
On the Generalizability of Two-Layer ReLU-activated
Neural Networks with a Fourier Feature Embedding

Nithin Raghavan1 Richard Hu1 Alberto L. Checcone1

1University of California, Berkeley

1 Problem Statement

We would like to analyze the generalizability bounds of binary coordinate-based multi-layer
perceptrons (MLPs) with an input Fourier Feature encoding using Rademacher analysis.
Coordinate-based MLPs are a form of artificial neural network (ANN) that take in as input a
low-dimensional input (usually a 2D or 3D coordinate), and they can be increasingly found in many
problems in computer graphics and computer vision, such as 3D shape regression, 2D image regres-
sion, CT, MRI and more. However, MLPs with a raw coordinate input usually do not perform well in
practice, as they fail to learn high-frequency features. Recent work by Tancik, et al. [19] introduced
the Fourier Feature embedding, which is a generalization of the sinusoidal positional encoding found
in many papers [21, 13, 20] that maps an input coordinate v ∈ Rd onto the surface of a hypersphere
as follows:

γ(v) =
[
α1 cos(2πb>1 v), α1 sin(2πb>1 v), . . . , αr cos(2πb>r v), αr sin(2πb>r v)

]>
where for all i ∈ [r], αi ∈ R are weighting factors, and bi ∈ Rd are vectors of the same length as v
that control the mapping of the input points onto the hypersphere. Hereafter, we shall refer to the bi
vectors as the frequency factors. We do not assume any frequency prior on the type of task or shape
we are attempting to perform regression on, so in practice, we will derive the frequency factors bi
from an isotropic Gaussian distribution.

Tancik, et al. additionally performed further analysis using neural tangent kernel theory to show that
coordinate-based MLPs with such an encoding are able to learn high frequency features. We intend
to continue this line of research by using neural tangent kernel theory and Rademacher analysis to
produce generalizability bounds on binary coordinate-based MLPs with a Fourier Feature embedding
in order to produce bounds in terms of the number of frequency components r and the values of the
frequency factors bi. This has real-world applications for understanding the training dynamics of sim-
ilar classes of networks with a Fourier Feature encoding. An example of such classes are occupancy
networks [12] whose weights’ `2 norms are bounded above by a constant, which [19] additionally
demonstrated were significantly aided by a Fourier Feature embedding. Further experiments with
occupancy networks can therefore help to verify our generalization bounds. Additionally, as the
bounds we derive are in terms of the number of frequency components and frequency factors, we
thereby have control over the hyperparameters in the Fourier Feature encoding. This allows us to
measure the relative impact that each of these components has over the generalizability, giving an
idea as to which parameters to select to achieve the best performance.

There are several tools which we will consider for this purpose. The first is neural tangent kernel
(NTK) theory. The NTK is a type of kernel which describes the evolution of sufficiently-wide
ANNs. In particular, the inference performed by infinite-width artificial neural networks is in
expectation equal to kernel ridge regression with no ridge [9]. Previous work such as [2, 3] developed
generalizability bounds on such networks using Rademacher complexity. Another tool we will
consider is Reproducing Kernel Hilbert Space (RKHS) Theory. An RKHS is a Hilbert space induced
by a kernel k that obeys the reproducing property (namely, that function evaluation on a point f(x) is
equivalent to an inner product with the kernel k in this space: 〈k(x, ·), f〉), among other axioms [1].
We have used a combination of these tools to obtain a bound similar in nature to [2], but more suited



to our purposes, which allow us to obtain a thorough, yet unwieldy, generalization bound in terms of
the frequency factors and the number of frequency components.

2 Introduction

2.1 Related Work and Assumptions

It is well-known that MLPs have a spectral bias that prevents them from learning high-frequency
functions [14, 5]. [21, 13] empirically found that a sinusoidal mapping of input coordinates is able to
overcome this issue to an extent, and allows MLPs to learn higher-frequency features. Generalizing
this, Tancik, et al. (2020) demonstrates that Fourier Feature embeddings for coordinate-based MLPs
not only enable them to learn any higher-frequency features, but also improve their convergence rate.
Fourier Features project the low-dimensional coordinate inputs onto a hypersphere. For our purposes,
we set all αi = 1 in the Fourier Feature encoding as a simplification.

In our research, we expand on the work of Tancik, et al. (2020) by providing specific bounds on the
generalizability of two-layer ReLU networks trained on inputs preprocessed with a Fourier Feature
embedding. Because generalizability can be viewed as a complexity measure of data that one can
use to predict the test accuracy of the learned neural network, we can thereby give a clear bound
on the evolution of certain classes of neural networks so that we can see how they evolve over time.
Furthermore, this also measures the richness of the class of functions that a neural network can learn.

Empirical Rademacher complexity directly gives an upper bound on generalization error and
Rademacher complexity can give us an easily verifiable measure that can differentiate between
true labels and random labels [2]. We therefore conduct our analysis by utilizing the NTK. [9] proved
that the as the width of an MLP with a ReLU activation increases to infinity, its inference converges
to kernel ridge regression using the NTK with the ridge parameter λ approaching zero, with the NTK
itself defined as follows, where f is the neural network prediction function and the weights θ are
initialized as Gaussian [19, 3]:

kNTK(xi, xj) = Eθ∼N
(〈

∂f(xi; θ)

∂θ
,
∂f(xj ; θ)

∂θ

〉)
As such, the NTK is a dot product kernel, which only depends on the dot product between two sample
points x>i xj (i.e. kNTK(xi, xj) = hNTK(x>i xj), a function of a single variable). For a two-layer
neural network of the kind we will conduct our analysis on, [2, 6] describe its NTK as:

hNTK(x>i xj) =
x>i xj(π − cos−1(x>i xj))

2π

The NTK for larger networks can be defined recursively. When dealing with a sample of size n, the
matrix that solves the kernel ridge regression problem (with no ridge) is the kernel matrix (or Gram
matrix) Ktrain ∈ Rn×n such that Ktrain,ij = hNTK(x>i xj). [2, 3] additionally provide bounds that
indicate that even when the network width is not infinite, the NTK nonetheless is able to closely
approximate the actual training dynamics. Thus, assuming a sufficiently overparameterized network,
the NTK enables us to observe and track the behavior of our Fourier Feature embedded neutral
networks in the limit without needing to work directly with the structure of the MLP, which greatly
simplifies computations. Arora, et al. , which used Rademacher complexity to obtain a generalization
bound for a general two-layer neural network with a normalized input x, additionally found that the
relative values of the projection of the input labels onto the eigenvectors of the NTK Gram matrix
was necessary for improved generalizability as well [2]. As a Fourier Feature embedding additionally
results in the NTK becoming shift-invariant:

hNTK(γ(xi)
>γ(xj)) = hNTK

(
r∑
i=1

α2
i cos(biπxi) cos(biπxj) + α2

i sin(biπxi) sin(biπxj)

)

= hNTK

(
r∑
i=1

α2
i cos(biπ(xi − xj))

)
We can then see that a Fourier Feature mapping enables us to manipulate the eigenvalues of the
NTK Gram matrix, thereby allowing the frequency factors bi to control generalizability. Such a
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mapping additionally turns the NTK Gram matrix into a convolution if the training data is sampled
on a regular grid. Intuitively, increasing the number of frequencies greatly will result in weaker
generalizability due to overfitting, whereas tuning the frequency factors could potentially result in
stronger generalizability, which is confirmed by our results. When conducting our analysis, we
derived inspiration from [2, 8, 17, 10].

Our principal result is that with high probability, the generalization error of two-layer ReLU networks
with a Fourier Feature embedding is upper bounded by an expression that contains both the frequency
factors bi and the number of frequencies r. Broadly speaking, this means that it would be possible to
numerically optimize the hyperparameters of the Fourier Feature embedding to minimize this error
and produce a model that can generalize the training data best. In order to arrive at this result, we
derived a very basic Rademacher bound in Section 3.1 that expresses the generalizability only in
terms of the r hyperparameter, by assuming an upper bound on the cosine terms. Subsequently in
Section 3.2, we strengthened that bound by considering the loss class of kernel ridge regression with
the RKHS of the NTK. In Section 3.3, we make a first attempt at proving a rather weak bound on
the generalization error involving both the number of frequency components r and frequency factors
bi using results from Arora, et al. (2019). Finally in Section 3.3, we again utilize the Reproducing
Kernel Hilbert Space to derive a stronger bound on the generalization error involving both r and bi,
and in Section 3.4, we attempt to intuitively connect this bound back to the original bound in Section
3.1.

2.2 Rademacher Bound from Arora, et al. (2019)

Theorem 5.1 of [3] provides an upper bound on the generalization error of two-layer ReLU networks
trained by gradient descent evaluated with any 1-Lipschitz loss function, which we summarize as
follows. Arora, et al. combines the fact that with probability 1 − δ, the class of two-layer ReLU
networks whose first layer weights have bounded Frobenius norms of at most D and whose second
layer weights have bounded `2-norms of at mostC has Rademacher complexity given by the following
(noting that since the Frobenius norm is greater than the `2-norm, we can use the same function class
as before):

RadS (H) ≤ D√
2n

(
1 +

(
2 log 2

δ

m

)1/4
)

+
2C2
√
m

κ
+ C

√
2 log

2

δ

given κ such that m ≥ κ−2poly
(
n, λ−10 , δ−1

)
and that with probability 1− δ, the total movement

of the first layer weights W at training epoch k (shorthand: W (k)) is bounded as follows:

‖W (k)−W (0)‖F ≤
√
y>K−1trainy +O

(
nκ

λ0δ

)
+

poly
(
n, λ−10 , δ−1

)
m1/4κ1/2

They then derive the result that the population loss is upper bounded by

LD(fW (k),a) ≤

√
2y>K−1trainy

n
+O

√ log n
λ0δ

n


A similar bound also appears in [7]. We intend to use this bound as inspiration for the bounds that
we derive for Fourier Feature-encoded networks. Arora, et al. does not explicitly make use of the
Fourier Feature embedding (as it assumes that the input vector is normalized), but we derive bounds
using the RKHS norm that are close, but better suited for our use case.

3 Original Research

3.1 Basic Rademacher Bound

We would like to get a basic idea of the generalizability of bounded two-layer neural network classes
only in terms of the number of frequencies in the Fourier Feature embedding. This seemed like a
logical start as the number of frequencies r is an easily-adjustable hyperparameter, and it would keep
our final expression simple. Assume we have a set of training points S = ((x1, y1), · · · , (xn, yn))
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where xi ∈ Rd and yi ∈ {−1,+1}. Assume the width of the neural network is m, and we have a
Fourier Feature embedding γ with fixed parameters bi and r. Let φ define the rectified linear unit.

By definition, the network computes, for some input x,

fW,a(x) =
1√
m

m∑
j=1

ajφ(w>j γ(x))

where the network prediction function f is parameterized by w1, · · · , wm ⊂ R2r, the first-layer
weights, and a = (a1, · · · , am)m ∈ Rm, which are the second-layer weights. LetH be the following
class of two-layer neural networks whose weights’ `2-norm are upper bounded by some constants
C,D ∈ R:

H =̇ {fW,a : ‖a‖2 ≤ C, ‖wj‖2 ≤ D ∀j ∈ [m]}
In order to get an idea of how to proceed with this basic Rademacher bound, note that since the input
vectors xi are mapped onto the hypersphere by the Fourier Feature embedding, the `2-norm of the
embedded input is therefore

‖γ(xi)‖2 =

√√√√ r∑
i=1

cos2(2πb>i xi) +

r∑
i=1

sin2(2πb>i xi) =
√
r

and we can use this to make a simplifying assumption. The empirical Rademacher complexity of a
function class F with respect to a sample S = (x1, · · · , xn) of size n is defined as

RadS(F) = Eσ∈{±1}

(
sup
f∈F

1

n

n∑
i=1

σif(xi)

)
so, we proceed to derive our weak Rademacher bound as the following. Using Cauchy-Schwarz, we
get the following:

RadS(H) = Eσ∈{±1}

(
sup

fW,a∈H

1

n

n∑
i=1

σifW,a(γ(xi))

)

= Eσ∈{±1}

 sup
fW,a∈H

1

n

n∑
i=1

σi

 1√
m

m∑
j=1

ajφ(w>j γ(x))


=

1√
m
Eσ∈{±1}

(
sup

fW,a∈H

1

n
a>

n∑
i=1

σiφ(Wγ(xi))

)

≤ 1√
m
Eσ∈{±1}

(
sup

‖a‖2≤C,‖wj‖2≤D ∀j∈[m]

‖a‖2

∥∥∥∥∥ 1

n

n∑
i=1

σiφ(Wγ(xi))

∥∥∥∥∥
2

)

Now, it remains to bound
∥∥ 1
n

∑n
i=1 σiφ(Wγ(xi))

∥∥
2
. Note that

‖Wγ(xi)‖2 =

√√√√ m∑
j=1

(w>j xi)
2 ≤ sup

j∈[m]

√
m(w>j xi)

2 =
√
m sup
j∈[m]

|w>j xi|

For such a j, define w to be the value of wj that maximizes |w>j xi|, and continue:

RadS(H) ≤ 1√
m
Eσ∈{±1}

(
sup

‖a‖2≤C,‖wj‖2≤D ∀j∈[m]

‖a‖2

∥∥∥∥∥ 1

n

n∑
i=1

σiφ(Wγ(xi))

∥∥∥∥∥
2

)

≤ CEσ∈{±1}

(
sup

‖wj‖2≤D ∀j∈[m]

sup
j∈[m]

∣∣∣∣∣ 1n
n∑
i=1

σiφ(w>j γ(xi))

∣∣∣∣∣
)

= CEσ∈{±1}

(
sup

‖w‖2≤D

∣∣∣∣∣ 1n
n∑
i=1

σiφ(w>γ(xi))

∣∣∣∣∣
)

= CEσ∈{±1}

(
sup

‖w‖2≤D

1

n

n∑
i=1

σiφ(w>γ(xi))

)
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Where the last step was able to be taken because the class H is symmetric. We now refer to
Theorem 12 of [4], which states that for any K-Lipschitz function φ that satisfies φ(0) = 0, then
RadS(φ ◦ F) = 2KRadS(F). Since ReLU is 1-Lipschitz, we can go further using the same trick as
before (and extract w in order to use Cauchy-Schwarz):

RadS(H) ≤ CEσ∈{±1}

(
sup

‖w‖2≤D

1

n

n∑
i=1

σiφ(w>γ(xi))

)

≤ 2CEσ∈{±1}

(
sup

‖w‖2≤D

1

n

n∑
i=1

σiw
>γ(xi)

)

≤ 2CD

n
Eσ∈{±1}

(∥∥∥∥∥
n∑
i=1

σiγ(xi)

∥∥∥∥∥
2

)

≤ 2CD√
n

Eσ∈{±1} (‖γ(xi)‖2)

= 2CD

√
r

n

Assuming we hold the sample size n constant, this result indicates that increasing the number of
frequencies greatly will result in weaker generalizability (due to overfitting), which matches with our
previous intuition. It is clear that this bound does not give us much information, as reducing r to zero
would result in a very small generalization error. This is trivially true, as the function class would
have no features and so the training accuracy, along with the test accuracy, would be 1. Therefore, we
need to produce a better bound with frequency factors bi in order to see if there is a generalizability
tradeoff between them and the number of frequencies r, which may give us more information.

3.2 Rademacher Bound from the RKHS Induced by the Neural Tangent Kernel

Theorem 3.2 of [3] provides explicit equivalence between trained neutral networks and kernel
regression. Assuming Gaussian initialization of the weights, and for m large enough (which it will
attain in the limit), fW,a converges to a kernel regression predictor using the neural tangent kernel
(NTK) with the regularization eventually going to 0 (λ→ 0), based on [9]. Additionally, the same
paper provides bounds for the training dynamics of sufficiently wide neural networks using the NTK.
[6] additionally describes how the corresponding function space induced by the NTK is an RKHS,
and analyzing properties of functions associated with such an RKHS may give us some insight as to
the dynamics of the original neural network function class. For generalization purposes, we intend
to analyze the Rademacher complexity of kernel classes with the Fourier Feature-modified NTK
by utilizing properties of the corresponding RKHS. This is sensible because we can make direct
use of the reproducing property, which states that for all f ∈ K, for a point x in the sample S,
f(x) = 〈hNTK(x, ·), f(·)〉 (where 〈f, g〉 =

∫
S
f(x)g(x)dx).

Formally, define K to be the reproducing kernel Hilbert space with the NTK kernel hNTK(·, ·) and let
f(·) =

∑n
j=1 βihNTK(·, γ(xi)). The kernel ridge regression problem is then defined to be

fker = arg min
f∈K

1

2

n∑
i=1

(yi − f(γ(xi)))
2 +

λ

2
‖f‖2K

We need to find the empirical risk minimizer (ERM) to get the actual kernel prediction function that
the neural network learns [18, 11]. The representer theorem states that the minimizer fker can be
represented as a finite linear combination of kernel products evaluated on the training set points [15].
Therefore the solution is of the following form:

fker =

n∑
i=1

β∗i hNTK(·, γ(xi))

If fker is a kernel method with kernel function hNTK(·, ·) then the corresponding kernel Gram matrix
Ktrain ∈ Rn×n is defined such that (Ktrain)ij = hNTK(xi, xj) for any two points in the sample. To
evaluate this method on another set S′ = (x′1, · · · , x′n′) of n′ testing data points, we construct another
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kernel Gram matrix, Ktest ∈ Rn′×n, defined as (Ktest)ij = hNTK(x′i, xj) for xi ∈ S′, xj ∈ S.
Then our kernel method prediction function is f(S′;S) = KtestK

−1
trainy, where y refers to the original

labels.

If we want to measure the generalization error of this ERM, let ε, δ ∈ (0, 1). We can use Theorem
26.12 from [17] to obtain a bound on the population loss, assuming that the loss function is ρ-
Lipschitz, the `2 norm of each member of the class of functions is bounded by B, the `2 norm of the
input is bounded by R, and that the output of the loss function differs from the real value by no more
than c (a similar bound can be found in [16]):

E(x,y)∼D (|fker − y|) ≤ LS(h) +
2ρBR√

n
+ c

√
2 log(2/δ)

n
=

2ρBR√
n

+ c

√
2 log(2/δ)

n

since the empirical loss is (by definition) zero. In order to calculate this, note that for any function
f in K, ‖f‖2 ≤ ‖f‖K. (Proof: consider |f(x)|2. By Cauchy-Schwarz, we have that |f(x)|2 =
|〈f, hNTK(x, ·)〉| ≤ |k(x, x)|‖f‖2K, and since

∫
|hNTK(x, x)|2 ≤ 1, this implies that ‖f‖2 ≤ ‖f‖K.)

Because of this, we focus on the balls of radius f bounded above by M :

M = {f ∈ K : ‖f‖2 ≤ ‖f‖K ≤M}

We want to get as tight a bound on M as possible. For a generic function f ∈ K, we have that

‖f‖2K =

∥∥∥∥∥
n∑
i=1

βihNTK(·, γ(xi))

∥∥∥∥∥
2

K

=

〈
n∑
i=1

βihNTK(·, γ(xi)),

n∑
j=1

βjhNTK(·, γ(xj))

〉

=

n∑
i=1

n∑
j=1

βiβj 〈hNTK(·, γ(xi)), hNTK(·, γ(xj))〉

=

n∑
i=1

n∑
j=1

βiβjhNTK(γ(xi), γ(xj))

= β>Ktrainβ

To get the bound for fker, note that we can write it in a special form: fker(S′) = KtestK
−1
trainy.

If Ktest were actually just the training labels again (i.e. S = S′), then Ktest = y>, and so

‖fker‖K =
√
y>K−1trainy.

Noting that the loss function is 1-Lipschitz, and that ‖γ(xi)‖2 =
√
r like before, we get that the

generalization error is

E(x,y)∼D (|fker − y|) ≤ 2

√
r · y

>K−1trainy

n
+O

(√
2 log(2/δ)

n

)
where (Ktrain)ij = hNTK(x>i xj). This maps the generalization error in a form that contains both
the number of frequencies r as well as the frequency factors bi, as Ktrain is composed of both. In the
next section, we will explore ways of representing this in terms of explicit reliance on the frequency
factors in order to obtain a better intuition as to their role in the bound.

3.3 RKHS Bound with Explicit Reliance on Frequency Factors

Our next goal was to create a closed form bound depending on the frequency factors. The intention
was to derive an (perhaps complicated) expression that involved every tune-able parameter. Ultimately,
we derived that when the sample points are uniformly sampled (the inputs are a fixed distance apart
from each other, specifically xi = i

n ), the NTK Gram matrix becomes circulant, and thus forms
a convolution over the input space. Such an assumption about the inputs is reasonable because in
practice one easily could take a uniform sample of points from a 2D or 3D image, and there is no
particular reason why the points need to be sampled randomly.
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In this case, because Ktrain represents a convolution, the eigenvectors of our kernel matrix are the
columns of the Discrete Fourier Transform (DFT) matrix:

F =
1√
n



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωn−1

1 ω2 ω4 ω6 . . . ω2(n−1)

1 ω3 ω6 ω9 . . . ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω2(3−1) . . . ω(n−1)(n−1)


Where ω = e

−2πi
n is the primitive nth root of unity.

Noting this fact, we can write out the spectral decomposition of the kernel matrix to come up with
some expression for its inverse in terms of the hNTK(γ(xi)

>γ(xj)) kernel function.
Ktrain = FΛF ∗

=

n∑
i=1

λiviv
∗T
i

K−1train = FΛ−1F ∗

=

n∑
i=1

1

λi
viv
∗
i

Where vi is the ith column of the DFT matrix and Λ−1i,i = 1
λi

is the inverse diagonal eigenvalue
matrix. The additional simplification uses the fact that the spectral decomposition can also be written
as a weighted sum of dyads.

As the eigenvalues of circulant matrices have a closed form expression, we can then write each
eigenvalue λi as a summation involving ω and elements from the first row of the original matrix:
λi = A1,1 +A1,2ω

j + · · ·+A1,Nω
(n−1)j . In our case, this looks like:

λi =

n∑
j=1

ωi(j−1)K1,j

However, we know that the first row of our kernel matrix is the hNTK function applied to γ(x1) and
each of the sample points:

λi =

n∑
j=1

ωi(j−1)hNTK(γ(x1)>γ(xj))

hNTK(γ(xi)
>γ(xj)) :=

r∑
j=1

a2j cos(2πbj(xi − xj))

π − cos−1
(∑r

j=1 a
2
j cos(2πbj(xi − xj))

)
2π


This yields the following expression for our kernel matrix:

Ktrain =

n∑
i=1

viv
∗
i

n∑
j=1

ωi(j−1)hNTK(γ(x1)>γ(xj))

=

n∑
i=1

viv
∗
i

n∑
j=1

ωi(j−1)
r∑

k=1

a2k cos(2πbk(x1 − xj))

[
π − cos−1(

∑r
q=1 a

2
q cos(2πbq(x1 − xj)))
2π

]
And its inverse, which can be substituted into the RKHS bound:

K−1train =

n∑
i=1

viv
∗
i

1∑n
j=1 ω

i(j−1)hNTK(γ(x1)>γ(xj))

=

n∑
i=1

viv
∗
i

1∑n
j=1 ω

i(j−1)∑r
k=1 a

2
k cos(2πbk(x1 − xj))

π−cos−1(
∑r
q=1 a

2
q cos(2πbq(x1−xj)))
2π
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This expression is quite large, and so we would like to get some intuition as to how precisely the
RKHS bound (with the above expression substituted in) is better than the basic Rademacher bound.
Intuitively, in the worst case, the RKHS bound should reduce to the basic one. As such, in the next
section we make further assumptions in order to produce that connection.

3.4 Attempting to Convert the RKHS Bound to Basic Rademacher Bound

This section details the approaches we tried to reduce the RKHS bound to our basic Rademacher
bound given these assumptions. Our goal was to draw a relation between the bounds as doing so
would inspire increased confidence in their correctness.

Our first attempt was to plug in fixed frequency values to see if one simplified the above expression.
Namely, let

zj :=

r∑
k=1

a2k cos(2πbk(x1 − xj))

K−1train =

n∑
i=1

viv
∗
i

1∑n
j=1 ω

i(j−1)zj

(
π−cos−1(zj)

2π

)
If we know what n and r are, then it would be easy to choose frequency values b to achieve a given
zj . Thus, we tried to see if any given choice for zj converted the RKHS bound to our original weak
bound.

If ∀j, zj = 1:

λmax =
1∑n

j=1 ω
i(j−1)

(
π−cos−1(1)

2π

)
=

1∑n
j=1 ω

i(j−1)
(
1
2

)
=

2∑n
j=1 ω

i(j−1)

It is worth noting that each term in the summation represents a rotation along a polar circle, so their
norms are all identical. However, that does not lead to any particularly useful insight.

Another idea we had was by looking back at our original expression:√
r · y

>K−1trainy

n

We note that with a given r and n, the rest of the bound depends only on y>K−1trainy. For a fixed y
with y ∈ {±1}n, the Rayleigh quotient y

>K−1y
n has upper and lower bounds based on the eigenvalues

of K−1train. Thus, we tried to see if we could use the largest eigenvalue as an upper bound for the inside
of the square root.

λmax = max
zj

1∑n
j=1 ω

i(j−1)zj

(
π−cos−1(zj)

2π

)
∞ = lim

zj→0+

1∑n
j=1 ω

i(j−1)zj

(
π−cos−1(zj)

2π

)
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However, by when substituting into the eigenvalue expression above, we realized that as zj → 0, the
denominator of the fraction gets infinitesimally small, so the eigenvalue blows up arbitrarily close to
infinity. This line of reasoning may yield useful bounds given a particular target zj and Ktrain, but
without such constraints, this upper bound is useless.

One last similar approach we had was to produce a very weak bound. By noting that

y>K−1trainy =
∑
i

∑
j

yiyjK
−1
train,ij ≤

∑
i

∑
j

K−1train,ij ≤ n
2 max

i,j
Ktrain,ij ≤ n2

1

λmin (Ktrain)

we realize that the largest element of the inverse of a PSD symmetric matrix K is upper bounded
by the the inverse of the smallest eigenvalue of K (as the inverse of a PSD matrix is PSD, and
the maximum can be computed directly from the orthogonal decomposition of the inverse). We
could then obtain a weak bound by finding the smallest eigenvalue of Ktrain. Unfortunately, we ran
into a similar result as the above case, and so could not find values for zj that resulted in a useful
simplification to the bound. As a result, given more time, we would run experiments to test empirical
results of various frequency hyperparameters and use the results to guide future theoretical research.

4 Conclusion

In summary, we managed to utilize Rademacher complexity to prove progressively tighter bounds on
the generalization error of coordinate-based, two-layer, ReLU MLPs with Fourier Feature encodings.
We began by proving a basic bound that contained only the number of frequencies r in order to
establish a baseline intuition as to how the hyperparameters would broadly affect the generalization.
We then proceeded to use RKHS theory with the NTK as the reproducing kernel to construct a
stronger bound using r and the frequency factors bi in order to obtain possible intuition as to a
tradeoff between the two. Finally, we briefly touched on our analysis of the bound produced by Arora
et al. (2019) (which also included the frequency factors, but used a different derivation that was
unsuitable for our use case). To derive the tight bound in Section 3.3, we used explicit characteristics
of the Fourier Feature embedding—specifically, that the Gram matrix of the NTK with the Fourier
Feature encoding represents a convolution—in order to arrive at a full expression of the upper bound
of generalizability that contained both the frequency factors b and the number of frequencies r,
and was also specific to the Fourier Feature embedding. After deriving this bound, we attempted
to connect this bound back to the first basic bound in order to demonstrate that the intuition from
the most basic bound would hold consistent as we tightened the bounds but we were unable to
successfully draw this connection.

From this point, the most obvious direction of expansion would be to attempt to complete the
derivation in Section 3.4 to check if the intuition of the weaker bounds actually holds. On the
other hand, another direction we could go would be to empirically test our bound by numerically
optimizing over r and b and testing the performance of the hyperparameters using occupancy
networks to observe to what extent the optimal hyperparameters can improve test accuracy. As stated
previously, occupancy networks [12] are binary classification networks upon which we could use the
same assumptions to conduct similar experiments to [2] in order to achieve this.
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