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Abstract. High-quality structured data with rich annotations are crit-
ical components in intelligent vehicle systems dealing with road scenes.
However, data curation and annotation require intensive investments and
yield low-diversity scenarios. The recently growing interest in synthetic
data raises questions about the scope of improvement in such systems and
the amount of manual work still required to produce high volumes and
variations of simulated data. This work proposes a synthetic data gen-
eration pipeline that utilizes existing datasets, like nuScenes, to address
the difficulties and domain-gaps present in simulated datasets. We show
that using annotations and visual cues from existing datasets, we can
facilitate automated multi-modal data generation, mimicking real scene
properties with high-fidelity, along with mechanisms to diversify samples
in a physically meaningful way. We demonstrate improvements in mloU
metrics by presenting qualitative and quantitative experiments with real
and synthetic data for semantic segmentation on the Cityscapes and
KITTI-STEP datasets. All relevant code and data is released on github.?

Keywords: synthetic data, road scenes, self-driving, semantic segmen-
tation.

1 Introduction

Computer vision applications, specifically autonomous driving systems, are con-
stantly evolving owing to the rapid progress in the deep learning and machine
vision community. At the core of such advancements lies the foundation created
by high-quality, structured data, which augments the strengths of sophisticated
architectures. While data acquisition and processing require expensive hardware
setup and efforts to collect and process, there are several self-driving platforms
which provide easier access to large volume of raw and processed data. However,
data annotation still poses a huge challenge and is a resource extensive process.
Even in the cases when it is feasible, the sheer number of possibilities in real-
world diversity makes it unfathomable to observe all variations in object types,
scenes, weathers, traffic densities, and sensor configurations. All these possibil-
ities for variations create a near-insurmountable obstacle for dataset curation

3 https://github.com/shubham1810/trove_toolkit
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Fig.1. A sample of the scene generated with the proposed method. The first image
shown is a real-world sample from nuScenes dataset. Using some existing annotation,
we are able to generate extensions such as depth, instance segmentation, RGB images,
semantic segmentation, and surface normals. These modalities represent a part of the
capabilities of the proposed method.

and annotations for self-driving and road scene scenarios. Use of synthetic data
allows creation of such variations and extended diversity for a vast number of
scenes, but requires expensive and expert manual efforts for simulations. In this
work, we raise the question whether this abundant real-data can be used to auto-
matically create synthetic datasets for training machine learning algorithms and
be inclusive of large-variations while preserving real-world structural properties.
Mimicking the physical properties of real-data in a synthetic pipeline helps to-
wards minimizing domain gaps, while allowing to generate physically meaningful
variations in scenes.

There have been several advancements in the preparation and utilization of
synthetic datasets in recent times [12,19,22,40,49,18]. While synthetically gener-
ated data may not be a complete substitute for real-world data yet, some works
[22,45,43] discuss the usefulness of augmenting real-world data with synthetic
datasets for improved performance . There have been significant improvements in
approaches for domain adaptation [43,23,12], transfer of synthetic-to-real scenes
and improvement in photo-realism [38,28]. It becomes easier to add different envi-
ronments, diversity in ambiance, lighting, weathers, and sensors using synthetic
data. However, while the data synthesis through simulation is more straight-
forward than real-world dataset creation, it still requires a significant manual
effort. Adding a new scene in such existing pipelines requires expertise to ensure
a degree of photo-realism. Recent works highlight learning methods to generate
novel trajectories and motion patterns [51,41,47]. Still, they may not necessar-
ily delineate real-world behavior accurately, especially in complex scenes with
varying crowd and traffic densities.

We propose an approach to model synthetic data based on real-world data
distributions using available annotations and visual cues, mimicking real-world
domain structure and enabling variations in a physically meaningful manner. Un-



TRoVE 3

like most existing works, we show that using information from existing datasets
for object placement and behavior can allow for fast construction of virtual en-
vironments while preserving the appeal of synthetic data generation systems for
efficiency and diversity. We can use the same labels from a real scene to generate
a diverse set of annotated data items from each scene (example shown in Figure
1 and 3) with diverse environmental conditions.

Our approach utilizes the location information from existing real scenes and
visual cues available either as annotations or extracted from driving video se-
quences using currently available approaches in computer vision. We generate
high-fidelity environment maps using geographic data available online and sup-
plement this data with extracted cues from existing datasets and scenes. Our
physically-based method of scene generation allows us to match different aspects
of the scenes such as object positions, orientations, appearances, and ambient
factors to recreate virtual environments that mimic real-world. The proposed
approach is not restricted to manual design or hand-crafted environments, so
it can be extended to virtually any location and complexity configuration for
which visual cues can be automatically generated or already available.

A prime example of such a method is to extend existing datasets by utilizing
the available annotation from the vast set of high-quality datasets [21,10,24,44]
and generate multiple variations for each scene to increase the data volume and
annotation modalities available. To support our claims, we outline our approach
in the forthcoming sections and use the nuScenes dataset [6] as a base for the
core set of experiments. An overview of our approach is shown in Figure 2. We
use some parts of the already available annotations in nuScenes to generate new
environments with traffic and pedestrian behavior similar to that available in the
nuScenes dataset while varying the visual information to accommodate a diverse
set of configurations. We show qualitative and quantitative analysis over segmen-
tation tasks and compare validation metrics over popular datasets to outline the
effectiveness of our data generation strategy for being physically consistent and
adhering to real-world distributions. We highlight multiple modalities in our pro-
posed dataset to enable various vision downstream tasks with different sensor
configurations.

2 Related Work

Data acquisition and annotation for several downstream tasks can be challeng-
ing and resource-intensive. Especially for tasks like semantic segmentation, data
preparation’s cost and time estimate rise rapidly with data volume. There exist
many real-world datasets in the community which targets specific problem state-

ments such as vision tasks in indoor scenes [32], datasets with fine annotations for
semantic segmentation and 3D object detection in outdoor scenes [48,2,15,16],
and 3D LiDAR point cloud segmentation in urban environments [29,24,1]. How-

ever, considering the cost of expensive annotations, it is often the case that some
datasets only focus on specific modalities. For example, the nuScenes dataset [6]
consists of high-quality annotations for object detection, tracking, trajectory
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prediction, LiDAR segmentation, and panoptic LIDAR segmentation but does
not contain fine semantic segmentation annotations due to the sheer volume of
available images.

Simulator-based methods: Synthetic datasets have been shown to improve
performances across a variety of tasks including, but not limited to, object de-

tection [33,26], trajectory prediction [51,7], depth estimation [3,31], semantic
and instance segmentation [5,19], human pose estimation [15], object 6DoF pose
estimation [26], 3D reconstruction [9], tracking and optical flow [50]. CARLA

[19] is a popular simulator that relies on manually designed environment maps
and places 3D object assets for vehicles, pedestrians, and dynamic entities in the
environment. CARLA simulates different traffic conditions, variations in light-
ing, and some weather changes, which are rendered in a photo-realistic manner
to provide significant overlap with real-world scenarios. The base version of the
CARLA simulator provides a limited number of 3D city environments; differ-
ent scenarios are simulated, and annotations are generated, which can be either
exported to train deep learning models or utilized via their API to evaluate au-
tonomous driving benchmark tasks. LGSVL Simulator [39] is a recent addition to
the available simulation engines that delivers high-fidelity data for autonomous
driving scenarios. LGSVL is built with an integration of Apollo Auto [1], which
provides various features for interfacing with autonomous driving runtimes. The
3D environment is generated to mimic several real-world locations and integrate
multiple sensor types, including RGB, Radar, LIDAR, which can be configured
to behave like real-world sensors such as the Velodyne VLP-16 LiDAR. A recent
simulation suite built on CARLA is the SUMMIT engine for urban traffic sce-
narios [7]. SUMMIT simulates complex and unregulated behavior in dense traffic
environments and utilizes real-world maps to replicate difficult areas like round-
abouts, highways, and intersection junctions. SUMMIT uses a context-aware
behavior model, Context-GAMMA, an extension of GAMMA [30], to formulate
agents’ motion in complex environments for dynamic crowd behavior.

Non-simulation approaches: Several works in literature do not rely on simula-
tion of the driving environment directly but provide structured fine annotations.
A notable contribution to the community in this area is the Virtual KITTI
dataset [22] which builds over the popular KITTI dataset [46] and extends the
limited amount of annotated information by generating close-to-realistic im-
ages for digital-twins of sequences from the KITTI dataset. The Virtual KITTI
dataset was recently extended in the Virtual KITTI 2 dataset [5], where the qual-
ity of images has been improved with a high definition render pipeline and the
latest game engine (Unity 2018.4 LTS). The core approach in the Virtual KITTI
dataset involves the acquisition of real-world data and measurements from the
KITTI MOT benchmarks, then building a synthetic clone of the environments
semi-automatically. Then, the objects of interest are placed in the scene manu-
ally, and lighting is adjusted to match the real-scene visually. There also exist
datasets like SYNTHIA [40], that do not rely on any visual or geometric cues
from real-world datasets and build novel virtual worlds to facilitate synthetic
data generation. SYNTHIA provides generated annotations over 13 classes for
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Fig. 2. An overview of the synthetic data generation pipeline. Given real-world input
dataset with annotations for object locations, we follow the process depicted in the
above figure. (A) Map data extraction from OSM for building and road extraction. (B)
Retrieval of categorical information and 3D object placement in scene with sampled
camera poses. (C) Extraction of background data such as vegetation mask in world co-
ordinates and PBR texture preparation. (D) Fusion of artifacts in the 3D environment
and initialization of rendering process. (E) Generated RGB data and corresponding
annotations stored for further use.

pixel-level semantic segmentation and frames rendered from multiple view-points
in the virtual environment. SYNTHIA dataset consists of large-scale annotations
of up to 200k images across four-season settings in the form of video sequences
and a random split of data with 13.4k images generated from randomly sam-
pled camera locations across the synthetic map. While the volume and impact
of the SYNTHIA dataset is prominent, the data generation process involves ex-
orbitant manual effort. Furthermore, the dynamic entities in the scenes are also
programmed manually to capture Spatio-temporal information between different
vehicles and pedestrians.

Learning-based methods: Some recent approaches focus on imitation training
[27] for iterative generation of more training data, especially for scenes where
the model performs poorly. The work presented in [35] deals explicitly with the
problem of domain gap in synthetic data by employing self-supervised learn-
ing over scene graphs to learn the scene layout and compare generated images
with unlabelled images in the target domain. A recurring limitation observed
in most datasets tends to be a lack of proper replication of real-world struc-
tures in an automated way without learning data or scene-specific layouts. The
simulators can construct high-quality environments with variations in multiple
factors. They, however, do not replicate the behavior of traffic entities from
across a variety of locations around the world, and learned behaviors can only
reproduce such motion and trajectory, which is reflective of the training data. In
our proposed method for generating synthetic datasets, we leverage visual cues
and pre-existing annotations from public datasets and enable the construction of
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large-scale scenes in virtual environments while mapping driver and pedestrian
behavior from actual data into a virtual space.

3 Owur Approach

We describe the process for generating synthetic data automatically using either
existing annotations from public datasets or visual cues from video sequences.
We demonstrate the process with an example of the nuScenes dataset [6], but
the same method can be applied to other datasets with available annotations
[10,46,29]. The core components required to realize the data generation pipeline
comprise of the geographic location and objects location/orientation in a given
scene or video sequence. It is possible to construct a structured description of the
scene and use it as configuration for the data generation process. To ensure diver-
sity in object appearances, we use publicly available free 3D assets for different
classes. The process of generating synthetic data using the proposed approach
can be broken down into four major parts, which consist of (1) Building the world
environment, (2) Placement of objects and camera in the scenes, (3) Applying
textures and lighting information, and (4) Rendering and annotation processing.
In the following subsections, we describe the steps in detail, referencing the over-
all process as shown in Figure 2, and samples from intermediate stages shown in
Figure 4. All development of the 3D environment for our dataset is performed
in Blender [13], an open-source 3D modeling and development software.

3.1 Building the Virtual Environment

Assuming the ego-vehicle to be the origin at each scene, we can estimate the
geographic location using either GPS data (if available), or offset from scene
geometry origin for which GPS information may be available.

Buildings: For generating the building placeholder, we refer to data from Open-
StreetMaps (OSM) [34] through a blender add-on (blender-osm [36]). The meshes
are generated without any texture initially. To extend variability in the scene, we
choose buildings with an approximately rectangular layout and replace the mesh
with a 3D building asset. The 3D assets used in this work were acquired from
free-to-use resources on different forums such as [25,3]. To check whether a build-
ing (say b) qualifies for replacement, we take the points (x, y) from the base plane
of b as {(z,y)|b, = 0} and compute the edge length as well as orientations for
the building base polygon. Let the edges be denoted by ey 2 = d((z1,v1), (%2, y2)
and the orientations be 61 2 = arctan((y2 — y1)/(x2 — #1)), where d represents
the euclidean distance function. We then compute a histogram of orientations,
weighted by the respective edge lengths and select the pairs with close to 7/2
difference. The selected pair with the highest edge weight (lengths) are then cho-
sen to estimate the orientation of the rectangular building base. If no such edges
and orientations are found, we assume a complex building outline and mark the
building for applying facade texture in a later stage. Optionally, we can also
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compute the area of the polygon by projecting the base plane on a raster grid
and taking ratio of area with the enclosing convex polygon. However, to avoid
additional computations, we do not employ this approach in the current pipeline.

Roads: The road meshes are extracted from OSM map data as well via blender-
osm. The road meshes are connected together to form a joint mesh object for
the entire road network in the current context. The road width is adjusted to
approximately match the road width available from real-world annotations (for
nuScenes, extracted from the LiDAR point cloud).

(d ©) U]

Fig. 3. Example of variations in synthetic data for the same scene configuration. (a)
The real-dataset image depicting a scene from the nuScenes dataset. (b) Sample render
with different buildings, vehicles, pedestrians and lighting (c) Rendered image from ”b”
after applying color transformation for the cityscapes dataset. (d) Render for the same
scene from a different camera perspective. (e, f) Additional renders from the scene with
variations in vehicles, buildings, lighting etc.

3.2 Object and Camera Placement

We utilize the annotations available in the real-world datasets for extracting
bounding boxes and camera poses for each scene and lay out the process to
replicate the same structure in the virtual environment.

3D Object Placement: To assign a 3D asset to each bounding box, we estimate a
quality-of-fit metric based on the Intersection over Union (IoU) for 3D bounding
boxes. For a given object bounding box (say o;) and a set of N 3D assets with
corresponding bounding boxes (say {o;]j € 1,..., N}) centered at the origin, we
scale the asset box such that the largest dimension of the asset box o; matches
that of the query box o;, while preserving aspect ratios. We then compute the
3D IoU metric as follows:

ToUsp(0s,05) = I0Uyy(0i,05) * min(zo,, 2o;) (1)
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Where, IoU,, represents the 2D IoU metric for projection on the XY-plane, z,,
is the length of the box along z-axis for object i. We are able to use a simplified
implementation f the 3D IoU metric due to the known physical properties of
both source and target object. We assign the asset with highest ToUsp for a
best match, or randomly sample from top-k to induce object diversity.

Camera Pose: We process the camera matrix and pose information from the
source dataset and create virtual clones with similar configuration in the simu-
lated environment. To extend the extent and visual coverage of generated images,
we additionally sample camera poses from different vehicles in the scene (along
with ego-vehicle), hence diversifying the view-points in a scene.

3.3 Textures, Lighting and Background

Texture and Lighting play a critical role towards achieving photo-realism in 3D
virtual environment. Additionally, having dense background objects improves
the content domain-gap and are a step forward towards realistic distribution of
scene geometry.

Textures: We use high-quality 4K textures and PBR (Physically based ren-
dering) materials from free-to-use forums [14]. High-resolution maps for color,
displacement, roughness, normals, metallic, and emission are available, through
which we create BSDF materials for building facades, roads, sidewalks, and
ground/terrain.

i Meshes

Rendered Image

Fig. 4. Samples from different steps in the proposed approach. Step (A) corresponds to
the Section 3.1 for Building and Road processing, (B) corresponds to object placeholder
creation and placement, (C) shows vegetation texture density as image, and part of
building/road texture in step (A) output. Finally, Stage (D) shows the rendered output
for the given scene and the camera pose data.
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Lighting: High-fidelity materials are important for photo-realism because the
pixel-wise distribution of lighting, reflections and color impacts the level of visual
perception. Lighting in virtual scenes is very important to accurately model
scene dynamics from different view-points. We add different lighting environment
models using High Dynamic Range Image (HDRI) to ensure a high range of
illumination levels.

Background: We utilise LiDAR point cloud data from source and construct a
2D location density map for bushes and trees in the scene. To avoid unrealistic
occurrences, we remove density data from road area by application of a binary
mask. An example of the vegetation density in a scene is shown in Figure 2(C). In
the virtual scene, we apply a probability distribution over the ground plane using
the vegetation density map and instantiate trees/bushes. We sample different
types and number of trees from the available assets with variations in sizes and
sample locations. A similar approach is used for generating traffic signs and poles
along the sidewalks in the scene.

3.4 Data Processing and Training

Once the preparation of the virtual environment is completed with all objects
and entities populated in the scene, we proceed towards rendering and dataset
curation stages for synthetic data availability in experiments.

Rendering and Annotations: We use the Cycles rendering engine in Blender to
render the 3D scene and generate multi-modal annotations for semantic and in-
stance segmentation, optical flow, depth estimation, 2D and 3D object detection.
We employ the library provided in BlenderProc [17] for annotation extraction.
Annotations are generated for 20 classes (including void) namely; sky, car, bus,
jeep, truck, van, human, building, road, barrier, ground, cycle rider, construction
(vehicle), bushes, trees, motorcycle rider, traffic cone, traffic sign, sidewalk, and
void. However, for fair comparison with common benchmarks, we further process
the available data into 13 classes as follows: void, car, bus, truck, person, rider,
road, sidewalk, building, traffic poles, vegetation, terrain, and sky.

Training Data: For training and evaluation purpose, we sample a set of 5000
images from our synthetic dataset which have been selected based on the class
distribution in annotation maps such that each sample contains a minimum of
6-8 different classes. Additional attention towards imbalance due to background
classes is necessary to improve class-wise distribution.

Color Processing: Since we render images in different lighting conditions, the
visual pixel-distribution may vary compared to a dataset we wish to benchmark
against. Towards this, we optionally add a color processing stage similar to what
was proposed in [37]. We transform the source and target images to L*a*b* color
space and adjust the mean and variance of the source domain to a scaled metric
between the two domains. A visual example is presented in Figure 3(b, c).
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4 Experiments and Results

For a streamlined analysis and discussion about the experiments, we first outline
details about the datasets used in our study and layout the experiment design.
Then we analyse the results quantitatively and qualitatively to see how the
proposed approach is useful to generate synthetic data that is useful for real-
world model training and evaluation.

4.1 Datasets and Experiments

For our analysis, we use the Cityscapes [15] and KITTI-STEP [18] datasets.
Both of these datasets have been selected for the fairly substantial amount of
annotated data available in each.

Clityscapes: A widely used dataset for tasks related to visual odometry and
perception for road scenes. The dataset provides 5000 finely annotated images
for semantic and panoptic segmentation, and an additional 20000 images with
coarse annotations with 30 class annotations. Collected over 50 cities in Europe,
the dataset provides abundant diversity across scenes with different seasons, and
some variations in weather. We use the full training set of the Cityscapes dataset
(denoted as R) along with a random subset of 1000 images from the training set
(denoted as P, partial) to show the impact of our synthetic dataset on evaluation
of the validation set (denoted as V') from the real-world Cityscapes dataset. All
images have been re-scaled to 512x256 without loss in aspect ratio for use in
training semantic segmentation task. We only use the 5000 finely annotated
(2975 for train and 500 for validation) for our experiments.

KITTI-STEP (Segmenting and Tracking Every Pixel) dataset, is an extension
of the KITTTI dataset with 21 training and 29 testing sequences from the raw
KITTTI dataset, based on the KITTI-MOTS [16] dataset and provides semantic as
well as panoptic segmentation labels for each image in the sequence along with
tracking IDs for non-background objects across frames in a scene. Since this
dataset contains more samples compared to the KITTI semantic segmentation
benchmark [2], we use the 5027 images in the train set and 2981 images in the
validation set for our experiments. It is important to note that since the data is
extracted from sequences, there is substantial overlap between many frames in
the training set which will impact the results, as we shall see in the later analysis.
We re-scale the images to a resolution of 620x188 without loss of aspect ratio for
our experiments and perform semantic segmentation task. We follow the same
notation where the full training data shall be denoted by R, partial data of 1000
images as P, and the validation set as V.

Training Details: We employ the Deeplab V2 architecture [1 1] with the resnet-50
backbone (pretrained with imagenet weights) without CRF. The architecture is
kept consistent across all experiments to ensure fairness. For training, 5000 image
samples from the generated synthetic dataset are considered, denoted as S. Each
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image is generated at a resolution of 1600x900, then appropriately downscaled
and randomly cropped during training to adhere to aspect ratio in the image and
match the real data for both training and validation, i.e., 512x256 for Cityscapes
and 620x188 for KITTI-STEP. The color transformation scheme mentioned in
Section 3.4 is optionally used and will be denoted as C wherever applicable in the
results. For combined training of synthetic and real data, we use two methods;
we can mix the real and synthetic images in the same batch while training the
model (denoted by M) or train on synthetic data initially and then fine-tune
with the real data (denoted by F'). For an exhaustive comparison, we present
results on all combinations of the settings and report the per-class IoU, mean
ToU (mloU), and global accuracy of each method. For training, we do not employ
any additional augmentations apart from randomly cropping the synthetic image
to adjust aspect ratio. The models are all trained for 30 epochs, with a batch
size of 10 and initial learning rate le — 04. The models are trained on a Nvidia
RTX 2080Ti GPU using Pytorch-lightning [20]. The quantitative results from
experiments on Cityscapes and KITTI-STEP are presented in Tables 1 and 2,
respectively.

Table 1. Quantitative results for training on real and synthetic data and validation
on Cityscapes dataset. We report class-wise IoU, mloU and global accuracy for the 12
classes (excluding void)

. Val. Sky | Car | Bus |Truck|Person|Rider | Road |Sidewalk |Building Traffic Veget. | Terrain| mIoU | Acc.

Training Data Poles
Method

R V' 189.25|88.86|67.66 | 57.16 | 60.15 | 43.66 | 96.51 | 73.88 86.83 | 36.77 | 86.49 | 55.71 |70.25|98.88

S V |27.86|41.19| 3.93 | 4.49 | 23.54 | 14.11 | 71.57 | 18.86 61.73 | 1.45 | 70.61 | 28.19 |30.63 |95.50

S + R [F] V | 89.03 | 88.86 |68.27 | 51.16 | 60.53 |43.21|96.67 | 74.88 86.89 |39.16| 86.51 | 57.62 |70.23 | 98.89

S+ R [M] V 190.06|89.14 | 67.96 | 563.01 | 61.08 (44.73|96.84| 75.92 87.38 | 38.13 |87.04| 58.49 | 70.82 | 98.93

S+ C V | 72.84|47.22| 9.73 | 7.54 | 38.22 |15.15|67.60 | 20.23 74.13 | 4.44 | 74.46 | 12.83 |37.03|95.84

S+ C+RI[F]| V |88.95|88.83|69.07|57.38| 60.33 |43.99 | 96.66 | 74.83 86.97 | 38.20 | 86.49 | 57.07 |70.73 | 98.89

S+ C+R[M]| V |90.04|89.51|72.09|65.48|61.28 |41.98 | 96.79 | 75.68 | 87.46 | 39.08 | 86.99 | 57.35 |71.98/98.94

P V 186.91|86.14|29.26 | 32.37 | 55.19 | 33.37| 95.63 | 68.92 84.55 | 30.66 | 84.70 | 49.60 |61.44 | 98.65

S + P [F] V' |88.00|86.71|46.71 | 35.02 | 55.22 | 28.40 | 96.03 | 70.62 84.99 | 32.80 | 85.03 | 53.16 |63.56 | 98.70

S + P [M] V | 88.47|87.25|58.44/44.99| 57.92 |40.24|96.39| 73.02 | 85.86 | 33.80 |85.78| 54.34 |67.21|98.80

S+ C+P[F]| V |87.19|86.71|49.94 | 36.39 | 55.05 | 26.36 | 95.61 | 68.59 85.13 | 33.20 | 85.10 | 48.05 | 63.11 | 98.69

S+ C+P[M]| V |89.05]|87.05|54.07 | 34.73 | 57.24 | 38.33|96.32 | 72.52 85.84 |34.01]85.52 | 54.28 | 65.75 | 98.78

4.2 Result Analysis

In Table 1 and Table 2, we present the mIoU and IoU per class for the 12
classes (excluding void), along with the global accuracy for each of the different
training methods. Furthermore, we present qualitative results on both Cityscapes
and KITTI-STEP datasets for some of the methods in Figure 5.

Cityscapes (Full Real): We notice that training with a mix of real and syn-
thetic data results in a boost of +1.73% mIoU when the synthetic data has gone
through color adjustment. It is interesting to note that while synthetic data in



12 S. Dokania et al.

itself may not be enough for achieving high performance (mlIoU 30.63%), when-
ever combined with real data, helps improve accuracy compared to real data
only. This is clear in the qualitative results as well where the model trained with
a mix of modified synthetic data and real data is able to generate better segmen-
tation mask for the classes person, sky, traffic pole/sign. It is worth highlighting
that for the example in first example (left-sub column) of Cityscapes dataset, the
model trained on real data is not able to detect some instance of the person class,
while the model trained on the mixture, even with partial, is able to detect the
same for this particular sample. When considering autonomous driving scenarios
and real-world use cases, this is a crucial detail to consider towards enhancing
the performance of deep learning architectures through synthetic data.

Table 2. Quantitative results for training on real and synthetic data and validation
on KITTI-STEM dataset. We report class-wise IoU, mloU and global accuracy for the
12 classes (excluding void)

Training Val. Sky | Car | Bus |Truck|Person|Rider | Road |Sidewalk|Building Traffic Veget. | Terrain| mIoU | Acc.
Method Data Poles

R V 191.31(86.66 | 0.14 |18.52|60.99 | 27.93 |85.51| 59.32 81.54 | 44.20 | 89.57 | 72.06 | 59.81 | 98.39

S V 126.44(27.29|28.85| 1.95 | 29.94 | 14.34 | 41.21 | 18.96 26.73 2.53 | 68.75 | 44.81 |27.64|92.96

S + R [F] V |91.54 (87.34| 1.68 | 13.38| 60.57 |27.80|84.95 | 59.20 82.06 |45.49|90.22| 73.20 | 59.79 | 98.41

S+ R [M] V |91.61 |87.34|53.55|28.56| 60.39 | 30.44 | 85.14 | 58.31 81.84 |42.83]90.12 | 74.26 |65.37|98.42

S+C V [ 80.18 | 71.03 | 34.60 | 15.97 | 45.35 | 19.29 | 48.00 | 21.96 63.61 | 12.80 | 83.06 | 57.79 |46.14 | 95.92

S+ C+RI[F]| V |91.41|86.99| 2.23 | 19.98| 59.58 |33.22|85.40 | 59.43 | 81.63 |45.36 | 90.01 | 73.24 |60.71 | 98.41

S+ C+R[M]| V |91.66|85.20|45.98|25.32 | 59.85 [29.05|84.60 | 57.75 | 82.24 |42.99 | 90.03 | 72.55 |63.93|98.38

P V [90.41 (8454 0 6.16 | 56.09 | 17.61 | 84.39 | 56.23 80.23 | 39.54 | 89.62 | 72.30 |56.44 | 98.28

S + P [F] V 190.80|85.87|12.91| 8.17 | 56.91 | 16.01 | 83.33 | 54.39 80.14 | 42.21 | 89.66 | 72.09 | 57.71 | 98.25

S + P [M] V' |90.64 | 85.31 | 31.85 | 16.13 | 59.17 |29.60|84.88| 57.21 80.90 |41.77|89.88| 73.25 | 61.72 |98.34

S+ C+P[F]| V |90.28|85.44| 2.09 |12.63 | 54.91 | 20.54 | 84.26 | 56.38 79.74 | 40.60 | 89.21 | 71.64 |57.31|98.27

S+ C+P[M]| V |91.35|85.54|48.59|22.65|59.25 | 26.97 | 84.50 | 55.65 | 81.95 | 39.00 | 89.82 | 71.80 |63.09|98.33

Cityscapes (Partial Real): We also highlight that for Cityscapes dataset, the
model trained with synthetic and partial data achieves a significant improve-
ment (4+5.77% mloU) over the model trained with just partial data. This result
emphasizes on the practical implications of synthetic data where scarcity of real-
world annotated data availability may be a bottleneck. Qualitatively as well, the
model (S + P [M]) is able to predict sharp segmentation masks for pedestrians
crossing the road, compared to the large masks predicted by model (P), trained
only on partial real data. The visual results are coherent with the per-class IoU
metrics highlighted in Table 1. The road, sidewalk, and traffic sign/pole segmen-
tation metric for partial data shows a gap in the performances with and without
synthetic data, and the same is observable in example from column 2 (right) in
the Cityscapes qualitative sample. The traffic poles are missing almost entirely
in the prediction from (P) and the sidewalk structure shows significant noise.
Whereas for the same sample, (S + P [M]) shows a higher degree of accuracy
and even generates predictions for the poles which have low pixel density.

KITTI-STEP: To strengthen our claims, we bring attention to the results pre-
sented in Table 2 where training with synthetic data, assuming full training
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Fig. 5. Qualitative results for different training strategies using real and synthetic
data across KITTI-STEP and Cityscapes datasets. The nomenclature is R: Real, S:
Synthetic, P: Real (partial), [F]: Fine-tuned on real, [M]: Real mixed with synthetic,
C: Color transformation

dataset, shows an improvement of +5.56% mIoU and with the partial real dataset
available only, an improvement of +6.65% mloU. The seemingly high difference
in the performance for these models can be attributed to the large performance
gap in the ”bus” and ”truck” classes. The reason is that the number of annotated
images with bus or truck appearing in the image is very low in the KITTI-STEP
dataset. For qualitative confirmation of this case, we highlight column 2 (right)
for KITTI-STEP dataset in Figure 5. The models trained using only real data
misclassify the pixels of the truck object as car, while the model trained with a
combination of real and synthetic data accurately segments the object as truck
in (S + R[M]). A similar case can be observed for the bus visible in column
1 where only the model trained with synthetic and real combined are able to
correctly segment some portion of the bus object. It is important to note that
while synthetic data is useful for enhancement of deep learning models, generat-
ing such datasets usually requires manual efforts and careful design. However, in
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this work, we showed a method to generate synthetic dataset fully automatically,
hence avoiding the dependency on manual design.

4.3 Dataset Statistics

In the experiments presented, we use a sample of 5k images and semantic seg-
mentation annotations, the 5k samples were selected after filtering out 2.8k
samples with low variations in categorical labels per image. However, using the
method described in this work, more data can be generated across different
modalities including, but not limited to instance and panoptic segmentation,
depth estimation, optical flow, surface normal estimation, 2D and 3D object de-
tection, 6DoF object annotations, and 3D object reconstruction. We currently
utilise 110 3D assets for different object categories and 40 PBR texture materi-
als for roads, sidewalk, and building facades. In this work, we demonstrate the
ability to generate synthetic data based on real-world annotations available in
nuScenes dataset, however our approach can be extended to any public dataset
to add more diversity in synthetic scenes. For each scene, we sample 20 images
and corresponding annotations from different vehicles and camera poses. If OSM
map data is available, it takes 25-30s to generate a virtual scene otherwise 30-40s
considering an additional API call to OSM server to retrieve map data. Once a
virtual scene is generated, it takes 65-85s to render each image of size 1600x900
and the corresponding annotations using a RTX 2080Ti GPU. Essentially, we
can generate annotated data in orders of 100,000 within a span of 1 week with
12 GPUs in parallel.

5 Conclusions

We propose a framework for automatic generation of synthetic data for visual
perception using existing real-world data. Using a set of 5k synthetically gener-
ate images and corresponding semantic segmentation annotations, we show the
efficiency of combining synthetic data with real data towards improvements in
performance. Given the potential scale of data generation capabilities, various
types of data selection strategies can be applied without losing precious annota-
tions. Our approach avoids the pitfalls and limitations of bounded data volumes
and variety unlike manually designed virtual environments. Making use of geo-
graphical data, our data generation process can be extended to different locations
across the globe. Further work in this direction could explore additional modal-
ities and improved photo-realism with more complex scenes generated from a
diverse set of datasets and benchmarks on a multitude of tasks. We also high-
light another future direction towards better automation by using only visual
inputs from a user side.
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