mediated Lateral Inhibition

However, the interactions between retinal motion and hor-
izontal cells in the retina remain unclear. Horizontal cells
are found across the cone mosaic and connect neighboring
cones and rods to each other using gap junctions. These
connections enable inhibitory feedback from neighboring rods
and cones to modulate the signal sent to the ganglion cells.
These signals emphasize the edges of the input image and
remove redundancies between nearby photoreceptor cell re-
sponses, whitening the visual stimuli [12]. This inhibitory
feedback is called lateral inhibition, which creates the center-
surround receptive field in midget ganglion cells (see Fig.
1) [16]. The behavior of horizontal cells has also been used
to explain color perception. [11] proposed that interactions
between S-cone signals and L versus M-cone signals are
responsible for perceiving distinct hues. However, the random
spatial arrangement of cones makes it implausible for specific
interactions between cone signals to occur across all locations
in a static retina to provide high quality color vision. Further
work is needed to understand how lateral inhibition affects



Fig. 2. An overview of our proposed model. (a) The input natural image, in RGB space, split into R, G, and B channels. (b) Using the methodology of [1]
we measure the retinal ganglion cell activations for all color channels, taking into account lateral inhibition. (c) Finally, taking into account the activations
across all color channels at once, we iteratively alternate between inferring the retina position and the shape and color to reconstruct the original image.

color perception, especially when taking retinal fixational drift
motion into account.

C. Previous Models

The models we extended were created by Anderson, et al.
and Sabnis, et al [1], [5]. [1] created the first mechanism for
reconstructing a high quality greyscale image by using a joint
online expectation maximization (EM) algorithm. The model
uses spike data generated by an array of retinal ganglion cells
in response to the visual input and the estimated eye position,
to infer the input’s shape. This updated shape estimate and new
spike data generated in response to eye movement is used to re-
estimate the position of the eye. The model alternates between
these two steps to improve the inference. [5] extended [1] to
work with colored images by assigning each L, M and S-
cone to the R, G and B channels of an image representing an
input natural stimulus. To infer the shape of the visual input,
they ran the EM model on all three channels independently
and concatenated the result. Neither model accounted for the
effects of lateral inhibition.

D. Objectives

We hypothesize that the nature of lateral inhibition indi-
cates that it will aid in the reconstruction of high-frequency
color changes and contours, while reconstructing solid or
flat colors somewhat poorly. To test this, we build off the
work done in previous models to produce a more biologically
plausible variant to directly infer spatiochromatic information
in the presence of retinal fixational drift motion. First, we
explain how we adapted the Anderson et al. model to work
with colored stimuli. Then, we describe how lateral inhibition
was added to the model and share experimental results using
natural images that show the joint effect of lateral inhibition
and retinal fixational drift motion on perception. Finally,
we discuss experiments with different spatio-chromatic priors
used for shape and color inference. See Fig. 2 for reference.

II. METHODOLOGY

A. Updating Prior Model for Colored Input

In order for our model to work with colored images and
infer the stimuli’s shape by jointly using information across
all three color channels, we changed the retinal ganglion cell
spiking model. We replaced the homogeneous rectangular cone
lattice with a biologically plausible hexagonal cone lattice
consisting of three different types of cones randomly arranged
and responsive to different color channels. Each cone was
connected to an ON and OFF retinal ganglion cell so that these
cells only activated in response to input from a certain cone
type. The spike trains of all retinal ganglion cells were used
to predict the position of the eye and infer the stimuli’s shape
and the movement of the eye was simulated by translating all
cones the same amount.

B. Updating the Retinal Sampling Lattice

The size and density of this hexagonal lattice are parameters
to the model, and all experiments were done with lattices
enclosed within a circle of radius 7-15 pixels with a minimum
separation of 0.5-1.2 pixels between cones. We used lattices
with 45% L, 45% M and 10% S cones. Adjusting these
parameters could allow for future exploration of how varying
L:M cone ratios can affect lateral inhibition effects.

C. Adding lateral inhibition

Prior models compute the activation c and the firing rate,
λ, of RGC j at time t using the following equations [1]:

cj,t = g ·
∑
i

SiT (X
R
t )i,j

c′j,t = cj,t if j ∈ ON or 1− cj,t if j ∈ OFF

λj(S,Xt) = exp (log λ0 + log (λ1/λ0) · c′j,t)

where Si is a pixel of the stimuli, XR
t is the retinal location,

and T (XR
t )i,j is a weighting factor based on the distance

between the RGC and the pixel. λ0 and λ1 are pre-set



minimum and maximum firing frequencies and g is a gain
set such that cj,t has a maximum value of 1.

In order to add lateral inhibition, we add an extra term to
the first equation so that it becomes:

cj,t = g ·max

(∑
i

SiT (X
R
t )i,j − q ·

∑
k∈N

ck,tI(j, k), 0

)
The new term is a weighted sum of the RGC’s neighbors where
the weighting function I(j, k) is a Gaussian as described in
[13] and [14]:

I(j, k) =
1

σ
√
2π
e
− 1

2

( ||Xj−Xk||
σ

)2

The variance of this function, σ is a parameter to the model.
We restrict cj,t to non-negative values to avoid firing frequen-
cies below the minimum frequency and include a scaling factor
q. Together, σ and q control the strength and extent of the
lateral inhibition effect in our model.

For this work we modeled only the H1 horizontal cells
which ignore S cones, so when constructing the neighbors
set N for each RGC, we only considered L and M type cones
[15].

D. Model Parameters

As formulated, our model includes four parameters that can
be changed to tweak the performance: λ0, λ1, σ and q. λ0 and
λ1, the baseline and maximum firing rates, were set to 10 Hz
and 100 Hz respectively as in [1]. After experimentation, we
chose values of 1.75 for σ and 0.75 for q.

III. EXPERIMENTS WITH SPATIO-CHROMATIC PRIORS

As in [1], we impose a diffusive random walk as a prior on
the eye trajectory. However, we look to incorporate different
priors on the stimulus pattern that allow for the simultaneous
inference of both shape and color. We follow the example of
[1] and incorporate a prior of the form

log p(S|A) = δ(S −DA)

where S is the shape, D is a dictionary matrix and A is the
vector of latent codes. For the lateral inhibition experiments,
we use the independent pixel prior, which samples A uni-
formly and lets D = I . We considered two ways to generate
spatio-chromatic priors, sparse coding with ICA and LCA, and
compared these with results obtained using the independent
pixel prior (see Fig. 3).

A. Sparse Coding with ICA

For one experiment, we performed independent component
analysis (ICA) to obtain a sparse coding basis. Assume we
have the generative model [2]:

S = DA+ ε

where ε is a noise term. We whiten the input shape S to get Ŝ
so that the impact of ε is reduced. To obtain an orthogonal
basis for ICA [9], let D represent the list of ICA basis

Fig. 3. Experimental results using different priors. From left to right:
the original, natural image; reconstruction with an independent pixel prior;
reconstruction with the locally competitive algorithm and learning rule;
reconstruction with independent component analysis.

vectors, and obtain the latent factors using the Moore-Penrose
pseudoinverse as

D+Ŝ = A

However, since an overcomplete basis would work better
than an orthogonal one, we use the FastICA algorithm [7]
to compute the independent component matrix, obtaining the
dictionary D and latent code A through gradient descent.

B. Sparse Coding with LCA

For the other experiment, we used the locally competitive
algorithm (LCA) with a learning rule to obtain a sparse coding
basis. Consider a similar representation of the generative
formulation:

S(x, y) =
∑
i

AiDi(x, y) + ε

LCA is a biologically plausible method for sparse coding,
which attempts to minimize the following function of S, D,
A and a cost function C:

E(S,A;D) =
1

2

(∑
x,y

Sx,y −
∑
i

AiDi(x, y)

)2

+λ
∑
i

C(Ai)

The above is also called an energy function. [8] describes the
following method for obtaining the optimal D∗ and A∗, which
is done by alternating between using LCA to find the optimal
A∗ and using the gradient descent learning rule to find the
optimal dictionary.

For ICA, our results indicate that while some color and
a very weak outline of the input shape is reconstructed, the
sparse coding basis was not spatiochromatically optimized for
our use case. We believe that future work must be undertaken
in order to identify the pre-processing and post-processing
techniques (in addition to centering and whitening) that might
result in a more accurate reconstruction. For LCA and the
learning rule, our results indicate that while a very accurate
input shape is reconstructed, the color is not. The code for
LCA with gradient descent was based off of an implementation
for greyscale (2D) images, which is a potential reason for why
the color was not accurately reproduced (we reshaped the 3D
image to be 2D, which might not be enough to accurately
reproduce spatiochromatic information).



TABLE I
SNR WITH AND WITHOUT LATERAL INHIBITION

Image Lateral Inhibition No Inhibition
Oski 5.724 ±0.92 5.032 ±1.31
Balls 3.739 ±0.48 4.333 ±0.44

Fire Truck 3.946 ±0.74 3.818 ±0.86
Solid Red 8.000 ±0.938 8.577 ±1.427

Fig. 4. The ground truth stimuli used to compare the model with and without
lateral inhibition. From left to right: Oski, Balls, Fire Truck, and Solid Red.

IV. RESULTS

In order to test the effects of lateral inhibition on our model,
we reconstructed various natural stimuli and solid color stimuli
both with and without lateral inhibition. We chose three test
images and a red solid color stimuli which are shown in Fig.
4. In order to compare these images, we ran 10 iterations of
each reconstruction where the trajectory of the eye movement
changed in each iteration. Table 1 contains this data. The
model with lateral inhibition performed better on the Oski and
Fire Truck images but performed worse on the Balls image
and the solid red stimuli. Both the balls image and red stimuli
include significant regions of solid color, meaning our results
are in line with our hypothesis that lateral inhibition would
perform poorly on solid colors while excelling at more high-
frequency images.

Overall, it is somewhat difficult to evaluate the effectiveness
of lateral inhibition from looking at the SNR of entire images.
Hence, we generated error plots for both reconstructions. In
order to generate these error plots, we computed the difference
between the reconstruction and ground truth in the R, G, and
B channels separately, then added them together and averaged
across all reconstructions.

Fig. 5 shows an example of these error plots. Combined,
the reconstructions and error plots provide some insight into
the effect of lateral inhibition: The edges in the image are
reconstructed with higher fidelity with lateral inhibition than
without. In particular, the reconstruction without lateral inhibi-
tion includes significant blurring and discoloration between the
red and yellow balls in the bottom left corner. In addition, the
error plots show that the reconstructions with lateral inhibition
had less error throughout the center of the image where various
balls meet.

The independent pixel prior limits the quality of the re-
construction, as this prior does not take into account more
widespread color information in an image and produces patchy
reconstructions. Furthermore, this prior makes it difficult for
the model to reconstruct non-primary colors.

Fig. 5. Analysis of reconstructions of the Balls image. Left: With lateral
inhibition, Right: Without lateral inhibition

V. DISCUSSION

Although our results suggest that lateral inhibition aids in
perceiving high-contrast areas of natural visual stimuli, the
reconstructions using lateral inhibition and those not using
lateral inhibition are perceptually quite similar. Further ex-
periments are necessary to first understand the direct effect of
lateral inhibition on RGC activations, prior to shape inference.
These experiments should use fewer cones in the sampling
lattice and simpler visual stimuli to better understand how
and when lateral inhibition improves our perception. It may
even be useful to design separate experiments to understand
how lateral inhibition affects color and shape perception
independently.

Due to the limitations of the independent pixel prior, further
research should be done to construct a spatio-chromatic prior
that takes into account global color information in the image
to effectively utilize all RGC activations when reconstructing
the original image.

Additionally, the temporal effects of lateral inhibition (see
Fig. 1) could also be implemented to achieve a more accurate
result and experiments could be run to understand how the
fidelity of the shape and color reconstruction deteriorates as
cone density is reduced.
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