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Abstract

Humans have the ability to accumulate knowledge of new

tasks in varying conditions, but deep neural networks of-

ten suffer from catastrophic forgetting of previously learned

knowledge after learning a new task. Many recent meth-

ods focus on preventing catastrophic forgetting under the

assumption of train and test data following similar distribu-

tions. In this work, we consider a more realistic scenario

of continual learning under domain shifts where the model

must generalize its inference to an unseen domain. To this

end, we encourage learning semantically meaningful fea-

tures by equipping the classifier with class similarity metrics

as learning parameters which are obtained through Maha-

lanobis similarity computations. Learning of the backbone

representation along with these extra parameters is done

seamlessly in an end-to-end manner. In addition, we propose

an approach based on the exponential moving average of

the parameters for better knowledge distillation. We demon-

strate that, to a great extent, existing continual learning

algorithms fail to handle the forgetting issue under multi-

ple distributions, while our proposed approach learns new

tasks under domain shift with accuracy boosts up to 10% on

challenging datasets such as DomainNet and OfficeHome.

1. Introduction

Humans possess the extraordinary capability of acquir-

ing new knowledge in dynamically changing environments,

while preserving knowledge learned in the past. The ob-

tained knowledge can be further generalized to unseen situa-

tions without the need of re-educating. On the other hand,

there has been a surge of efforts to devise machine learning

based algorithms to build more intelligent models and miti-

gate the aforementioned challenges from two perspectives,

namely continual learning [2, 4, 26, 32] and domain general-
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Figure 1. Top: Existing settings on 1) continually learning new

visual categories from single domain (left), and 2) continually learn-

ing from new domains with evaluation on the same domains (right).

Bottom: Our setting which has a sequence of visual categories

coming from various domains, with evaluation on an unseen do-

main. The proposed approach utilizes a continual domain alignment

strategy dubbed Mahalanobis Similarity Learning (MSL). Colors

indicate domains, and shapes indicate categories.

ization [12, 13, 20, 21]. This is particularly more important

when deployed in the real world under a life-long learning

setup [18, 25, 28]. For instance, consider warehouse robots

that might perceive new inventory or unseen room layouts

that they require to adapt to function properly. The observa-

tions are captured at different time frames (e.g., day or night)

and different locations (e.g., aisles) such that the observed

domains come with an unpredictable sequence. In these

situations, the key to success is to have certain embedded
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adaptability in the robots to handle the challenges without

costly re-training or entirely replacing them.

To put the discussion into perspective, on one hand, con-

tinual learning based methods mainly try to deal with catas-

trophic forgetting, which refers to the performance degrada-

tion of previously acquired knowledge when new concepts

are learned. On the other side, domain generalization is to

find a good feature representation that goes well beyond

the training distributions, while at the same time being dis-

criminative for the task at hand. While effective, there has

been comparatively little efforts in research to provide an-

swers for the two aforementioned challenges simultaneously.

One effort is the work of Volpi et al. [35] which proposes

continual domain adaptation, i.e., where different domains

arrive in a continual fashion (top-right in Fig. 1). Other

similar effort includes the work of Kundu et al. [19], which

suggests class-continual learning with source-target domain

adaptation as in the open-set setting. However, in both works

the main aspect of generalization beyond seen domains is

largely missing, limiting applicability of them in real-world

scenarios. Moreover, the notion of incrementally adding

training tasks is constrained to source and target domains

only (i.e., two tasks).

In this work, we propose an approach for cross-domain

continual learning, which also has the capability of general-

ization to unseen domains. Our setup considers a sequence

of tasks (i.e. different visual categories), where each task’s

data is originated from various domains (Fig. 1 bottom-left).

Note that, our setup does not have any prior assumptions

about the domains (e.g., availability of domain identifiers or

specific orderings) associated to the given training samples

in each task. This is a realistic scenario where the model

is deemed to be agnostic about the origin of training sam-

ples, e.g., when preserving privacy is important. We deem

the domain alignment be done in a discriminative manner

by equipping our classifier with class-specific Mahalanobis

similarity metrics, as shown in Fig. 1 (bottom-right). Here,

the classifier network also takes into account the underly-

ing distribution of the class samples when generating the

predictions. This is to encourage learning semantically mean-

ingful features across training domains. We then learn the

backbone representation parameters along with these extra

parameters in an end-to-end fashion. In addition, we propose

an approach based on the exponential moving average of the

parameters for better knowledge distillation, preventing ex-

cessive divergence from the previously learned parameters.

To evaluate our method, we define highly dynamic en-

vironments with data coming from various domains and

expanding visual categories. We perform extensive experi-

ments on four different datasets – DomainNet [27], Office-

Home [34], PACS [21], and NICO [14]. The results show

that our method consistently leads to an improvement of up

to 10% compared to baselines [16, 23, 30, 38, 40] on 10-task

and 5-task protocols. Furthermore, our proposed method

also prevents catastrophic forgetting, achieving the lowest

backward transfer rate [25] on average, e.g., ∼10% and ∼8%

on DomainNet and OfficeHome, respectively.

To summarize, our contributions include

1. We provide a unified testbed for cross-domain continual

learning with comparison to continual learning methods

and techniques for domain generalization.

2. We propose a projection technique in an end-to-end

scheme for domain generalization. In particular, we

make use of learnable Mahalanobis similarity metrics

for robust classifiers against unseen domains.

3. We devise an exponential moving average framework

for knowledge distillation. The proposed module is

integrated with our learnable projection technique to

alleviate the degrading impact of catastrophic forgetting

and distributional shifts by adaption to a history of the

old parameters.

2. Related Work

Continual Learning. To tackle the forgetting problem in

continual learning, neural networks must maintain the per-

formance of past visual categories. Knowledge Distilla-

tion [3, 15] (KD) between an old model and a current model

is an effective approach to prevent catastrophic forgetting.

The standard baseline exploits KD as proposed by Li and

Hoiem [23], for which the predictions between old and cur-

rent models are preserved. Hou et al. [16] propose a KD

method in feature space, in order to maintain the features

from old and current models. In the same line of research,

Simon et al. [30] introduce a smooth property to learn from

one task to another task such that the geometry aspect is

taken into account. Another stream of continual learning

methods consider memory selection and generation for mem-

ory replay. A classical approach is known as herding [36] by

picking the nearest neighbors from the mean of exemplars

in each class. Another approach in this category is gradient

episodic memory [5,25] that uses old training data to impose

optimization constraints when learning new tasks. Liu et

al. [24] use bi-level optimization for synthesizing the mem-

ory, and a more optimal memory replay is expected com-

pared to storing exemplars from training data. Despite the

wide use of generating and selecting exemplars for continual

learning, it does not guarantee robustness under change of

train and test distributions.

Domain Generalization. Domain generalization tech-

niques aim to generalize beyond training domains, which

is a different goal compared to domain adaptation that re-

duces the distributional shifts between source and target

domains. The problem of domain generalization also differs

from few-shot or unsupervised domain adaptation where
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in these problems the test data is accessible during train-

ing [11, 37]. A standard approach is to expose a model with

various domains in training as recommended in [33] under

empirical risk minimization. This straightforward idea from

supervised learning is effective for domain generalization

as also shown in [13]. An extension is to adapt the risk

minimization loss to a context network with a meta learn-

ing strategy as proposed in [38]. To improve generalization,

Zhou et al. [40] propose a smooth style transfer applied to the

feature statistics. Though these techniques are effective to

generalize to unseen distributions, their ability to deal with a

stream of data containing multiple tasks is still questionable.

Learning Embeddings. To compute the distance between

a pair of points, a projection matrix (e.g., covariance, Pos-

itive Semi-Definite matrices) plays a crucial role in image

recognition. Bardes et al. [1] apply covariances for correla-

tion and decorrelation among samples to avoid collapse (i.e.

non-informative feature vectors). Faraki et al. [9] propose

a cross-domain triplet loss using covariances for domain

alignment. The projection matrices are also known to be

effective to compute similarity between two entities as pro-

posed in [31, 39]. In comparison, our proposed approach

employs discriminative projection matrices for the learned

features in a form of Mahalanobis metrics and bias terms to

generate robust predictors.

3. Proposed Method

In this section, we present our approach to learning tasks

sequentially with: 1) constraints on the storage of the previ-

ously observed learning samples, and 2) severe distribution

shifts within the learning tasks, without suffering from the so-

called issue of catastrophic forgetting. Our learning scheme

identifies the feature and similarity metric learning jointly. In

particular, we learn class-specific similarity metrics defined

in the latent space to increase the discriminatory power of

features in the space. This is done seamlessly along with

learning the features themselves.

Below, we first review some basic concepts used in our

framework. Our method tackles the domain generalization

and catastrophic forgetting by incorporating two compo-

nents: 1) domain generalization strategy by learning Maha-

lanobis metrics and 2) preserving past knowledge based on

knowledge distillation using exponential moving average of

parameters, which are discussed afterwards.

3.1. Notation and Preliminaries

Throughout the paper, we denote vectors and matrices

in bold lower-case (e.g., x) and bold upper-case letters (e.g.

X), respectively. On x, [x]i denotes the element at position

i while ∥x∥22 = x
⊤
x shows its squared l2 norm. We denote

a set by S .

Formally, in continual learning, a model is trained in

several steps called tasks. Each task Ti, 1 ≤ i ≤ q, consists

of samples of a set of novel classes YN
i as well as samples

of a set of old classes YO
i . The aim is to train a model to

classify all seen classes, i.e., YO
i ∪YN

i . The allowed number

of training samples for YO
i is severely constrained (called

rehearsal memory M).

In our cross-domain continual learning setup, we tackle

the recognition scenario where during training we observe

m source domains, i.e., D1, . . . ,Dm, each with different

distributions. The learning sequence is defined as learning

through a stream of tasks T1, . . . , Tq, where the data from

each task is composed of a sequence of m source domains.

Note that, in our setup, we do not require the information

about the domains (e.g., domain identifier) from which the

samples in each task are given. When feeding the training

data in each episode, we are interested in averaging the per-

formance measures when the data domains are in random

orders and the process is repeated for a number of times (e.g.,

5). Like the standard continual learning setup, knowledge

from a new set of classes is learned from each novel task.

At the test time, we follow the domain generalization eval-

uation protocol in which the trained model has to predict

y ∈
⋃q

i=1Yi, values of inputs from an unseen/target domain

Dm+1. We note that Dm+1 has samples from an unknown

distribution. Our setting is presented conceptually in Fig. 2.

Like a standard continual learning method, we also apply

experience replay by storing exemplars in the memory M.

To some extent, this would help preventing the forgetting

issue. The exemplars stored in the memory are constructed

from each class and each domain. We store randomly se-

lected exemplars in the memory and ensure that every run

uses this same set of exemplars. In the following, for sim-

plicity, we drop the task indicator i and assume the size of

label space is C.

3.2. Domain Generalization by Learning Similarity
Metrics

In this part, we present our approach to learn class simi-

larity metrics in a cross-domain continual learning setting,

with the focus of generalization to unseen domains. To this

end, we encourage learning semantically meaningful fea-

tures by equipping the classifier with class similarity metrics

which are obtained through Mahalanobis similarity compu-

tations. Here, we deem the domain alignment be done in a

discriminative manner. In doing so, our idea is consistent

with recent works that utilize a notion of feature semantics

in their domain alignment inference to avoid undesirable

effects of aligning semantically different samples from dif-

ferent domains. To name a few, the Contrastive Adaptation

Network (CAN) for unsupervised domain adaptation [17],

the Covariance Metric Networks (CovaMNet) for few-shot

learning [22], the Model-Agnostic learning of Semantic Fea-

tures (MASF) for standard domain generalization [6] and
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Figure 2. The overall setting in cross-domain continual learning.

The training problem is divided into several tasks, where each

new task has a subset of novel object categories coming from

various training domains. While the training data from old tasks

is discarded at each time, the model has to learn sequentially from

the incoming tasks to evaluate on inputs from an unseen domain

with a different distribution.

the Cross-Domain Triplet (CDT) loss for face recognition

from unseen domains [9].

We begin by introducing the overall network architecture.

Our architecture closely follows a typical image recognition

design used in continual learning setting. Let fθ : X →
H represents a backbone CNN parametrized by θ which

provides a mapping from the image input space X to a

latent space. Furthermore, let fφ : H → Y be a classifier

network parametrized by φ that maps the outputs of fθ to

class label values. More specifically, forwarding an image

x through fθ(·) outputs a tensor that, after being flattened

(i.e., fθ(x) ∈ R
n ) acts as input to the classifier network

fφ(·). In a typical pipeline, the goal is to train a model on

each task Ti, 1 ≤ i ≤ q, while expanding the output size

of the classifier to match the number of classes. Note that

the sequential learning protocol in our setting does not have

strong priors and assumptions e.g., domain identities and

overlapping classes.

In most continual learning methods [16,23,30], the classi-

fier network fφ is often implemented by a Fully-Connected

(FC) layer with weight W = [w1, . . . ,wC ]
⊤ ∈ R

C×n

with wi ∈ R
n. When learning a new task, W is expanded

to cover k new task categories by accommodating k new

rows, i.e., W = [w1, . . . ,wC ,wC+1, . . . ,wC+k]
⊤. A

similarity score between a class weight wc and a feature

fθ(x) = h ∈ R
n associated with an image x is then defined

by projection as ⟨wc,h⟩ = w
⊤
c h to be optimized by a loss

function (see Fig. 3 (a)). Despite its wide use, we argue that

this approach is not robust to distributional shifts as it is not

explicitly designed to align samples that are seen in previous

classes but from different distributions.

Here, we deem the classifier network also take into ac-

count the underlying distribution of the class samples when

generating the class predictions. To this end, we equip the

classifier network with Positive Semi-Definite (PSD) Ma-

halanobis similarity metrics Σc as learnable parameters, to

encourage learning semantically meaningful features across

different domains. Furthermore, category features are al-

lowed to shift by learning a bias vector bc. We store these pa-

rameters in the network and expand to match the number of

new classes when learning a new task. Therefore, after learn-

ing a new task, the prediction layer in our framework consists

of extra learnable parameters φ = {Σ1, b1, . . . ,ΣC , bC}.

We then learn the backbone representation parameters θ

along with φ in an end-to-end manner.

Utilizing φ, the proposed similarity score with respect to

class c for an image x passing through the network can be

obtained by

simc(x; θ, φ) = (fθ(x)− bc)
⊤
Σc (fθ(x)− bc). (1)

Intuition. The motivation behind Mahalanobis similarity

learning is to determine Σc such that by learning to expand

or shrink axes of fθ(x) ∈ R
n, certain useful properties

are achieved when generating (1). To better understand the

behavior of our learning algorithm, let rc = (fθ(x)−bc) and

the eigendecomposition of Σc be Σc = V cΛcV
⊤
c . Then,

rc
⊤
Σcrc =

(

Λc

1

2Vc

⊤
rc

)⊤(

Λc

1

2Vc

⊤
rc

)

=
∥

∥Λc

1

2Vc

⊤
rc

∥

∥

2

2
, (2)

which associates rc with the eigenvectors of Σc weighted

by the eigenvalues. When rc is in the direction of leading

eigenvectors of Σc, it obtains its maximum value. Then,

optimizing this term over the associated class samples leads

to a more discriminative alignment of the data sources.

A computationally more efficient alternative. Taking

advantage of the structure of Σ, we can further decompose it

to have a more efficient version. The similarity metric matrix

can be decomposed to Σc = L
⊤
c Lc, where L ∈ R

r×n with

r ≪ n. This will ensure Σ remains PSD and yields valid

similarity scores [7, 8]. Furthermore, it can substantially re-

duce storage needs and increase the scalability of our method

when a large-scale application is deemed. In practice, this

lets us conveniently implement Σ by a FC layer into any

neural network. Using the decomposition, (1) boils down to

simc(x; θ, φ) =
∥

∥Lc

(

fθ(x)− bc

)∥

∥

2

2
. (3)

Overall training pipeline. Finally, the updated classifier

parameters become φ = {L1, b1, . . . ,LC , bC}. Later, in
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Figure 3. The pipeline of our approach. (a) For comparison, we show a standard continual learning approach with expanding parameters

when a new class is presented. (b) Our approach also expands the classifier with Mahalanobis metrics and biases as learnable parameters

to learn semantically meaningful features across training domains. (c) Extension of our proposed domain generalization method with

knowledge distillation to allow smooth updates when learning new tasks.

experiments, we will study the effect of different values of

r in our framework. We store some examples from seen

tasks and various domains. During training, the samples x in

mini-batches come from the samples in the current task and

the memory. Thus, our objective becomes minimizing the

loss function across domains and samples. Our parameters

φ that represents each class are updated during training in

conjunction with the feature extractor parameters θ. We train

our model using the cross-entropy loss, which is widely used

for Empirical Risk Minimization (ERM) [33]

LCE = −
∑

x∈X∪M

δy=c log
exp

(

simc(x; θ,Lc, bc)
)

∑

c′ exp
(

simc′(x; θ,Lc′ , bc′)
) ,

(4)

where δ is an indicator function corresponding with the label

y.

As mentioned earlier, we have a memory of exemplars

from various domains. Thus, the learnable parameters can be

updated towards a more generalized classifier as an attempt

to improve classification on unseen domains. We conceptu-

ally show our proposed method for Mahalanobis Similarity

Learning (MSL) in Fig. 3 (b).

3.3. Knowledge Distillation with Exponential Mov­
ing Average

In this section, we develop an effective Knowledge Distil-

lation (KD) strategy to take advantage of previously learned

knowledge without requiring old tasks’ images and labels.

While many other methods focus on applying KD [10] using

only the old and current models [3, 16, 23, 30], we utilize a

history of previous knowledge to limit the divergence from

the old model. Let Ψt = {θt, φt} and Ψt−1 = {θt−1, φt−1}
be all learnable parameters in our framework at the current

and old tasks, respectively. Then, given a temperature τ , we

propose the following KD on the predictions of the current

and old models

LDis(Ψ
t,Ψt−1;x) = −

C
∑

c=1

pt−1
c (x) log ptc(x), (5)

with

pt−1
c (x) =

exp

(

simc(x;Ψ
t−1)/τ

)

∑
C
c′=1

exp

(

simc′ (x;Ψ
t−1)/τ

) , ptc(x) =
exp

(

simc(x;Ψ
t)/τ

)

∑
C
c′=1

exp

(

simc′ (x;Ψ
t)/τ

) ,

where the similarity score, sim(·), is obtained by (3).

As also empirically observed in [10], temporal ensem-

bling methods applied to the old model stabilizes the training.

Here, the idea is that the outputs of the current model must

not significantly deviate form the old ones. To this end, we

employ a smooth parameter update strategy using Exponen-

tial Moving Average (EMA) updates. Connecting to KD, the

idea is to smoothly guide the learning of the parameters of

the current model while taking into account the predictions

from the old ones. Therefore, we define the EMA update in

our framework as

θt−1 = γθt−1 + (1− γ)θt,

b
t−1
c = γbt−1

c + (1− γ)btc,

L
t−1
c = γLt−1

c + (1− γ)Lt
c,

(6)

where γ is a positive smoothing coefficient hyperparameter.

Furthermore, we apply a stop-gradient operator to the old

model. Once the training is done, the old model is discarded.

The process is depicted in Fig. 3 (c). Our overall loss then

becomes LCE + λLDis, with λ showing the weight of KD

loss. We dub this method MSL + Mov in our experiments.
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4. Experiments

In this section, we compare and contrast our method

against existing methods in both (class) Continual Learning

(CL) and Domain Generalization (DG). We start with in-

troducing our competitor methods and experimental details.

Baselines. To evaluate our proposed method, we compare

with the competitor methods in CL, namely LwF [23], LU-

CIR [16], and GeoDL [30]. Concisely, LwF [23] applies

knowledge distillation on the predictions, while LUCIR [16]

employs preservation of features from old and current mod-

els, and GeoDL [30] extends the preservation in the feature

space with smooth transitions of two subspaces from the old

and the current models. These models are a combination

of widely used and very recent methods. Furthermore, we

include a baseline Empirical Risk Minimization (ERM) [33]

as well as recent DG methods – MixStyle [40] and Adaptive

Risk Minimization (ARM) [38]. MixStyle [40] makes use of

style transfer, interpolating means and standard deviations

in a normalization layer with inputs in a mini-batch coming

from different domains. Additionally, to handle distribution

shifts at test time, ARM [38] uses a contextual network that

utilizes extra domain information via a meta-learning strat-

egy. For fair comparison, we adopt all baselines to our setup

without substantial modification.

Datasets. In our experiments, we use popular DG

benchmarks, namely DomainNet [29], OfficeHome [34],

PACS [21] and NICO [14]. These datasets are ideal can-

didates for training and evaluating domain generalizable

CL methods with multiple domains and a large number of

classes. Specifically, DomainNet is a large-scale dataset

containing images of 126 classes from 4 domains: Real, Cli-

part, Painting and Sketch. OfficeHome is another large-scale

benchmark that contains 15K images spanning a total of 65

classes in 4 domains: Real, Clipart, Art and Product. We

also consider the PACS dataset which has images from 4

domains: Art, Cartoon, Photo and Sketch. PACS provides

challenging recognition scenarios with large domain shifts as

described in [21]. Finally, we evaluate on the NICO dataset

that has multiple domains called contexts. We consider four

domains (Eating, Ground, Water and Grass) from the an-

imal split of the dataset since only these domains contain

all classes. Comparatively, we consider smaller task exper-

iments on the PACS and NICO-Animal datasets since the

number of categories is limited.

Implementation details. For all datasets, we follow the

provided splits for training and testing. Furthermore, the im-

ages are resized to 224× 224. We adopt three cross-domain

CL protocols, which consist of 2, 5, and 10 tasks. In our

experiments, we exclude one domain for evaluation and con-

sider the remaining ones for training, e.g., for DomainNet,

we hold the Clip domain for testing while training on Paint,

Real and Sketch samples. Following the common practice in

CL, some exemplars are also stored in the memory to replay

in future iterations. The memory sizes in our experiments

are set to 10 for DomainNet and 5 for all other datasets.

Note that exemplar selection strategy is not the main focus

in this work. Thus, we opt to use random selection and

replay the same images in the memory for all methods in

our experiments. We train a model for 200 epochs with stan-

dard data augmentations (e.g. flipping, cropping and color

jittering) by using the SGD optimizer with the learning rates

of 1e−4 for DomainNet and 2e−5 for other datasets. We

use a ResNet-34 model pretrained on the ImageNet as our

backbone network. As for the distillation loss, we experi-

mentally observed that setting the hyperparameter λ to 1e−3,

1e−3, 1e−2, 1e−3 works well for LwF [23], LUCIR [16],

GeoDL [30] and our methods, respectively. The exponen-

tial moving average hyperparameter in our method is set to

γ = 0.96. As suggested in [15, 23], we set τ = 2 to achieve

softer probabilities among classes. Finally, we found a maxi-

mum rank of r = 64 for the Mahalanobis metric matrices to

work well across all protocols and datasets.

Evaluation measurements. We assess the baselines and

our method for cross-domain CL using two important mea-

surements. The average accuracy of all tasks is considered

to evaluate the model capability when continually learning

new tasks. Another measurement is the ability to transfer

backward from new tasks to old tasks, which is related to

the forgetting rate in cross-domain CL. We follow the back-

ward transfer formulation proposed in [25], where At is the

accuracy on task t (i.e., where y ∈
⋃t

i=1Yi from domains

D1, . . . ,Dm). Let At|Ψj
be the accuracy for task t evaluated

using a model trained from task 1 to j, where j ≤ t. Then

the average accuracy and backward transfer are defined as

A =
1

q

q
∑

t=1

At, BW =
1

q

q
∑

t=1

At|Ψt
−At|Ψq

. (7)

A better model is identified with a larger value of the average

accuracy and a lower value of the backward transfer rate.

4.1. Supervised Cross­Domain Continual Learning

We evaluate our cross-domain CL methods in supervised

fashions when available classes from a benchmark are split

into 5-tasks and 10-tasks. As shown in Table 1, each column

corresponds to the performances when samples of a sin-

gle domain are entirely excluded (considered unseen) from

the training. In addition, we report results of the accuracy

numbers on the seen domains in our supplementary mate-

rial. As can be seen in the Table, both our methods with

Mahalanobis metrics and biases (MSL and MSL + Mov)

comfortably outperform all the competitors in CL and DG.

Here, MSL with knowledge distillation and exponential mov-

ing average (MSL + Mov) improves over MSL and achieves
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Method

DomainNet OfficeHome

10-Task Acc. (% ↑) 5-Tasks Acc. (% ↑) 10-Task Acc. (% ↑) 5-Tasks Acc. (% ↑)

Clip Paint Real Sketch Clip Paint Real Sketch Art Product Clipart Real Art Product Clipart Real

ERM [33] 60.0 51.4 60.3 53.1 59.7 50.2 57.7 51.7 48.8 52.3 64.7 62.4 49.7 51.6 64.9 61.9

LwF [23] 61.3 51.9 60.0 53.5 62.2 52.1 62.6 54.9 49.4 53.8 65.2 63.2 49.9 51.3 67.5 63.1

LUCIR [16] 61.1 52.1 59.7 53.0 61.3 52.7 61.1 55.4 49.3 53.6 65.7 62.3 49.7 51.6 67.5 64.9

GeoDL [30] 61.0 50.5 58.5 54.1 62.1 52.8 61.1 55.5 50.6 53.0 67.1 63.1 50.5 52.4 67.4 64.2

ARM [38] 57.0 49.3 62.3 51.2 55.4 51.8 60.2 47.7 39.8 55.0 54.3 51.7 43.6 56.3 54.5 55.4

MixStyle [40] 58.0 51.4 59.5 52.5 59.6 48.5 56.0 53.5 47.3 54.9 56.3 56.0 48.9 56.9 57.7 59.8

MixStyle + LUCIR 62.4 50.0 59.5 52.8 58.2 47.4 54.8 51.8 51.3 52.2 65.1 62.0 49.3 49.5 65.5 63.4

MSL (ours) 63.2 51.3 61.8 55.6 63.3 55.4 63.6 57.4 61.6 61.4 71.7 72.7 54.3 63.6 68.0 67.3

MSL + Mov (ours) 63.7 55.0 63.1 56.4 63.8 55.3 64.6 58.3 61.2 63.0 75.3 73.1 57.9 60.2 71.4 70.9

Table 1. Cross-domain continual learning average accuracy numbers for unseen domains with 10-tasks and 5-tasks protocols on the

DomainNet [29] and OfficeHome [34] datasets.
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Figure 4. The average accuracy numbers of tasks on the unseen domains (Clip, Paint, Real and Sketch) of the DomainNet dataset [29] using

the 10-tasks protocol.
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Figure 5. The average accuracy numbers of tasks on the unseen domains (Art, Product, Clipart and Real) of the OfficeHome dataset [34]

using the 10-tasks protocol.

the highest accuracy. To mention one instance, when gen-

eralizing to DomainNet-Sketch as an unseen domain, our

MSL + Mov obtains 56.4%, which is 2.3% higher compared

to GeoDL’s performance of 54.1% for the 10-tasks protocol.

This improvement trend also appears on the seen domains.

Furthermore, in Fig. 4 and Fig. 5, we show the average

classification accuracy numbers of tasks obtained by our

methods in comparison to prior CL methods on the Do-

mainNet and OfficeHome datasets for the 10-tasks protocol.

Overall, our methods outperform the baselines, with more

significant performance gaps on the OfficeHome dataset. In

addition, we evaluate on the PACS and the NICO-Animal

datasets. The results are shown in Table 2. Here, the average

accuracy of our methods is superior to other competitors by

at least 2% margin. MSL + Mov clearly shows the benefits

of knowledge distillation to a history of models, with a gap

of 2.1% over MSL in the best case.

Overall, we observe that standard CL algorithms largely

fail to prevent catastrophic forgetting in the cross-domain

setting, indicated by high backward transfer rates shown in
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Method
NICO-Animal (% ↑) PACS (% ↑)

Eating Ground Water Grass Art Cartoon Photo Sketch

ERM [33] 88.0 86.5 82.3 84.3 76.3 82.9 84.7 61.9

LwF [23] 88.2 86.2 83.3 84.3 76.4 82.4 85.5 62.4

LUCIR [16] 88.1 86.6 83.3 84.3 76.5 82.1 84.2 62.2

GeoDL [30] 87.9 86.1 82.5 83.3 72.8 83.6 85.4 60.5

ARM [38] 86.2 83.5 80.8 83.5 65.1 83.3 84.9 64.9

MixStyle [40] 86.1 84.0 81.0 83.4 73.3 82.6 81.1 63.5

MixStyle + LUCIR 88.0 82.6 81.9 83.0 70.3 82.7 83.6 63.6

MSL (ours) 89.9 86.2 84.4 85.2 77.3 82.1 87.0 62.8

MSL + Mov (ours) 91.3 87.9 85.0 87.2 77.2 84.1 89.0 64.9

Table 2. Domain generalization test for 2-tasks supervised learning

on NICO-Animal [14] and PACS [21] datasets.
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Figure 6. The backward transfer performance (absolute values)

on DomainNet [29] and OfficeHome [34] datasets (the lower the

better) for the 10-tasks protocol.

Fig. 6. In contrast, on average, our method with exponen-

tial moving average, MSL + Mov, can achieve the lowest

backward transfer rate of 10.1% on the DomainNet and 7.8%

on the OfficeHome datasets for the 10-tasks protocol. The

closest competitors to ours report 12.8% (by LUCIR) and

12.3% (by GeoDL), respectively. Note that the method with

the lower backward transfer rate is better.

4.2. Ablation Studies and Analyses

We investigate how hyperparameters impact the perfor-

mance of our proposal. Below, we show the impact of matrix

rank for the Mahalanobis similarity learning and how the

memory size affects the performance.

Impact of varying the maximum rank. Our approach

employs a low-rank strategy for the metric matrices. We

investigate the performances when four different r values

(e.g., 32, 64, 128 and 256) are used. We observe in Fig. 7 that

varying r would change the accuracy by less than 1.5%. The

plots also show that setting a large value for r, which trans-

lates to having more parameters, does not directly increase

the performance. As a rule of thumb, the matrix maximum

rank value that we use for all experiments is set to 64.

Impact of varying the memory size. Below, we investi-

gate how increasing the memory size impacts the average ac-

curacy over the 10-tasks protocol with 10 and 20 exemplars.

Fig. 8 shows that having more exemplars in the memory
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Figure 7. The impact of varying r in learning the Mahalanobis

metric matrices on the average accuracy using the unseen domains

of the Officehome dataset [34] and the 10-tasks protocol.
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Figure 8. The impact of varying memory size on the average

accuracy using the unseen domains of the Officehome dataset [34]

and the 10-tasks protocol.

attains higher accuracy for all methods. Our proposed ap-

proach can still benefit from more exemplars and outperform

baselines. We observe that our method leads by over 5% for

both 10 and 20 exemplar sizes in the memory.

5. Limitations and Conclusions

Our setup and method can be limited from two aspects.

First, like many other continual learning setups, one under-

lying assumption of our setup is that some exemplars are

stored for replay. This might restrict its use in some applica-

tions with strict privacy regulations. Second, the number of

parameters in our methods grow linearly following the num-

ber of tasks. Though, we have proposed a memory efficient

alternative that scales well to many applications, this might

still limit the practical use when very large-scale applications

with severe memory constraints are desired.

We propose an approach to generalize across training do-

mains while mitigating the so-called catastrophic forgetting

issue via Mahalanobis similarity learning and knowledge

distillation with exponential moving average update. In our

evaluation, we follow the so-called leave-one-domain-out

protocol where a test domain is not seen during training. As

our experimental evaluations indicate, our methods comfort-

ably outperform the existing methods in both class continual

learning and domain generalization on challenging datasets,

namely DomainNet, OfficeHome, PACS and NICO-Animal.

The ablation studies also show that our method consistently

improves over the baselines in various conditions and has

low sensitivity to the choice of hyperparameters.
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