This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Controllable Dynamic Multi-Task Architectures

Dripta S. Raychaudhuri’ ~ Yumin Suh?

Amit K. Roy-Chowdhury*
2NEC Labs America

'University of California, Riverside

Abstract

Multi-task learning commonly encounters competition
for resources among tasks, specifically when model capac-
ity is limited. This challenge motivates models which al-
low control over the relative importance of tasks and total
compute cost during inference time. In this work, we pro-
pose such a controllable multi-task network that dynami-
cally adjusts its architecture and weights to match the de-
sired task preference as well as the resource constraints.
In contrast to the existing dynamic multi-task approaches
that adjust only the weights within a fixed architecture,
our approach affords the flexibility to dynamically control
the total computational cost and match the user-preferred
task importance better. We propose a disentangled train-
ing of two hypernetworks, by exploiting task affinity and
a novel branching regularized loss, to take input prefer-
ences and accordingly predict tree-structured models with
adapted weights. Experiments on three multi-task bench-
marks, namely PASCAL-Context, NYU-v2, and CIFAR-100,
show the efficacy of our approach. Project page is available
at https://www.nec-1labs.com/~mas/DYMU.

1. Introduction

Multi-task learning [7,40] (MTL) solves multiple tasks
using a single model, with potential advantages of fast infer-
ence and improved generalization by sharing representations
across related tasks. However, in practical scenarios, simul-
taneously optimizing all tasks is difficult due to task conflicts
and limited model capacity [54]. Consequently, a trade-off
between the competing tasks has to be found, necessitating
precise balancing of the different task losses during optimiza-
tion. In many applications, the desired trade-off can change
over time, requiring a new model to be retrained from scratch.
To overcome this lack of flexibility, recent methods propose
dynamic networks for multi-task learning [26, 36]. These
frameworks enable a single multi-task model to learn the
entire trade-off curve, and allow users to control the desired
trade-off during inference via task preferences denoting the
relative task importance.

Samuel Schulter?

Xiang Yu? Masoud Faraki?®
Manmohan Chandraker??

3University of California, San Diego

Conventional dynamic | Proposed framework
multi-task networks | P

Task 1 Task2 Task3 Task 1 Task2 Task3 Task 1 Task2 Task3

Fixed compute cost
Fixed architecture

Control over compute
Flexible architecture

Figure 1. Problem setup. Our goal is to enable users to control
resource allocation dynamically among multiple tasks at inference
time. Conventional dynamic networks (PHN [36]) for MTL achieve
this in terms of weight changes within a fixed model (color gra-
dients indicate proportion of weights allocated for each task). In
contrast, we perform resource allocation in terms of both architec-
ture and weights. This enables us to control total compute cost in
addition to task preference. Dashed circle represents maximum
compute budget, while filled circle represents the desired budget.
Portion of colors represents the user-defined task importance.

Conventional dynamic approaches for MTL assume a
fixed model architecture, with all but the last prediction
layers shared, and control trade-offs by changing the weights
of this model. While such hard-parameter sharing is helpful
in saving resources, the performance is inevitably lower than
single task baselines when task conflicts exist due to over-
sharing of parameters between tasks [40] . Furthermore, the
fixed architecture suffers from a lack of flexibility, leading
to a constant compute cost irrespective of the given task
preference or compute budget changes. In many applications
where the budget can change over time, these approaches
may fail to take advantage of the increased resources in order
to improve performance or accordingly lower the compute
cost in order to satisfy stricter budget requirements.

To address the aforementioned issue and strike a balance
between flexibility and performance, we propose a more
expressive tree-structured [4] dynamic multi-task network
which can adapt its architecture in addition to its weights at
test-time, as illustrated in Figure 1. Specifically, we design a
controller using two hypernetworks [16] that predict archi-

10955

tectures and weights, respectively, given a user preference
that specifies test-time trade-offs of relative task importance
and resource availability. This increases flexibility by chang-
ing branching locations to re-allocate resources over tasks
to match user-preferred task importance, and enhance or
compromise task accuracy given computation budget re-
quirements at any given moment. However, this comes at the
cost of increase in complexity: 1) generalizing architecture
prediction to unseen preferences, and 2) performing dynamic
weight changes on potentially thousands of different models.

To tackle these challenges, we develop a two-stage train-
ing scheme that starts from an /N-stream network, termed
the anchor net, which is initialized using weights from N
pre-trained single-task models. This guides the architecture
search as a prior that is preference-agnostic yet captures
inter-task relations. In the first stage, we exploit inter-task
relations derived from the anchor net to train the first hy-
pernetwork that predicts connections between the different
streams. We introduce a branching regularized loss that en-
courages more resource allocation for dominant tasks while
reducing the network cost from the less preferred ones. The
predicted architectures contain edges that have not been ob-
served during the anchor net initialization. These are denoted
as cross-task edges since they connect nodes that belong to
different streams. In the second stage, to improve the perfor-
mance of the predicted architectures with cross-task edges,
we train a secondary hypernetwork for cross-task adaptation
via modulation of the normalization parameters.

Our framework is evaluated on three MTL datasets
(PASCAL-Context, NYU-v2 and CIFAR-100) in terms of
task performance, computational cost, and controllability
(for both task importance and computational cost). Achiev-
ing performance comparable to state-of-the-art MTL archi-
tecture search methods under uniform task preference, our
controller can further approximate efficient architectures
for non-uniform preferences with provisions for reducing
network size depending on computational constraints.

The primary contributions of our work are as follows:

* A controllable multi-task framework which allows users to
assign task preference and the trade-off between task per-
formance and network capacity via architectural changes.

* A controller, composed of two hypernetworks, to provide
dynamic network structure and adapted network weights.

* A new joint learning objective including task-related losses
and network complexity regularization to achieve the user
defined trade-offs.

* Experiments on several MTL benchmarks (PASCAL-
Context [35], NYU-v2 [45], CIFAR-100 [23]) demonstrate
the efficacy of our framework.

2. Related Work

Multi-Task Learning. Multi-task learning seeks to learn a
single model to simultaneously solve a variety of learning

tasks by sharing information among the tasks [7]. In the con-
text of deep learning, current works focus mostly on design-
ing novel network architectures and constructing efficient
shared representation among tasks [40, 55]. Typically, these
works can be grouped into two classes - hard-parameter
sharing and soft-parameter sharing. In the soft sharing
setting [13,34,41], each task has its own set of backbone
parameters with some sort of regularization mechanisms
to enforce the distance between weights of the model to be
close. In contrast, the hard sharing setting entails all the tasks
sharing the same set of backbone parameters, with branches
towards the outputs [21,22,31]. More recent works have at-
tempted learning the optimal architectures via differentiable
architecture search [5, 14,46]. The overwhelming majority
of these approaches are trained using a simple weighted sum
of the individual task losses, where a proper set of weights
is commonly selected using grid search or using techniques
such as gradient balancing [8]. Other approaches [27,33,44]
attempt to model multi-task learning as a multi-objective
optimization problem and find Pareto stationary solutions
among different tasks. Recently, optimization methods have
also been proposed to manipulate gradients in order to avoid
conflicts across tasks [9, 52]. None of these methods are
suitable for dynamically modeling performance trade-offs,
which is the focus of our work.

Hypernetworks. A hypernetwork is used to learn context
dependent parameters for a dynamic network [16,43], thus,
obtaining multiple customizable models using a single net-
work. Such hypernetworks have been successfully applied
in different scenarios, e.g., recurrent networks [16], 3D point
cloud prediction [28], video frame prediction [20], neural
architecture search [4] and reinforcement learning [38,42].
Recent works [26,36] propose using hypernetworks to model
the Pareto front of competing multi-task objectives. Our
approach is closely related to these works, however, these
methods focus on generating weights for a fixed, handcrafted
architecture, while we use hypernetworks to model the trade-
offs in multi-task learning by varying the architecture. This
allows us to take dynamic resource allocation into account,
an aspect largely ignored in previous works.

Dynamic Networks. Dynamic neural networks, as opposed
to usual static models, can adapt their structures during in-
ference, leading to notable improvements in performance
and computational efficiency [|7]. Previous works focus on
adjusting the network depth [3, 18,48, 50], width [24, 53],
or perform dynamic routing within a fixed supernet that in-
cludes multiple possible paths [25,30,37]. Dynamic depth
is realised by either early exiting, i.e. allowing “easy” sam-
ples to be processed at shallow layers without executing the
deeper layers [3, 18], or layer skipping, i.e. selectively skip-
ping intermediate network layers conditioned on each sam-
ple [48,50]. Dynamic width is an alternative to the dynamic
depth where instead of layers, filters are selectively pruned

10956

Anchor net training Hypernet training

Task preference 7
Resource preference C

r ~ Dir(n)
¢~ Unif(0,1)

o
oo

Branching regularization
Q(r,c, &) (Eq.6)

Network structure

ooo
ooo

Batch-norm weights

Inference

Use case 1

P (1o} — éu

r1 C1 (10} B4

5T e

El\ \s

]
| (o) |—» Geo
[m=]

AN

-
Use case 2

0—0—20

T2 C2

o B2 %

Liask(r) = Y 7il DYD*D
i oO—0o

Task loss
() oOo—0oO—0O

N

I —0—0

Figure 2. Overview of framework. We initialize our framework using an anchor net which consists of single-task networks and cross-task
edges. During training, we first train the edge hypernet h(¢) using sampled preferences (, ¢) to optimize the task loss and a branching
regularizer, for preference aware branching. Next, we optimize the weight hypernet h(¢) in a similar fashion by minimizing only the task
loss. At inference, the hypernets jointly predict architecture and weights according to the user preferences.

conditioned on the input [24, 53]. Dynamic routing can be
implemented by learning controllers to selectively execute
one of multiple candidate modules at each layer [30, 37].
Due to the non-differentiable nature of the discrete choices,
reinforcement learning is employed to learn these controllers.
In [25], the routing modules utilize a differentiable activation
function which conditionally outputs zero values, facilitating
the end-to-end training of routing decisions. Recent works
have also proposed learning dynamic weights for modeling
different hyperparameter configurations [10] and domain
adaptation [49]. In contrast to most of the existing works
which intrinsically adapt network structures as a function
of input, our method enables explicit control of the total
computational cost as well as the task trade-offs.

Weight Sharing Neural Architecture Search. Weight shar-
ing has evolved as a powerful tool to amortize computational
cost across models for neural architecture search (NAS).
These methods integrate the whole search space of architec-
tures into a weight sharing supernet and optimize network
architectures by pursuing the best performing sub-networks.
Joint optimization methods [6,29,51] optimize the weights
of the supernet and a differentiable routing policy simultane-
ously. In contrast, one-shot methods [1,2,4, 15] disentangle
the training into two steps: first, the weights of the supernet
are trained, after which the agent is trained with the fixed
supernet. We utilize such a weight sharing strategy in our
framework for dynamic resource allocation.

3. Method

Given a set of N tasks T = {71, 73,...,Tn}, conven-
tional multi-task learning seeks to minimize a weighted sum
of task-specific losses: Lok (1) = >, 7L;, Where each £;
represents the loss associated with task 7;, and r denotes
a task preference vector. This vector signifies the desired
performance trade-off across the different tasks, with larger
values of r; denoting higher importance to task 7;. Here

r € Sy, where Sy = {r € RV|Y,;r; = 1,7, > 0}
represents the /NV-dimensional simplex [40]. We seek to ap-
proximate the trade-off curve defined by different values of
T using tree-structured sub-networks [14] within a single
multi-task model, given a total computational budget defined
by a resource preference variable ¢ € [0, 1], where larger ¢
denotes more frugal resource usage. This is formulated as a
minimization of the expected value of the task loss over the
user preference distribution, with regularization 2 to control
resource usage, i.e., B o)np,. . Lusk(T) + Q(r, ¢). Opti-
mizing this directly is equivalent to solving NAS [29] for ev-
ery possible (7, ¢) simultaneously. Thus, instead of solving
directly, we cast it as a search to find tree sub-structures and
the corresponding modulation of features for every (r, ¢),
within an N-stream anchor network with fixed weights.
Our framework consists of two hypernets (h and h) [16]
and an anchor net F, as shown in Figure 2. At test-time,
given an input preference, we utilize the network connections
and adapted weights predicted by the hypernets to modulate
F, to obtain the final model. We propose a two-stage training
scheme to train the framework. First, we initialize a prefer-
ence agnostic anchor net, which provides the anchor weights
at test time (Section 3.1). Based on this anchor net, the
tree-structured architecture search space is then defined (Sec-
tion 3.2). Next, we train the edge hypernet using prior task
relations obtained from the anchor net by optimizing a novel
branching regularized loss function derived by inducing a
dichotomy over the tasks (Section 3.3.1). Finally, we train a
weight hypernet, keeping the anchor net and edge hypernet
fixed, to modulate the anchor net weights (Section 3.3.2).

3.1. Anchor Network

We introduce an anchor net F as an alternative ap-
proach to model weight generation in dynamic networks
for MTL [26, 36]. Previous methods adopt chunking [16] to
mitigate the large computation and memory required for gen-

10957

JUES]
TN

s R ° (I+1,N)
! ! !
Figure 3. Branching block. Illustration of the parent sampling
operation in Section 3.2. Nodes in layer [are sampled in accordance

to a categorical distribution defined by o (3=, (i) = 1) for each
node (I + 1,7) in layer I + 1.

erating entire network weights at the expense of limiting the
hypernet capacity. The anchor net, consisting of [V-stream
backbones trained for N individual tasks (Figure 2), over-
comes this bottleneck by providing the weights in the tree
structures predicted by the edge hypernet. Our choice of
the anchor net is motivated by the need for an initialization
that reflects inter-task relations and is based on observations
from [47], where branching in tree-structured MTL networks
is shown to be contingent on how similar task features are
at any layer. It can also be interpreted as a supernet used
in one-shot NAS approaches [2], which is capable of em-
ulating any architecture in the search space. Subsequently,
the base weights of the anchor net are further modulated via
the weight hypernet to address the cross-task connections
unseen in the anchor net (Section 3.3.2).

3.2. Architecture Search Space

We utilize a tree-structured network topology which has
been shown to be highly effective for multi-task learning
in [14]. It shares common low-level features over tasks while
extracting task-specific ones in the higher layers, enabling
control of the trade-off between tasks by changing branch-
ing locations conditioned on the desired preference (r, c).
The search space is represented as a directed acyclic graph
(DAG), where vertices in the graph represent different oper-
ations and edges denote the data flow through the network.
Figure 3 shows a block of such a graph, containing N parent
and child nodes. In this work, we realize a tree-structure by
stacking such blocks sequentially and allowing a child node
to sample a path from the candidate paths between itself and
all its parent nodes. Concretely, we formulate the stochastic
branching operation at layer [as

l‘é—+l :dj~Yl, dj Npa;.’ (1)

where ;vl]f“ denotes the input to the j-th node in layer [+ 1,
d; is a one-hot vector indicating the parent node sampled
from the categorical distribution parameterized by aé and,

Y! = [4,...,yl] concatenates outputs from all parent

nodes at layer [. Note that selecting a parent from every node
determines a unique tree structure. This suggests learning
a = {a}}o<j<no<i<L, conditioned on a preference (r, c),
in a manner which satisfies the desired task trade-offs. Here,
L denotes the total number of layers.

3.3. Preference Conditioned Hypernetworks

We use two hypernets [16] to construct our controller
for architectural changes. The edge hypernet h, parameter-
ized by ¢, predicts the branching parameters & = h(r, ¢; @)
within the anchor net. Subsequently, the weight hypernet h,
parameterized by ¢, predicts the normalization parameters
{B, 4} = h(r, c; ¢) to adapt the predicted network.

Optimizing the task loss L only takes into account
the individual task performances without considering com-
putational cost. Consequently, we introduce a branching
regularizer Q(r, ¢, &) to encourage node sharing (or branch-
ing) based on the preference. This regularizer contains two
terms, the active loss, which encourages limited sharing of
features among the high preference tasks, and the inactive
loss, which aims to reduce resource utilization for the less
important ones. In particular, the active loss is additionally
weighted by the cost preference c to enable the control of
total computational cost. Formally, our objective is formu-
lated as to find the controller (¢ and ¢) that minimizes the
expectation of the branching regularized task loss over the
distribution of user preferences P, .):

Iglél E(r,c)NP(,.YC) [Ltask(ra d, /éa :7) + Q(T‘, ¢, d):| ’ (2)

We disentangle the training of the hypernetworks for sta-
bility — the edge hypernet is trained first, followed by the
weight hypernet. At test time, when a preference (7, ¢) is
presented to the controller, the maximum likelihood architec-
ture corresponding to the supplied preference is first sampled
from the branching distribution parameterized by the pre-
dictions of h. The weights of this tree-structure are then
inherited from the anchor net, supplemented via adapted
normalization parameters predicted by A.

3.3.1 Regularizing the Edge Hypernet

We illustrate the idea of branching regularization in Figure 4:
tasks with higher preferences should have a greater influence
on the branching structure while tasks with smaller prefer-
ences may be de-emphasized by encouraging them to fol-
low existing branching choices. Specifically, we define two
losses, active and inactive losses, based on the task division
into two groups, active tasks A = {7; | r; > 7, Vi € [N]},
and inactive tasks Z = {7; | r; < 7, Vi € [N]} with some
threshold 7. Although individual tasks are already weighted
by 7 in task loss Lk, this explicit emphasizing of certain
tasks over others was found to be crucial to induce better

10958

controllability, as shown in Section 4.6.

Active loss. The active loss L,¢ive €ncourages nodes in the
anchor net, corresponding to the active tasks, to be shared
in order to avoid the whole network being split up by tasks
with little knowledge shared among them. Specifically, we
encourage any pair of nodes that are likely to be sampled in
the final architecture (P) and are from two similar tasks (A)
to take the same parent node. Formally, we define L,.gye as,

L
Lawe =3 3 Bl a) PG I ®)
I=11,j€A
i#]

where P(1,i,7) = Puse(l,4) - Puse(l, 7). Puse(l,i) = 1 —
[1.{1 — Puse(l+ 1,k) - V1 (i)} denotes the probability that
the nodes ¢ in layer [are used in the sampled tree struc-
ture. A(3, j) captures the task affinity between tasks 7; and
T;, where we adopt Representational Similarity Analysis
(RSA) [11] to compute the affinity. The factor % encour-
ages more sharing of nodes which contain low-level features.
The full derivations of P, and A are detailed in the supple-
mentary document.

We use the Gumbel-Softmax reparameterization trick [19]
to obtain the samples v} from the predicted logits &,

S - op(logal® +GIR)G

Z et &xp ((log af (m) + Gl(m)) /¢)

Here, GL = —log(—log U}) is a standard Gumbel distribu-
tion with U} sampled i.i.d. from the uniform distribution
Unif(0, 1), and ¢ denotes the temperature of the softmax.
Inactive loss. The inactive tasks should have minimal effect
in terms of branching. Inactive loss, Lipactive, €ncourages
these tasks to mimic the most closely related branching
pattern,

L

Einactive = ZZILIEHE Hyzl - le'”Q' (5)

=1 j€z
This ensures that the network branching is controlled by the
active tasks, with the inactive tasks sharing nodes with the
active tasks.
Thus, the branching regularizer is defined as follows,

Q(’I’, c, d) =cC-)‘A‘Cactive + >\I£inactive7 (6)

where A 4, Az are hyperparameters to determine the weight-
ing of the losses. Typically, we set A4 = 1 and Az = 0.1.
Here, the active loss is additionally weighted by the resource
preference c, so that larger c encourages more feature sharing
to reduce total computational cost.

3.3.2 Cross-task Adaptation

The architecture sampled by the edge hypernet i contains
edges that have not been observed during the anchor net train-
ing. These are denoted as cross-task edges since they connect

Inactive

Active (Eq.3 Iﬁ;(;tive (Eq.5)

Figure 4. Branching loss. Illustration of the branching regular-
ization, consisting of active and inactive losses. The active loss
encourages limited sharing between high importance tasks, while

the inactive loss tries to limit branching for less preferred tasks as
much as possible.

nodes that belong to different streams in F. Consequently,
the performance of the sampled network is sub-optimal. To
rectify this issue, we propose to modulate the weights of
the anchor net to adaptively update the unseen edges using
an additional weight hypernet h. Inspired from the prior
works [32,49] that estimate normalization statistics and opti-
mize channel-wise affine transformations, we modulate only
the normalization parameters using a hypernetwork. Con-
cretely, we modulate the original batch normalization opera-

1@l —p

tion at layer [, BN} (w}) = 7} “ 4 B, 10 BN} (x!) = (7! +

1 1
Ay Bk + (B! 4+ ABY) by predicting the perturbations
to the parameters: {AB!, Ayl o<icno<i<r = h(r,¢;0),
where 7! and 3! are the original affine parameters, and !
and o! denote the batch statistics of the node input «}. This
modulation primarily affects the preferences with two or

more dominant tasks, where cross-task connections occur.

4. Experiments

In this section, we demonstrate the ability of our frame-
work to dynamically search for efficient architectures for
multi-task learning. We show that our framework achieves
flexibility between two extremes of the accuracy-efficiency
trade-off, allowing a better control within a single model.
Extensive experiments indicate that the predicted network
structures match well with the input preferences, in terms of
both resource usage and task performance.

4.1. Evaluation Criteria

Uniformity. To measure controllability with respect to task
preferences, we utilize uniformity [33] which quantifies how
well the vector of task losses L = [L4, ..., Ly] is aligned
with the given preference. Specifically, for the loss vector
L corresponding to the architecture for task preference r,
uniformity is defined as pi, = 1 — Dg (L || 1/N), where
f)(j) = 5757& This arises from the fact that, ideally, r; o
1/L;, which in turn implies 7 £q = 72Lo - - = N L.

Hypervolume. Using the trained controller, we are able to
approximate the trade-off curve among the different tasks
in the loss space. To evaluate the quality of this curve, we

10959

utilize hypervolume (HV) [56] — a popular metric in the
multi-objective optimization literature to compare different
sets of solutions approximating the Pareto front [12]. It
measures the volume in the loss space of points dominated
by a solution in the evaluated set. Since this volume is
unbounded, hypervolume measures the volume in a rectangle
defined by the solutions and a selected reference point. More
details can be found in the supplementary.

Computational Resource. We measure the computational
cost using the memory of the activated nodes in the anchor
net and the GFLOPs, which approximates the time spent in
the forward pass. We also report the computational cost of
the hypernets to take into account their overheads. We dis-
cuss more on the model size in the supplementary document.

4.2. Datasets

We evaluate the performance of our approach using three
multi-task datasets, namely PASCAL-Context [35] and
NYU-v2 [45], and CIFAR-100 [23]. The PASCAL-Context
dataset is used for joint semantic segmentation, human parts
segmentation and saliency estimation, as well as these three
tasks together with surface normal estimation, and edge de-
tection as in [5]. The NYU-v2 dataset comprises images of
indoor scenes, fully labeled for semantic segmentation, depth
estimation and surface normal estimation. For CIFAR-100,
we split the dataset into 20 five-way classification tasks [39].

4.3. Baselines

We compare our framework with both static and dynamic
networks. Static networks include Single-task networks,
where we train each task separately using a task-specific
backbone, and Multi-task networks, in which all tasks share
the backbone but have separate task-specific heads at the end.
These multi-task networks are trained separately for different
preferences and thus, training time scales linearly with the
number of preferences. We use this to contrast the training
time of our framework. The single-task networks demon-
strate the anchor net performance. We also compare our
architectures with two multi-task NAS methods, LTB [25]
and BMTAS [5], which use the same tree-structured search
space to perform NAS, but are static. The dynamic net-
works include Pareto Hypernetworks (PHN) [36], which
predicts only the weights of a shared backbone network con-
ditioned on a task preference vector using hypernetworks,
and PHN-BN, a variation of PHN which predicts only the
normalization parameters similar to our weight hypernet.
Implementation details are presented in the supplementary.

4.4. Comparison with Baselines

Controllable resource usage. We visualize the variation
in computational cost with respect to different task and re-
source usage preferences in Figure 5. We adopt the ratio
of the size of the predicted architecture to the size of the

Ours . Conventional
=00 T c=03 T
K] Tz

T T | T Ts

c=06 = c=10 g,
T T3

a«a o

Ti T T Ta

Figure 5. Resource usage on NYU-v2. We visualize resource
usage by plotting the proportion of parameters active in the anchor
net versus the task preference. The three vertices represent the
task preferences with non-zero importance to only one task, while
areas in the middle correspond to more dense preferences. As c
increases, the predicted networks grow progressively smaller in the
dense regions. On the other hand, conventional dynamic networks
for MTL always have a constant resource usage (77 :semantic seg.,
T2:surface normal, T3:depth).

total anchor net as the criterion for evaluating computational
cost. Compared to conventional dynamic networks that only
adjust weights with a fixed computational cost (right), our
framework (left) enables control over the total cost via a
cost preference c. Resource usage peaks at the center of the
contour, when more tasks are active, and falls down gradu-
ally as we move towards the corners, where task preferences
are heavily skewed. Furthermore, the average resource us-
age decreases as c is increased, indicating the ability of the
controller to incorporate resource constraints.

Multi-task performance. We demonstrate the overall multi-
task performance in Tables 1-4 on four different settings
(PASCAL-Context 5-task, PASCAL-Context 3-task, NYU-
v2 3-task, CIFAR-100 20-task). In all cases, we report hy-
pervolume (reference point mentioned below heading) and
uniformity averaged across 20 task preference vectors 7,
sampled uniformly from Sy . Inference network cost is cal-
culated similarly over 1000 preference vectors. These are
shown for two choices of ¢ € {0,1} to highlight the two
extreme cases of resource usage.

Our framework achieves higher values in both hyper-
volume and uniformity compared to the existing dynamic
models (PHN and PHN-BN) in all four settings. While the
high hypervolume reinforces the efficacy of tree-structured
models in solving multi-task problems, the uniformity val-
ues consolidate architectural change as an effective approach
towards modeling task trade-offs. This is accompanied by
increased average computational cost, indicated by infer-
ence parameter count. As discussed above, this is due to the
flexible architecture over preferences, where actual cost will
differ for each preference, e.g., reaching the cost of PHN-BN
for extremely skewed preferences (Figure 5). Compared to
Single-Task, the proposed controller is able to find effec-
tive architectures (as indicated by the hypervolume) which

10960

HV.t . Inference Control
Method [3,3,...,3] Unif.t Params.| GFLOPs| Params.
Single-Task 81.56 - 9.84M 16.17
PHN 42.61 0.72 2.15M 6.28 21.50M
PHN-BN 7227 0.69 2.15M 6.28 3.63M
Ours w/o adaptation, ¢=0.0 47.73 0.84 3.34M 7.21 0.06M
Ours w/o adaptation, c=1.0 30.91 0.86 2.75M 6.81 0.06M
Ours, ¢=0.0 75.52 0.76 3.34M 7.21 15.32M
Ours, c=1.0 73.20 0.79 2.75M 6.81 15.32M

Table 1. Evaluation on PASCAL-Context (5 tasks).

HV.t . Inference Control
Method 13,3,3] Unif.t Params. GFLOPs| Params.
Single-Task 4.31 - 5.9IM 9.75
PHN 1.97 0.74 2.06M 4.81 21.10M
PHN-BN 3.92 0.79 2.06M 4.81 3.32M
Ours w/o adaptation, ¢=0.0 3.56 0.92 3.15M 5.52 0.03M
Ours w/o adaptation, c=1.0 3.35 091 2.86M 5.07 0.03M
Ours, ¢=0.0 4.26 0.82 3.15M 5.52 9.25M
Ours, c=1.0 425 0.82 2.86M 5.07 9.25M

Table 2. Evaluation on PASCAL-Context (3 tasks).

HV.t . Inference Control
Method (4,4, 4] Unif.? Params.| GFLOPs| Params.
Single-Task 12.83 - 64.47TM 58.78
PHN 2.36 0.75 21.59M 21.02 21.04M
PHN-BN 11.72 0.73 21.59M 21.02 2.23M
Ours w/o adaptation, ¢=0.0 12.42 0.82 41.06M 29.04 0.03M
Ours w/o adaptation, c=1.0 9.53 0.84 34.68M 25.98 0.03M
Ours, ¢=0.0 13.43 0.76 41.06M 29.04 5.72M
Ours, c=1.0 13.08 0.78 34.68M 25.98 5.72M
Table 3. Evaluation on NYU-v2.
HV.t . Inference Control
Method [1,1,...,1] Unif.t Params. GFLOPs| Params.
Single-Task 0.009 - 36.18M 348.79
PHN 0.002 0.54 16.35M 73.13 11.03M
PHN-BN 0.007 0.49 16.35M 73.13 0.31M
Ours w/o adaptation, ¢=0.0 0.003 0.58 31.86M 174.36 0.34M
Ours w/o adaptation, c=1.0 0.001 0.53 31.37M 129.23 0.34M
Ours, ¢=0.0 0.010 0.54 31.86M 174.36 3.10M
Ours, c=1.0 0.009 0.49 31.37TM 129.23 3.10M

Table 4. Evaluation on CIFAR-100.

perform nearly at par with a smaller memory footprint (as
indicated by the average inference network parameter count).
Notably, in the NYU-v2 3-task and CIFAR-100 settings, the
ability to find effective architectures enables the model to
outperform single-task networks, demonstrating the bene-
fit of sharing features among related tasks via architectural
change. In addition, our framework enjoys flexibility be-
tween two extreme cases, i.e. Single-Task (highest accuracy
with lowest inference efficiency) and dynamic models with
shared backbone (lowest accuracy with highest inference
efficiency), spanning a range of trade-offs for different c val-
ues. The range of HV is larger when task-specific features
are useful, compared to when the compact architecture al-
ready achieves higher HV than the Single-Task (Tables 3,4).
“Control Params.” is the cost of the hypernets. Note that this
overhead will materialize only when the preference changes
and does not have any effect on the task inference time.

Effect of cross-task adaptation In Tables 1-4, “Ours w/o
adaptation” denotes the model without weight hypernet. As
indicated by larger HVs, cross-task adaptation improves the
performance without affecting the inference time. A trend

NYU-v2 Pascal-Context (3 tasks)
14 [P A
42 T~ ®
(5] Q
E 12 g 4.0
g €358
(53 L
= ='3.6
T 10 T o P QU ey g
1 . > o4 ®------r- -0
20 40 60 20 40 60

Time (hours) Time (hours)

c=0.0 @c=10 @c=0.0woadaptation @ c = 1.0 w/oadaptation

Figure 6. Comparison with preference-specific multi-task net-
works. For static multi-task models, each value is computed by
evaluating a subset of preferences, with the shaded area marking
the variance across selected subsets. Our framework achieves high
hypervolume significantly faster with a single model.

that persists across all the settings is the slight drop in uni-
formity that accompanies the adapted models in comparison
to the unadapted ones. This is due to the propensity of the
weight hypernet to improve task performance as much as
possible while keeping the preferences intact. This leads
to improved performance even in the low-priority tasks at
the expense of lower uniformity. Note that our primary fac-
tor of controllability is through architectural changes which
remains unaffected by the weight hypernet.

Training efficiency. In contrast to dynamic networks, static
multi-task networks require multiple models to be trained,
corresponding to different task preferences, to approximate
the trade-off curve. As a result, these methods have a clear
trade-off between their performance and their training time.
To analyze this trade-off, we plot hypervolume vs. training
time for our framework when compared to training mul-
tiple static models in Figure 6. We trained 20 multi-task
models with different preferences sampled uniformly, and at
the inference time we selected subsets of various sizes and
computed their hypervolume. The shaded area in Figure 6
reflects the variance over different selections of task pref-
erence subsets. This empirically shows that our approach
requires shorter training time to achieve similar hypervolume
compared to the static multi-task networks.

4.5. Analysis

Architecture evaluation. We study the effectiveness of the
architectures predicted by the edge hypernet by comparing
them with those predicted by LTB [14] and BMTAS [5]. We
choose the architecture predicted for a uniform task prefer-
ence and, similar to LTB, we retrain it for a fair comparison.
We evaluate the performance in terms of relative drop in
performance across tasks and number of parameters with
respect to the single task baseline. Despite not being directly
trained for NAS, our framework is able to output architec-
tures which perform at par with LTB (Table 5). More results
on the Pascal-Context dataset and visualization of dynamic
architectures can be found in the supplementary document.

10961

multi-task

Method it T2t T3t AvgAr(%) 7t #Params (%) |
Single-Task 64.11 5841 65.17 - -

LTB 61.84 59.41 64.18 -1.12 -35.0
BMTAS 62.79 58.41 64.74 -0.93 -48.9
Ours, ¢=0.0 63.60 59.41 64.94 +0.18 -35.2
Ours’, c=0.0 6234 58.60 65.17 -0.81 -35.2
Ours,c=1.0 63.12 5893 64.93 -0.34 -40.8
OursT,c=l.O 6191 5871 65.01 -1.05 -40.8

Table 5. Architecture evaluation on PASCAL-Context (3 tasks).
We report the mean intersection over union for 77 : Semantic seg.,
T> : Parts seg., and T3 : Saliency. Presence of T indicates that
we train the networks initialized from ImageNet weights, while its
absence indicates training from anchor net weights.

Semantic Segmentation

Surface Normals

%22.5 2 Q
S2.0 33.0 1 Fx)
Cx
15 Gr0==f=-9 2.0 - T0==0==o0,
0.2 04 06 08 1 0.2 04 06 08 1
Task preference Task preference
Depth
2.5 —o— ¢ = 0.0 w/o adaptation
§ 2.0 ¢ = 1.0 w/o adaptation
& -0-c=0.0
1.5 N

V"?&%,{\-*‘.—:v | c=1.0

0.2 04 06 08 1
Task preference

Figure 7. Marginal evaluation tasks on NYU-v2

Task controllability. In Figure 7 we visualize the task con-
trollability for our framework by plotting the test loss at
different values of task preference for that specific task,
marginalized over preference values of the other tasks. As
expected, increasing the preference for a task gradually leads
to a decrease in the loss value. Furthermore, increasing c
leads to higher loss values due to smaller predicted architec-
tures. The effect of the weight hypernet is also evident, as
shown by the lower loss values obtained on using it on top
of the edge hypernet (w/o adaptation).

4.6. Ablation Study

Impact of inactive loss. Removing L;,, leads to loss of
controllability with the edge hypernet predominantly pre-
dicting the full original anchor net, with minimal branching,
leading to high resource usage and poor uniformity (Table 6).
Impact of weighting factors. Removing the two branching
weights, % and A, in the active loss, we make three key
observations in Table 6: 1) average resource usage increases,
2) uniformity drops due to poor alignment between architec-
tures and preferences, with larger architectures incorrectly
predicted for skewed preferences, which ideally require less
resources, 3) hypervolume remains almost constant across
different c indicating poor cost control. Resource usage plots
are presented in the supplementary.

Analysis of task threshold. We compare the effect of vary-

HV.t Unif.1 #Inference Params]

Method
c=00 ¢=10 ¢=00 ¢c=10 ¢=0.0 c=1.0
Ours 1343 13.08 0.76 0.78 41.06M 34.68M
N0 Linactive 12.81 12.73 0.49 0.51 61.75M 54.78M
no layer weighting ~ 12.69 1221 0.51 0.53 4621M 41.33M
no task affinity A 12.53 1235 0.51 052 4573M 42.55M
no task dichotomy 12.57 11.20 0.60 0.63 56.73M 45.17M
Table 6. Ablation study on NYU-v2
o O O O

12 O———0o0—

) \o\\o
—O0—7=0.1 T =0.2

8T _o0—-7=03—0—7=05

0.2 0.4 0.6 0.8 1
c

Figure 8. Varying thresholds on NYU-v2

Hypervolume

ing the threshold 7 in Figure 8. Increasing the value beyond
1/N (~ 0.3) leads to loss of controllability as indicated by
the constant hypervolume across different values of c. This
is due to the inability to account for uniform preferences. On
the other hand, choosing values below this threshold leads
to comparable performance. Additional explanations are
provided in the supplementary.

Task classification. We analyse the importance of the in-
duced task dichotomy by considering all tasks as active. This
leads to: 1) high overall resource usage, and 2) poor control-
lability, especially at low values of ¢, as shown in Table 6.
Resource usage plots are presented in the supplementary.

5. Conclusion

We present a new framework for dynamic resource alloca-

tion in multi-task networks. We design a controller using hy-
pernets to dynamically predict both network architecture and
weights to match user-defined task trade-offs and resource
constraints. In contrast to current dynamic MTL methods
which work with a fixed model, our formulation allows the
flexibility in controlling the total compute cost and matches
the task preference better. We show the effectiveness of our
approach on four multi-task settings, attaining diverse and
efficient architectures across a wide range of preferences.
Limitations and future work. Our framework searches
solely over network width and thus, the compute cost is
lower bounded by network depth. One possible solution is
to extend the search space to allow skip connections within
and across streams to allow variable depth. Also, scalability
could be an issue as the required memory for the anchor
net is proportional to the number of tasks. Our future work
will address these issues by reducing the dependency on the
anchor net initialization.
Acknowledgements. This work was a part of Dripta S.
Raychaudhuri’s internship at NEC Labs America. This work
was also partially supported by the NRI grant 2021-67022-
33453 and the NSF grant 1724341.

10962

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

Youhei Akimoto, Shinichi Shirakawa, Nozomu Yoshinari,
Kento Uchida, Shota Saito, and Kouhei Nishida. Adaptive
stochastic natural gradient method for one-shot neural ar-
chitecture search. In International Conference on Machine
Learning, pages 171-180. PMLR, 2019. 3

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In International Conference on
Machine Learning, pages 550-559. PMLR, 2018. 3, 4
Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient inference.
In International Conference on Machine Learning, pages
527-536. PMLR, 2017. 2

Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Smash: one-shot model architecture search through
hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 2, 3
David Bruggemann, Menelaos Kanakis, Stamatios Geor-
goulis, and Luc Van Gool. Automated search for resource-
efficient branched multi-task networks. arXiv preprint
arXiv:2008.10292, 2020. 2, 6,7

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 3
Rich Caruana. Multitask learning.
28(1):41-75,1997. 1,2

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International
Conference on Machine Learning, pages 794-803. PMLR,
2018. 2

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. In Advances in Neural Information
Processing Systems, 2020. 2

Alexey Dosovitskiy and Josip Djolonga. You only train once:
Loss-conditional training of deep networks. In International
Conference on Learning Representations, 2019. 3

Kshitij Dwivedi and Gemma Roig. Representation similar-
ity analysis for efficient task taxonomy & transfer learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12387-12396, 2019. 5
Mark Fleischer. The measure of pareto optima applications to
multi-objective metaheuristics. In International Conference
on Evolutionary Multi-Criterion Optimization, pages 519—
533. Springer, 2003. 6

Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L
Yuille. Nddr-cnn: Layerwise feature fusing in multi-task cnns
by neural discriminative dimensionality reduction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3205-3214, 2019. 2
Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning
to branch for multi-task learning. In International Conference
on Machine Learning, 2020. 1,2, 3,4,7

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

Machine learning,

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

10963

shot neural architecture search with uniform sampling. In
Proceedings of the European Conference on Computer Vision,
pages 544-560. Springer, 2020. 3

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 1, 2, 3,4

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A survey.
arXiv preprint arXiv:2102.04906, 2021. 2

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. arXiv
preprint arXiv:1703.09844, 2017. 2

Eric Jang, Shixiang Gu, and Ben Poole.
reparameterization with gumbel-softmax.
arXiv:1611.01144, 2016. 5

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. Advances in Neural Informa-
tion Processing Systems, 29:667-675, 2016. 2

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7482—
7491, 2018. 2

Iasonas Kokkinos. Ubernet: Training a universal convolu-
tional neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory. In Proceedings of
the IEE/CVFE Conference on Computer Vision and Pattern
Recognition, pages 6129-6138, 2017. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 6

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8607-8617, 2021. 2, 3
Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu
Zhang, Xingang Wang, and Jian Sun. Learning dynamic
routing for semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8553-8562, 2020. 2, 3, 6

Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong.
Controllable pareto multi-task learning. arXiv preprint
arXiv:2010.06313,2020. 1, 2,3

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and
Sam Kwong. Pareto multi-task learning. Advances in Neural
Information Processing Systems, 32:12060-12070, 2019. 2
Gidi Littwin and Lior Wolf. Deep meta functionals for shape
representation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1824-1833, 2019. 2
Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Dif-
ferentiable architecture search. In International Conference
on Learning Representations, 2019. 3

Lanlan Liu and Jia Deng. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective exe-
cution. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018. 2,3

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S
Yu. Learning multiple tasks with multilinear relationship
networks. arXiv preprint arXiv:1506.02117,2015. 2

Categorical
arXiv preprint

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

(44]

[45]

[46]

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa De-
hghani, and James Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. arXiv
preprint arXiv:2106.04489, 2021. 5

Debabrata Mahapatra and Vaibhav Rajan. Multi-task learn-
ing with user preferences: Gradient descent with controlled
ascent in pareto optimization. In International Conference on
Machine Learning, pages 6597-6607. PMLR, 2020. 2, 5
Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3994-4003, 2016. 2
Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and
semantic segmentation in the wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2014. 2, 6

Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya.
Learning the pareto front with hypernetworks. In Interna-
tional Conference on Learning Representations, 2021. 1, 2,
3,6

Augustus Odena, Dieterich Lawson, and Christopher Olah.
Changing model behavior at test-time using reinforcement
learning. arXiv preprint arXiv:1702.07780, 2017. 2, 3
Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gre-
gory Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Ma-
chine Learning, pages 4295-4304. PMLR, 2018. 2
Clemens Rosenbaum, Tim Klinger, and Matthew Riemer.
Routing networks: Adaptive selection of non-linear functions
for multi-task learning. arXiv preprint arXiv:1711.01239,
2017. 6

Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 1,
2,3

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and
Anders Sggaard. Latent multi-task architecture learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
2019. 2

Elad Sarafian, Shai Keynan, and Sarit Kraus. Recomposing
the reinforcement learning building blocks with hypernet-
works. In International Conference on Machine Learning,
pages 9301-9312. PMLR, 2021. 2

Jiirgen Schmidhuber. Learning to control fast-weight memo-
ries: An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131-139, 1992. 2

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-
objective optimization. In Advances in Neural Information
Processing Systems, 2018. 2

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In Proceedings of the European Conference on
Computer Vision, 2012. 2, 6

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep

(47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

(561

10964

multi-task learning. arXiv preprint arXiv:1911.12423,2019.
2

Simon Vandenhende, Stamatios Georgoulis, Bert De Braban-
dere, and Luc Van Gool. Branched multi-task networks: de-
ciding what layers to share. arXiv preprint arXiv:1904.02920,
2019. 4

Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In Proceedings of the Eu-
ropean Conference on Computer Vision, pages 3—18, 2018.
2

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 3,5

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E
Gonzalez. Skipnet: Learning dynamic routing in convolu-
tional networks. In Proceedings of the European Conference
on Computer Vision, pages 409—424, 2018. 2

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734-10742, 2019. 3
Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for multi-
task learning. In Advances in Neural Information Processing
Systems, 2020. 2

Zhihang Yuan, Bingzhe Wu, Guangyu Sun, Zheng Liang, Shi-
wan Zhao, and Weichen Bi. S2dnas: Transforming static cnn
model for dynamic inference via neural architecture search.
In Proceedings of the European Conference on Computer
Vision, 2020. 2, 3

Amir R Zamir, Alexander Sax, , William B Shen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018. 1

Yu Zhang and Qiang Yang. A survey on multi-task learning.
1IEEE Transactions on Knowledge and Data Engineering,
2021. 2

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength pareto
approach. IEEE transactions on Evolutionary Computation,
3(4):257-271, 1999. 6

