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Abstract

We describe a new approach for authenticating messages. Our “XOR MACs” have several
nice features, including parallelizability, incrementality, and provable security.

Our method uses any finite pseudorandom function (PRF). The finite PRF can be “instan-
tiated” via DES (yielding an alternative to the CBC MAC), via the compression function of
MD5 (yielding an alternative to various “keyed MD5” constructions), or in a variety of other
ways.

The proven security is quantitative, expressing the adversary’s inability to forge in terms of
her (presumed) inability to break the underlying finite PRF. This is backed by attacks showing
the analysis is tight. Our proofs exploit linear algebraic techniques, and relate the security of a
given XOR scheme to the probability that a certain associated matrix is of full rank.

Our analysis shows that XOR schemes are actually more secure than the CBC MAC, in a
sense that we can make precise.
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1 Introduction

A message authentication scheme enables two parties sharing a key a to authenticate their trans-
missions. This is one of the most widely used cryptographic primitives, and it may become even
more so: as security concerns grow, it is reasonable to anticipate that virtually every transmit-
ted message (or packet) will use cryptographic means to ensure authenticity. (For example, the
ubiquitous use of message authentication is already being contemplated for the next generation of
Internet Protocols.)

Message authentication is usually accomplished by including with each transmitted message
M a short string, called its “message authentication code” (MAC) or “signature,” computed as a
function of M and the shared key a. The most prevalent MAC is the “cipher block chaining message
authentication code” (CBC MAC) specified in the International Standard ISO 9797 [ISO] and the
U.S. Standard ANSI X9.9 [X9.9]. In recent years another type of MAC has started to become
prevalent: these are constructed by somehow “keying” a cryptographic hash, as in MACa(x) =
MD5(x.a) (see, for example, [Ts]).

The goal of the present work is to provide new methods which have certain efficiency and security
advantages. We call our methods “XOR schemes.” They are simple to describe and implement.
They use as their underlying primitive any finite pseudorandom function (PRF). In particular, a
finite PRF can be defined from a block cipher (e.g. DES) or from the compression function of a
cryptographic hash (e.g., MD5) yielding concrete alternatives to the above mentioned MACs.

What is an XOR MAC? At the highest level, the computation of an XOR MAC consists of
three steps: (1) encode the message M as a collection of blocks (each block will depend on a small
number of bits from the message); (2) apply the finite PRF to each of the blocks, thus creating
a collection of PRF images (the MAC key a is the index for all of these PRF computations); and
(3) XOR the set of PRF images together, building the MAC out of the result. Different ways of
implement the encoding step (and different choices of the finite PRF) yield different XOR MACs.
(Obviously not all encodings will result in secure MACs. We specify several simple ones which do,
and also specify general conditions to determine which encodings work.)

This paper specifies, for every finite PRF family F and every value of a block size b, two XOR
MACs—a stateless (and probabilistic) one called XMACRF,b, and a stateful (and deterministic)
one called XMACCF,b. (In a stateful MAC the signer maintains information, in our case a counter,
which he updates each time a message is signed.) The schemes are described concretely in Section 2,
as are their main efficiency advantages, namely parallelizability and incrementality.

Security of our schemes. Our XOR schemes are proven secure– we show that if the F is a
“secure” finite PRF family then the MAC schemes based on it are also “secure.” In formalizing
this, security of a finite PRF family means indistinguishability from a family of random functions in
the sense of [GGM], while security of a MAC means it resists chosen message attack. To make these
results meaningful for practice, the security in both cases is made quantitative: we measure the
success probabilities as a function of the resources (time and chosen message queries) available to
the adversary, and specify exact reductions, enabling the protocol designer to compute, given some
assumed security on the finite PRF, how many queries an XOR MAC based on it will withstand.
This type of security analysis for a MAC, starting from a finite PRF, begins with [BKR].

Our XOR schemes are so simple that it is tempting to think one can easily find attacks. This is
why we stress the importance of the proofs of security which show that no attacks short of breaking
the underlying PRF will succeed.

An advantage of quantified security is that it allows one to compare the securities of different
MACs based on the same finite PRF family. (Note that a concrete finite PRF family F , eg. a block
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cipher like DES, may possess strengths which are not reflected in the model of F being a finite PRF
family, and these other strengths are potentially relevant in determining the strength of a MAC
based on the block cipher. In making security determinations and comparisons we are treating the
underlying primitives, eg. DES, as being known to only possess the properties which have been
formally modeled, here the property of being a finite PRF.) We will see that our counter based
MAC is “more secure” than our randomized one, and that both are “more secure” than the CBC
MAC. In particular, the success probability of the adversary in the XOR schemes is independent
of the lengths of the messages in her chosen message attack (as long as they stay below a certain
specified but very large length) while the attacks of [Kr, PV] show that the success probability of
the adversary in the CBC scheme grows as a linear function of the message length. See Section 7.

We also describe the best attacks we know on the XOR schemes. They use birthday attacks
(collisions) and indicate that the analysis from our proofs is tight.

2 The Schemes — Concretely

We begin by presenting concrete instantiations of our two main schemes using DES. (But we
stress this is just an example. Other instantiations are possible, using other block ciphers, or even
methods such as MD5, as discussed later.) We let l = 64 and L = 48. For any 56-bit key a and l-bit
plaintext x we let Fa(x) be the first L bits of DESa(x). (We stress that Fa outputs only 48 bits,
and not the full 64-bit DES output. We have truncated the output because DES is a pseudorandom
permutation, while what we want is a pseudorandom function.) Sender and receiver share a 56-bit
DES key a which specifies Fa.

Message formatting and notation. We assume the length |M | of M is a multiple of 32 bits,
which can easily be achieved by a suitable padding. (For example, append a one and then append
enough zeros to bring the length to a multiple of 32 bits.) The message is then viewed as a sequence
of 32-bit blocks, M = M [1] . . .M [n] with |M [i]| = 32 for i = 1, . . . , n. We assume that the number
n of blocks is less than 231 —equivalently |M | ≤ 32 ∗ 231 = 236 bits— which would not normally
be a significant restriction in practice.

Let 〈i〉 denote the binary representation of block index i ∈ {1, . . . , n} as a string of exactly 31
bits. (This is why we assumed the bound on n.) Let α . β denote the concatenation of strings α
and β. We give two schemes:

Scheme XMACR . The first scheme is called the randomized XOR scheme, XMACR . To authenti-
cate the message M = M [1] . . .M [n] do the following:

Pick at random a 63-bit string r, hereafter called the seed

Set z = Fa(0 . r)⊕ Fa(1 . 〈1〉 .M [1])⊕ Fa(1 . 〈2〉 .M [2])⊕ · · · ⊕ Fa(1 . 〈n〉 .M [n])

Set the MAC of M to the pair µ = (r, z).

Thus the sender will transmit (M,µ). The receiver, receiving (M ′, µ′), where µ′ = (r′, z′), com-
putes z = Fa(0 . r

′)⊕ Fa(1 . 〈1〉 .M ′[1])⊕ Fa(1 . 〈2〉 .M ′[2])⊕ · · · ⊕ Fa(1 . 〈n〉 .M ′[n]). The receiver
accepts M ′ if and only if z = z′.

We stress that new coins are flipped to determine the seed each time the sender wants to
authenticate a message, and also that the seed is included in the signature.

Scheme XMACC . The second scheme is called the counter-based XOR scheme. Here it is required
that the sender maintain a 63-bit counter C which is initially 0 and is incremented for each message.
(Thus at most 263 messages can be signed.) To authenticate message M = M [1] . . .M [n] do the
following:
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Increment the counter C by 1

Set z = Fa(0 . C)⊕ Fa(1 . 〈1〉 .M [1])⊕ Fa(1 . 〈2〉 .M [2])⊕ · · · ⊕ Fa(1 . 〈n〉 .M [n])

Set the MAC of M to the pair µ = (C, z).

Thus the sender will transmit (M,µ). The receiver, receiving (M ′, µ′) where µ′ = (C ′, z′),
computes Fa(0 . C

′)⊕ Fa(1 . 〈1〉 .M ′[1])⊕ Fa(1 . 〈2〉 .M ′[2])⊕ · · · ⊕ Fa(1 . 〈n〉 .M ′[n]) and accepts
iff this value equals z′. Note the counter is included in the signature. Also the receiver main-
tains no state.

Stateful schemes are not necessarily “worse” than stateless ones; programmatically, a “static”
variable is easy, but a good approximation to randomness is hard. We now discuss properties of
XMACR and XMACC .

Parallelizability. The DES computations on different blocks can be made in parallel. In
general, the throughput of an XOR MAC can be doubled by doubling the amount (and not speed)
of the underlying hardware. An environment where this is crucial is message authentication over
high speed networks (where packets will flow over optical links at rates of 1–10 GBit/second). In
that setting one cannot realistically use the CBC MAC because of its sequential nature; an XOR
scheme is a more appropriate choice. Note that even in the software setting parallelizability can be
relevant: with an adequate degree of parallelism, multiple machine pipelines can all be kept busy
doing useful work.

Incrementality. An XOR MAC is incremental [BGG1] with respect to block replacement.
Suppose M [i] is modified to a new 32-bit value m. Then, for a long message M , one can update the
MAC much quicker than it would take to re-compute it. Let’s illustrate for XMACR . Let µ = (r, z)
be a MAC of M and let M ′ denote M with block i replaced by m. To compute a MAC for M ′, pick
r′ at random and let z′ = z ⊕ Fa(0 . r)⊕ Fa(0 . r′)⊕ Fa(1 . 〈i〉 .M [i])⊕ Fa(1 . 〈i〉 .m). Then (r′, z′)
is a MAC for M ′. Extensions of this scheme to support insertion and deletion of blocks (not just
replacement) appear in [BGG2].

Out-of-order verification. Tag verification can proceed even if message blocks arrive out of
order. Here it is only necessary that the each block be accompanied by its index. With other
mechanisms MAC verification cannot proceed before the first block has been received, for example.
Out-of-order MAC verification is useful since networks always have some degree of packet loss and
re-transmission.

DES computations. The number of DES computations is twice that of the CBC MAC. (The
overhead can be reduced as discussed in Section 4 by increasing the block size, currently set to
32, at the cost of reducing the maximum allowable message length.) So, in software, the above
schemes are slower than the CBC MAC. But an XOR MAC based on DES is interesting for hardware
efficiency, particularly for high-speed networks, or in settings where the incrementality compensates
for the slower from-scratch MACing time. For a software-efficient XOR MAC use the MD5-based
instantiation discussed later.

MD5-based instantiation. A software-efficient XOR MAC would start not with DES but with
a software-efficient PRF. For example, from the compression function of a cryptographic hash
function, say md : {0, 1}640 → {0, 1}128, one can define a finite PRF, say Fa(x) equals the first
64 bits of md(x . a), where |x| = 560 and |a| = 80. Using 48-bits for the block index, we would
get a MAC which uses one application of md for every 512 bits of message. This is as efficient as
proposals like MD5(x . a) or MD5(a . x . a) which are currently being considered for the Internet,
and has the advantages of parallelizability and incrementality.
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Security. Observe that including the block indices in the argument to Fa is necessary— if they are
omitted, permuting the message blocks would leave the MAC unchanged. One can also see that the
block containing the random string r (resp. counter) of XMACR (resp. XMACC ) cannot be omitted.
In other words, the scheme in which the MAC is set to Fa(1 . 〈1〉 .M [1])⊕ Fa(1 . 〈2〉 .M [2])⊕ · · · ⊕
Fa(1 . 〈n〉 .M [n]) is easily broken—e.g., set M1 = A .B, M2 = A′ . B, M3 = A .B′ and M4 = A′ . B′,
and note that the MACs of M1,M2,M3 sum to give the MAC of M4.

The idea behind the nonces is to prevent the attacker from forming new MACs via linear
combinations of old ones. This is in fact the only attack short of breaking the PRF. This is not
obvious, of course; indeed it is far from clear why XMACR and XMACC should be secure. That is
why we have our proofs.

3 Definitions

Modeling block ciphers as finite pseudorandom functions begins with [BKR]. The underlying notion
is the pseudorandom function notion of [GGM], appropriately tailored to take into account the fact
that block ciphers have fixed input and output lengths and can’t be treated asymptotically, and
builds on a suggestion of [LuRa] that DES be viewed as a “pseudorandom in practice” function
family.

First some notation. Denote by x(i) the i-th bit of a string x and by |x| its length. If i ∈
{1, . . . , 2n} is an integer then we denote by 〈i〉n the natural binary encoding of i as an n-bit string.
(Thus the 〈·〉 of Section 2 is 〈·〉31 in our current notation.) If S is a set (resp. probability space)

then x
R← S denotes the operation of selecting an element uniformly at random from S (resp. at

random according to the distribution specified by S).

3.1 Function families

A function family is a set of functions, and an associated set of strings called keys. Each key names
a function in the family according to some fixed convention, and the function corresponding to key
a is denoted Fa. (Note that two keys can name the same function.) To pick a function f at random

from a family F means to pick a key a uniformly at random and let f = Fa; we write f
R← F for

this operation. For example DES is a function family where the set of keys is the set of all 56-bit
strings.

A family F has input length l and output length L if each f ∈ F maps {0, 1}l to {0, 1}L.
(Eg. l = L = 64 for DES.) It has key length κ if the associated set of keys is the set of all strings
of length κ. The family of random functions with input length l and output length L is the family
R of all functions mapping {0, 1}l to {0, 1}L. The key of a function f in this family is the string

which describes its truth table. Note this is a very large family, consisting of 2L2
l

functions.
A finite function family F is “pseudorandom” if the input-output behavior of Fa “looks random”

to someone who doesn’t know the key a. This is formalized via the notion of statistical tests [GGM].
Formally, such a test is an oracle algorithm A. Let F,G be finite function families. The advantage
of A in distinguishing F from G is defined by

AdvA(F,G) = Pr
g
R←F

[Ag = 1 ]− Pr
g
R←G

[Ag = 1 ] .

The probability is over the indicated random choice of g and the coin tosses of A. (This definition
reflects the following intuition [GGM]. Consider the experiment in which A is provided as oracle a
function g chosen at random from either F or from G, the choice being made at random according
to a bit b. A is trying to predict b. The advantage is 2(Pr[Ag = b] − 1/2), the amount that the
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probability that A is correct is bounded away from the guessing probability 1/2, scaled up to be
between 0 and 1.)

Let F be a family with input length l and output length L, and R the family of random functions
with the same parameters. We say that A [t, q, ε]-breaks F if A runs in at most t steps, makes
at most q oracle queries, and achieves AdvA(F,R) ≥ ε. The running time here is measured in a
standard RAM model of computation.

Let family F have input length l and output length L, and let R be the family of random
functions with the same parameters. To discuss security quantitatively, we say that statistical
test A [t, q, ε]-breaks F if A runs in at most t steps, makes at most q oracle queries, and achieves
AdvA(F,R) ≥ ε. (The running time here is measured in a standard RAM model of computation.)
In informal discussion, the finite function family F is said to be [t, q, ε]-pseudorandom if there
is no statistical test that [t, q, ε]-breaks F . (To be fully formal one ought to consider also other
parameters such as the “code size”.) In other words, in time t and given q examples one cannot
distinguish a random member of F from a random function with advantage more than ε.

Notice that the key size of the finite PRF family F does not need to be explicitly specified in
the definition of security: its influence is captured in that it influences the values of t, q, ε for which
the F is [t, q, ε]-pseudorandom.

Note there is no security parameter. While, traditionally, all parameters mentioned would be
considered functions of a security parameter k, for us they are numbers. Since we will be evaluating
security exactly, the security parameter becomes unnecessary. It is still true that any scheme we
specify is actually a uniform collection of schemes, but this is clear anyway and it is not worth
introducing a parameter just to say this.

3.2 Message authentication

We provide formal definitions of schemes and their security in the exact security setting. We begin
with stateless schemes, in which no counters or other state information need be maintained. Then
we briefly indicate how the definitions should be updated to take account of state.

Stateless schemes. A (stateless) message authentication scheme consists of a signing algorithm
Sig and a verifying algorithm Vf. The signing algorithm may be probabilistic; the verifying one
typically is not. Associated to the scheme are parameters κ and Lsig describing the key length and
MAC length, respectively. On input a κ-bit key a and a message M , algorithm Sig outputs an
Lsig-bit string µ called the signature, or MAC, of M . On input a κ-bit key a, a message M and an
Lsig-bit string µ, algorithm Vf outputs a bit, with 1 standing for accept and 0 for reject. We ask
for a basic validity condition, namely that authentic signatures are accepted with probability one.
That is, for any key a, message M , and signature µ which is output with positive probability by
Sig(a,M), it must be the case that Vf(a,M, µ) = 1.

Security. An adversary for a message authentication scheme is a probabilistic algorithm E which
is given oracle access to the signer and verifier—more precisely, to Sig(a, ·) and Vf(a, ·, ·) for a
random but hidden choice of a. E can request a signature of a message of her choice; to do this, she
writes M on a special query tape. She can also ask the verifier to verify that µ is a valid signature
for M ; to do this she writes (M,µ) on a special query tape. Formally, E’s attack on the scheme is
described by the following experiment:

(1) A random string a of length κ is selected as the shared secret. A random string rE is selected
as the coin tosses of E. E now starts computing.

(2) Suppose E makes a signing query M . Then the oracle computes a signature µ
R← Sig(a,M)
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and returns it to E. (Since Sig may be probabilistic, this step requires making the necessary
underlying choice of a random string for Sig, anew for each signing query.)

(3) Suppose E makes a verify query (M,µ). The oracle computes the decision d = Vf(a,M, µ)
and returns it to E.

The adversary is allowed an adaptive chosen message attack, as in the notion of [GMR], but we
also allow verify queries because, unlike the setting in digital signatures, E cannot compute the
verify predicate on her own (since the verify algorithm is not public). Note that E does not see a
nor the coin tosses of Sig.

We say that E’s attack on M is a (qs, qv)-attack if during the course of the attack she makes
no more than qs signing queries and no more than qv verify queries. A (qs, qv)-attack is a (t, qs, qv)-
attack if, in addition, E runs for no more than t steps, in the RAM model of computation we
fixed above. It is useful to say that a verify query (M,µ) is known-authentic if a signing query M
was made prior to this verify query and the signature returned was µ. Note validity implies that
known-authentic verify queries are accepted. We thus assume of any adversary E that she never
makes any known-authentic queries.

The outcome of running the protocol in the presence of an adversary is used to define security.
We say that E is successful if she makes a verify query (M,µ) which is accepted but which is
not known-authentic.1 (The verify query (M,µ) in question is called a forgery , and the definition
reflects the notion of existential forgery [GMR].) We say that E [qs, qv, ε]-breaks the scheme if her
attack is a (qs, qv, ε)-attack and her probability of success is at least ε. We say she [t, qs, qv, ε]-
breaks the scheme if her attack is a (t, qs, qv, ε)-attack and her probability of success is at least ε.
In informal discussion we’ll say the scheme is [t, qs, qv, ε]-unforgeable if there is no adversary who
can [t, qs, qv, ε]-break it. (To be fully formal we would have to consider also other parameters like
the “code size.”)

Stateful schemes. In a stateful message authentication scheme the signer maintains state across
consecutive signing requests. (For example, in our counter-based scheme the signer maintains a
message counter.) In such a case the signing algorithm can be thought of as taking an additional
input —the “current” state Cs of the signer— and returning an additional output —the signer’s
next state. We must modify the experiment describing E’s attack: in Step (1) we also have that Cs
is initialized to a value specified by the scheme; and in Step (2), we compute (µ,C ′s)

R← Sig(a,M,Cs),
then return µ to the adversary and replace Cs by C ′s. Note the adversary doesn’t see the revised
state (though in the stateful scheme of this paper this wouldn’t matter). Also note that, for
simplicity, we allow the signer a state but not the verifier.

4 The Randomized XOR Scheme

We first present the general scheme, of which that in Section 2 is a special case, and then proceed
to the security analysis.

4.1 Specification of the scheme

Let F be a family of functions with key length κ, input length l, and output length L. We fix in
addition a parameter b ≤ l − 1 which will be the block size. We will assume that any message M
to be authenticated has length at most |M | ≤ b2l−b−1. By standard padding arguments we may

1 This is slightly stronger than the more standard definition in which one would only ask that the message M was
not a previous signing query. We make this stronger requirement because we achieve it and because it is useful in
contexts like entity authentication.

8



assume wlog that the message length is a multiple of b. We then regard M as a sequence of b-bit
blocks. The number of blocks is denoted ‖M‖b, and with b understood the i-th block is denoted
M [i], for i = 1, . . . , ‖M‖b. Let r ∈ {0, 1}l−1, and let a ∈ {0, 1}κ be the shared key. We define

tagF,b(a,M, r) = Fa( 0 . r ) ⊕ Fa( 1 . 〈1〉l−b−1 .M [1] )⊕ · · · ⊕ Fa( 1 . 〈n〉l−b−1 .M [n] ) . (1)

We’ll use this function in both the randomized and the counter-based schemes. We’ll call r the
seed. The (stateless) message authentication scheme

function SigRF,b(a,M)

r
R← {0, 1}l−1 ; z ← tagF,b(a,M, r)

return (r, z)

function VfRF,b(a,M
′, (r′, z′))

z ← tagF,b(a,M
′, r′)

if z = z′ then return 1 else return 0

We call XMACRF,b the randomized XOR scheme based on function family F and using block size b.
The validity condition is easy to verify. Note that the XMACR scheme of Section 2 is, in the current
terminology, XMACRF,32 with F being the family specified by Fa(·) = first 48 bits of the output of
DESa(·).

Trading efficiency for message length. Note that choosing different values of b will tradeoff
the number of Fa computations with the allowable length of messages that can be signed. Namely,
the scheme calls for 1 + ‖M‖b = 1 + (|M |/b) evaluations of Fa and allows |M | to be b2l−b−1 so that
increasing b reduces the number of Fa evaluations at the cost of restricting the scheme to shorter
messages. For example, the XMACR scheme of Section 2, with b = 48, currently has 1.33 times the
number of DES operations of the CBC MAC, and allows |M | up to 48 ∗ 215 = 3 ∗ 219. The latter
is quite large. So we could further increase b, reducing the number of DES computations at the
expense of decreasing the allowed length of M .

4.2 Security of the randomized XOR scheme

Information theoretic case. Begin by thinking of F as ideal (i.e., truly random). Namely, we
consider XMACRR,b, which we call the information theoretic case. The following theorem provides
an absolute bound on the success of the adversary in terms of the number of sign and verify queries
she makes.

Theorem 4.1 Let R be the family of random functions with input length l and output length L, let
b be at most l − 1, and let E be any adversary making a (qs, qv)-attack on XMACRR,b. Then the

probability that E is successful is at most δR
def
= 2q2s · 2−l + qv · 2−L.

Note the bound is independent of b: the latter figures only in our assumption that any query M
made by E above satisfies ‖M‖b ≤ 2l−b−1.

The proof of Theorem 4.1 is given in Section A.1. It has two parts: first we relate the security
of the scheme to the rank of an appropriate matrix; then we bound the rank of the matrix.

Computational case. We now assume we are given a family F which is not truly random, but
[t′, q′, ε′]-pseudorandom. In that case, how secure is XMACRF,b? This is what the following tells
us. It is the result of more direct interest in practice (although Theorem 4.1 is in some ways more
basic). We show how to take an adversary E for XMACRF,b and build from it an an adversary UE
which distinguishes F from a truly random functions. The construction is “uniform” in the sense
that UE is given by a fixed machine U with oracle access to E. The model “charges” U for its
oracle queries whatever is their actual running time on E. The constant c below depends only on
details of the computational model.
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Theorem 4.2 There is an oracle machine U and a constant c such that the following is true. Let F
be a family of functions with input length l and output length L and let b be at most l − 1. Let E
be an adversary who [t, qs, qv, ε]-breaks XMACRF,b and suppose any message M in a query of E has a
number ‖M‖b of blocks which is bounded by n. Let δR = 2q2s ·2−l+qv ·2−L. Then UE [t′, q′, ε′]-breaks
F , where

t′ = t+ c(l + L)q′ ; q′ = (qs + qv) · (n+ 1) ; ε′ = ε− δR .

In other words if F is [t′, q′, ε′]-pseudorandom (the values t′, q′, ε′ depending on the key size and
cryptanalytic strength of the finite PRF F ) then XMACRF,b is [t, qs, qv, ε]-unforgeable, where t =
t′−c(l+L)q′, qs+qv = q′/(n+1) and ε = ε′+δR. Thus a success probability of δR for the adversary
is unavoidable, even if the PRF is “ideal;” beyond that, the success of the adversary is bounded in
terms of the parameters of the block cipher.

The proof of Theorem 4.2 is given in Section A.2.

4.3 Attacks (lower bounds)

Here we provide an attack on the randomized XOR scheme to show that the above analysis is
essentially tight. Since we think of F as pseudorandom, we will do the attack assuming it is in
fact random; that is, we look at XMACRR,b where R is the family of random functions with input
length l and output length L. Given qs, qv we specify a particular adversary E who makes qs
sign queries and qv verify queries, and then outputs a forgery with probability ε ≥ Ω(δR), where
δR = 2q2s · 2−l + qv · 2−L. The proof of the following is in Appendix A.3.

Proposition 4.3 Let R be the family of random functions with input length l and output length L,
and let b be at most l − 1. Then there is a constant c > 0 such that for any qs, qv satisfying q2s ≤ 2l

and qv ≤ 2L, there is an adversary E who [t, qs, qv, ε]-breaks XMACRR,b, where

t = c(l + L)(qs + qv) ; ε = max

{(
1− 1

e

)
· q

2
s − 3qs
2 · 2l

,
qv
2L

}
.

We remark that the proof actually shows more—that the adversary forges the signature of essentially
any message of her choice. This makes the attack all the more relevant.

We also remark that being in the information theoretic setting we need not, strictly speaking,
have provided the time of the adversary since she is in principle allowed to run for as long as she
wants. We provide it to show that in fact the attack is practical; we aren’t taking advantage of the
leeway in the model.

5 The Counter-Based XOR Scheme

Here we present another scheme which enhances security by allowing the signer to maintain state
in the form of a counter. The gain is greater security: the success probability of the adversary in
the analogue of Theorem 4.1 does not depend on the number qs of signing queries at all (as long
as the latter is bounded by a certain exponential function of l)!

5.1 Specification of the counter-based scheme

Let F be a family of functions with key length κ, input length l, and output length L, and let
the parameter b be as before. Let a ∈ {0, 1}κ be the shared key. The idea is to use the the same
tagging function as above, but use the current counter value as the seed. Formally the scheme

10



XMACCF,b is specified by functions SigCF,b,VfCF,b. The signing function depends on a counter C
maintained by the signer; it is initially 0 and then incremented by the signing function itself. (In
Section 2 we loosely identified C with its 63 bit representation. Now we are more precise, viewing
it as an integer and writing 〈C〉l−1 for the corresponding string.) The verifying function has no
state. Below tagF,b is the function specified in Equation 1 of Section 4.

function SigCF,b(a,M,C)

C ← C + 1 ; z ← tagF,b(a,M, 〈C〉l−1)
return ((C, z), C)

function VfCF,b(a,M
′, (C ′, z′))

z ← tagF,b(a,M
′, 〈C ′〉l−1)

if z = z′ then return 1 else return 0

We call XMACCF,b the counter-based XOR scheme based on function family F and using block
size b. The validity of the counter-based XOR scheme is easy to verify. Note that the XMACC
scheme of Section 2 is, in the current terminology, XMACCF,32 with F being the family specified
by Fa(·) = first 48 bits of the output of DESa(·).

As before the length of any message whose signature the adversary requests is assumed bounded
by b2l−b−1. But also we will now assume that the total number of signing requests is bounded by
2l−1. That is, we require that C not exceed 2l−1. (Typically, this is not a significant restriction.)
These assumptions are made in the theorems that follow.

5.2 Security of the counter-based scheme

In addition to the assumption that the length of any message whose signature the adversary requests
is bounded by b2l−b−1, we will now also assume that the total number of signing requests is bounded
by 2l−1. These assumptions are made in the theorems that follow.

Information theoretic case. The counter-based scheme dramatically increases the security as
indicated below. The success probability of the adversary depends only on the number qv of its
verify queries, rather than this plus 2q2s · 2−l.

Theorem 5.1 Let R be the family of random functions with input length l and output length L, let b
be at most l− 1, and let E be any adversary making a (qs, qv)-attack on XMACCR,b, where qs < 2l−1.

Then the probability that E is successful is at most δC
def
= qv · 2−L.

To see concretely what this improvement means, think of Fa = first 48 bits of DESa, where we
have l = 64 and L = 48. If qs = 220 and qv = 1, then the success probability is a marginal 2−23 in
the randomized scheme, but it is 2−48 in the counter-based one.

Computational case. We get a corresponding improvement:

Theorem 5.2 There is an oracle machine U and a constant c such that the following is true. Let F be
a family of functions with input length l and output length L and let b be at most l− 1. For qs < 2l−1

let E be an adversary who [t, qs, qv, ε]-breaks XMACCF,b, and suppose any message M in a query of E
has a number ‖M‖b of blocks which is bounded by n. Let δC = qv · 2−L. Then UE [t′, q′, ε′]-breaks F ,
where

t′ = t+ c(l + L)q′ ; q′ = (qs + qv) · (n+ 1) ; ε′ = ε− δC .

Again, what this means is that if F is [t, q′, ε′]-pseudorandom then XMACCF,b is [t, qs, qv, ε]-
unforgeable, where t = t′ − c(l + L)q′, qs + qv = q′/(n+ 1), and, most importantly, ε = ε′ + δC.

See Appendix A.4 for the proofs of the above theorems.
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5.3 Attacks (lower bounds)

The best attack is just to guess signatures! Furthermore one does not expect better than the
following (short of breaking the PRF) by virtue of the above theorems. The proof of the following
is trivial, but provided in Appendix A.5 for the sake of completeness.

Proposition 5.3 Let R be the family of random functions with input length l and output length L,
and let b be at most l − 1. There is a constant c > 0 such that for any qv ≤ 2L, there is an adversary
E who [t, 0, qv, ε]-breaks XMACCR,b, where t = c(l + L)qv and ε = qv · 2−L.

Again, the adversary will in fact be forging the signature of a message of her choice.

6 A General Framework

The schemes we have presented above are instances of a very general framework which results in
a class of block cipher based schemes whose security is reducible to a question on the rank of an
associated matrix random variable. Here we describe this framework. We let F be a family of
functions of input length l and output length L (to be thought of as pseudorandom). We let a
denote the key shared between signer and verifier. We call our schemes XOR schemes. Below we
consider only stateless schemes; stateful ones can be treated similarly.

XOR schemes. A (stateless) XOR scheme is specified by a pair of functions R and E called the
randomizing and encoding functions, respectively. The first function R is probabilistic, and when
applied to a message M produces a string r.2 The second function E is deterministic, and when
applied to M, r produces a set D of l-bit strings. The signing and verifying functions are:

function SigGF,R,E(a,M)

r
R← R(M) ; D ← E(M, r)

z ←
⊕
x∈DFa(x)

return (r, z)

function VfGF,R,E(a,M
′, (r′, z′))

D ← E(M ′, r′)

z ←
⊕

x∈DFa(x)

if z = z′ then return 1 else return 0

We denote by XMACRF,R,E the message authentication scheme consisting of the signing and veri-
fying functions above.

Recovering previous schemes. This does indeed generalize our previous schemes; for example,
XMACRF,b is XMACRF,R,E forR being the function which given M outputs a random l−1 bit string
r, and E being the function which given M and r outputs the set D = {0 . r}∪{1 . 〈i〉l−b−1 .M [i] :
i = 1, . . . , ‖M‖b }.

Security. We now discuss the security of a general XOR scheme XMACRF,R,E . The main issue is
the information theoretic case. For this let R be the family of random functions with input length l
and output length L, and let E be an optimal (wlog deterministic) adversary. Let M1, . . . ,Mqs be the
random variables which are the signing queries made by E, and let Ri = R(Mi) for i = 1, . . . , qs. Let
Di = E(Mi,Ri) ⊆ {0, 1}l and let Ai be the 2l-bit characteristic vector of the set Di, for i = 1, . . . , qs.
Also let M be a message and r a string, and let Aqs+1 be the characteristic vector of E(M, r). We

2 In the simplest case R depends only on M , but we can allow it to depend on previous messages, their signatures,
and even previous coin tosses of the sender. However we don’t allow it to depend on the key a.

12



let Matrixqs(M, r) denote the random variable which is the qs + 1 rows and 2l columns matrix
whose i-th row is Ai, for i = 1, . . . , qs + 1. Now let

NFRankqs(M, r) = Pr [ Matrixqs(M, r) doesn’t have full rank | M 6∈ {M1, . . . ,Mqs} ]

denote the probability that the matrix is not of full rank given that M was not a signing query.
The probability is over the coin tosses of the signer (namely the coin tosses of R) and initial choice
of a determining the function Ra used by the signer.

Theorem 6.1 Let R be the family of random functions with input length l and output length L. Then
the probability that E is successful in a (qs, qv)-attack on XMACRR,R,E is at most

qv · 2−L + max
M,r
{NFRankqs(M, r)} .

The proof uses ideas from the proof of Theorem 4.1. The computational analogue can be similarly
derived.

7 Comparison with the CBC MAC

We compare the security of our schemes to that of the CBC MAC. First, let us recall that scheme.
Let F be a family of functions with input and output length l. A message M = M [1] . . .M [n] is
viewed as a sequence of l-bit blocks. The (full) CBC scheme is specified by the following:

function SigCBCF,n(a,M [1] . . .M [n])

y0 ← 0l

for i← 1 to n do yi ← Fa( yi−1 ⊕M [i] )

return yn

function VfCBCF,n(a,M ′, µ′)

µ← SigCBCF,n(a,M ′)

if µ = µ′ then return 1

else return 0

The scheme is denoted CBC-MACF,n. We will consider the information theoretic case. The following
was proved in [BKR]. Let R be the family of random functions of input and output length l, and
let E be any adversary. Then the probability that E [qs, qv, ε]-breaks CBC-MACR,n is at most

δCBC
def
= 3(n2 + 1) · (qs + qv)

2 · 2−l. To compare this to our schemes set L = l in Theorems 4.1
and 5.1. Clearly, δR is smaller than δCBC, and δC is considerably smaller than δCBC; in particular,
δR and δC don’t depend on n while δCBC does, a significant difference.

Yet this by itself is not proof that our schemes are more secure, because it may by that the
analysis of [BKR] is not tight. In fact, however, there are attacks (lower bounds) which indicate that
the best improvement one could hope for in their analysis would be that δCBC = Ω(nq2s + qv)2

−l.
This result is due independently to Krawczyk [Kr] and Preneel and Van Oorschot [PV]— what
they show is an attack on the CBC MAC which succeeds in forging the signature of a new message
with probability Ω(nq2s) · 2−l, after having made qs signing queries on n-block messages. Thus the
dependence on n in δCBC is unavoidable.

We comment that the CBC-MACF,n is only secure for fixed n; the scheme must be modified to
accommodate n’s of varying length. In contrast, both XMACRF,b and XMACCF,b operate on inputs
of varying lengths (with the security bounds given by our theorems).
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A Proofs of Theorems and Propositions

We provide here the proofs for the theorems in Section 4.2 and Section 5.2 as well as the Proposi-
tions in Section 4.3 and Section 5.3.
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A.1 Proof of Theorem 4.1

Let R be the family of random functions with input length l and output length L. Since E is
computationally unbounded we may assume wlog that it is deterministic. The probabilistic choices
in E’s attack on the scheme are thus the initial choice a of key (naming a random function Ra ∈ R),
and the choices of seeds made by the signer in the course of signing. We may assume qs < 2l−1

(wlog because otherwise there is nothing to prove). We assume (wlog) that E makes exactly qs
signing queries.

We first prove the theorem for a special case, namely that E first makes all its signing queries,
and then makes exactly one verify query, and in this case prove that the probability that E is
successful is at most 2q2s · 2−l + 2−L. Later we will see how to lift this result to the case where E
makes multiple verify queries that are arbitrarily interspaced with signing queries.

Let Mi denote the random variable whose value is the i-th message whose signature E requests.
Let Ri denote the random variable whose value is the random seed chosen by the signer to sign Mi

and let Zi = tagR,b(a,Mi,Ri) denote its tag, i = 1, . . . , qs. Let Distinct be the event that R1, . . . ,Rqs
are all distinct and Succ the event that E is successful.

Fact A.1 Let P (m, t) denote the probability of at least one collision in the experiment of throwing t
balls, independently at random, into m buckets. Then P (m, t) ≤ t2/m.

Remark A.2 If t ≤ m/2 we have the slightly better bound P (m, t) ≤ 1 − e−(t2−t)/m. (It can be
derived from the standard birthday calculation by using the fact that 1−x > e−2x for 0 < x ≤ 1/2,
which in turn can be derived from Fact A.5 applied to 2x.) But we won’t use this.

Continuing the proof, we have

Pr [ Succ ] ≤ Pr [ Succ | Distinct ] + Pr [ ¬Distinct ]

= Pr [ Succ | Distinct ] + P (2l−1, qs) .

Using the above fact, the second term above is at most q2s/2
l−1 = 2q2s · 2−l. Below we will show

that

Pr [ Succ | Distinct ] ≤ 2−L , (2)

whence the theorem follows.
Now fix a particular sequence of messages M1, . . . ,Mqs , a particular choice r1, . . . , rqs ∈ {0, 1}l−1

of distinct seeds and a particular choice z1, . . . , zqs of L-bit strings, for which

Pr [ Mi = Mi and Ri = ri and Zi = zi for i = 1, . . . , qs ] > 0 . (3)

We let

Pr1 [ · ] = Pr [ · | Mi = Mi and Ri = ri and Zi = zi for i = 1, . . . , qs ]

denote the probability conditioned upon E’s having requested the specified messages, the signer
having chosen the specified random strings in the signing process, and the tags returned being the
specified strings. (The probability is effectively over only the random choice of the shared key a,
since everything else is fixed.) Below we will show that

Pr1 [ Succ ] ≤ 2−L . (4)

Since M1, . . . ,Mqs , r1, . . . , rqs and z1, . . . , zqs were arbitrary, standard conditioning arguments
can be used to obtain Equation 2. (Note that E’s queries are adaptive, so that Mi depends on
Z1, . . . ,Zi−1. This was the reason to condition also on values of Z1, . . . ,Zqs .)
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α β

↓ ↓

α →

qs + 1 →



1 0 · · · 0 ∗ · · · ∗ · · · ∗

1
...

... ∗ · · · ∗ · · · ∗

1
...

... ∗ · · · ∗ · · · ∗

1
...

... ∗ · · · ∗ · · · ∗
1 0 · · · 0 ∗ · · · ∗ · · · ∗

0 · · · 0 1 0 0 · · · 0 ∗ · · · ∗ · · · ∗



Figure 1: The matrix B for Case 2 of the proof of Lemma A.3. This example has qs = 5 and α = 4.

Fix a message Mqs+1 distinct from M1, . . . ,Mqs , a seed rqs+1 ∈ {0, 1}l−1 and an L-bit string
zqs+1. These are intended to stand for a possible forgery (Mqs+1, (rqs+1, zqs+1)). Notice that
although Mqs+1 is distinct from previous messages, rqs+1 is not assumed distinct from previous
seeds– indeed, since the adversary may choose it, we cannot make such an assumption. Below we
will show that

Pr1
[
tagR,b(a,Mqs+1, rqs+1) = zqs+1

]
≤ 2−L . (5)

This means that were E to make the verify query (Mqs+1, (rqs+1, zqs+1)), having previously queried
Mi, . . . ,Mqs and got back (r1, z1), . . . , (rqs , zqs) in reply, her success probability would be at most
2−L. But our choice of Mqs+1, rqs+1, zqs+1 was arbitrary. Using conditioning arguments one can
obtain Equation 4. Thus the main claim is Equation 5 and what follows is devoted to its proof.

Recall Mi[j] ∈ {0, 1}b denotes the j-th block of Mi. We define a qs+1 by 2l matrix B over GF(2).
Its rows are indexed 1, . . . , qs + 1 and its columns are indexed by the l-bit strings in lexicographic
order. The entry in row i, column x is denoted B[i, x], and is defined as follows. First consider the
case where the first bit of x is 0, so that x = 0 . y. Then we set B[i, x] = 1 if y = ri and 0 otherwise.
Now suppose the first bit of x is 1, and write it as x = 1 . 〈j〉l−b−1 . y, where |y| = b. Then we set
B[i, x] = 1 if Mi[j] = y and 0 otherwise. (In particular, B[i, x] = 0 if j > ‖Mi‖b.) Note the matrix
is not a random variable—it is fixed given that M1, . . . ,Mqs+1 and r1, . . . , rqs+1 are fixed.

Lemma A.3 The matrix B has full rank.

Proof: We will transform B by row and column operations until it has a qs + 1 by qs + 1 identity
matrix in its upper left corner. At any time, the left half of B means the first 2l−1 columns and
the right half means the rest.

In our initial matrix B, the left half consists of those columns whose index has first bit 0, and the
right half consists of those columns whose index has first bit 1. Since r1, . . . , rqs are distinct, each
of rows i = 1, . . . , qs has exactly one 1 in its left half. Thus we can permute columns until the first
qs rows of the left half of B consist of a qs by qs identity matrix followed by a qs by 2l−1−qs matrix
of zeroes. We now consider two cases.

Case 1. rqs+1 is distinct from r1, . . . , rqs .

In this case, the last row of B has exactly one 1 in its left half, and this 1 is in a column otherwise

16



zero. A single column swap extends our identity matrix by one, so that B is seen to have rank
qs + 1 as desired.

Case 2. rqs+1 = rα for some α ∈ {1, . . . , qs}.
(An example corresponding to this case is in Figure 1.) Note that since r1, . . . , rqs are distinct, α
is unique. So the left half of row qs + 1 consists of a 1 in position α and zeros elsewhere.

Add row α to row qs + 1. This makes the left half of row qs + 1 entirely 0. On the other hand,
since M is by assumption different from Mα, the right halves of rows α and qs + 1 are different;
thus their sum has a 1 in some column β ∈ {2l−1 + 1, . . . , 2l}, so row qs + 1 now has a 1 in column
β. Any ones in rows 1, . . . , qs of column β can be zeroed out, specifically by adding column i to
column β for any i ∈ {1, . . . , qs} such that B[i, β] = 1. Finally, swap columns qs + 1 and β. This
results in a qs + 1 by qs + 1 identity matrix in the upper left corner of B as desired.

We now establish Equation 5. Similar relations of linear to probabilistic independence have
been used in several places, for example [ABI, BeRo]. Let W = {0, 1}2l and regard elements
of W as 2l-bit vectors over GF(2). Identify a key a describing the function Ra with an L-tuple
(w1, . . . , wL) ∈ WL. The value of the corresponding function at x ∈ {0, 1}l is the L-bit string

w
(x)
1 . . . w

(x)
L formed by taking the x-th component of each vector. Identifying a with (w1, . . . , wL)

in this way, notice that for each j = 1, . . . , L it is the case that z
(j)
i is the dot product of the i-th

row of B with the vector wj , for i = 1, . . . , qs. Now let A be the matrix consisting of the first qs
rows of B. Also for j = 1, . . . , L let

uj =


z
(j)
1
...

z
(j)
qs

 and vj =


z
(j)
1
...

z
(j)
qs

z
(j)
qs+1


Then observe that

Pr1
[
tagR,b(a,Mqs+1, rqs+1) = zqs+1

]
=
|B∗|
|A∗|

(6)

where

A∗ = { (w1, . . . , wL) ∈WL : Awj = uj for j = 1, . . . , L }

B∗ = { (w1, . . . , wL) ∈WL : Bwj = vj for j = 1, . . . , L } .

We fix the following notation: A∗ = {0, 1}2l−qs , and B∗ = {0, 1}2l−qs−1. As before, regard elements
of A∗ as (2l− qs)-bit vectors over GF(2), and regard elements of B∗ as (2l− qs− 1)-bit vectors over
GF(2). Since B has full rank, it can be extended to a non-singular 2l by 2l matrix C. Let C(i...j)

denote the matrix consisting of rows i through j of C. The non-singularity of C implies that the
map of B∗ to BL

∗ given by

(w1, . . . , wL) 7→ (C(qs+2...2l)w1, . . . , C
(qs+2...2l)wL )

is a bijection. Thus |B∗| = |BL
∗ | = 2L(2

l−qs−1). Similarly |A∗| = |AL∗ | = 2L(2
l−qs). So |B∗|/|A∗| =

2−L. Now apply Equation 6 to obtain Equation 5.

Finally, we need to address the assumption made above that E first made all its qs signing
queries and then later made just one verify query. Assume now that E makes exactly qs signing
queries and exactly qv verify queries, and these are interspersed. For i = 1, . . . , qv we define
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adversary Ei who runs E, replying to its queries as follows. It replies to signing queries via its own
signing oracle. It replies to the first i− 1 verify queries by 0. (That is, Ei does not make any query
to any of its oracles based on these verify queries of E, but rather just tells E that the verify oracle
would reject.) When E makes its i-th verify query, Ei makes it too, and immediately halts. Thus,
Ei makes exactly one verify query, and a number of signing queries that is at most qs. (However,
we can wlog again assume that the number of signing queries is exactly qs.)

We now consider the following game. We first make all the random choices underlying the
execution of E. Namely we pick the key a describing function Ra, and we make all the random
choices needed to reply to qs signing queries. (Namely, we pick r1, . . . , rqs ∈ {0, 1}l−1 at random.)
Then we run E1, . . . , Eqv in turn. In each of these executions, we use the random choices made,
namely a and r1, . . . , rqs ∈ {0, 1}l−1, to reply to the queries of Ei. Note that since E (and hence Ei
for each i) is deterministic, the sequence of signing queries made by Ei is a prefix of the ones made
by Ej for j ≥ i. We let Succi be the event that Ei is successful, and Succ the event that there is
some i ∈ {1, . . . , qv} such that Succi is true. Let Distinct be the event that r1, . . . , rqs are distinct.
Then as before we have

Pr [ Succ ] ≤ Pr [ Succ | Distinct ] + Pr [ ¬Distinct ]

= Pr [ Succ | Distinct ] + P (2l−1, qs) .

Now the previous argument can be appilied to Ei to say that

Pr [ Succi | Distinct ] ≤ 2−L

for each i = 1, . . . , qv. So

Pr [ Succ | Distinct ] + P (2l−1, qs) ≤ Pr [ Succ1 | Distinct ] + · · ·+ Pr [ Succqv | Distinct ]

≤ qv · 2−L .

Putting all this together concludes the proof.

A.2 Proof of Theorem 4.2

We may assume ε > δR = 2q2s · 2−l + qv · 2−L since otherwise there is nothing to prove. Let R be
the family of random functions with input length l and output length L. Let E be an adversary.
We now specify an algorithm AE which has oracle access to a function g : {0, 1}l → {0, 1}L, and is
trying to decide whether this function is from F or from R.

For notational simplicity we’ll assume that any message M whose signature E requests has
‖M‖b = n. It is convenient to let

tag(M, r) = g( 0 . r )⊕ g( 1 . 〈1〉l−b−1 .M [1] )⊕ · · · ⊕ g( 1 . 〈n〉l−b−1 .M [n] ) .

Note that computing tag(M, r) requires AE to make n+ 1 oracle queries. Algorithm AE operates
as follows.

AE selects a random string rE as the coin tosses of E, and starts running E.

Suppose E requests a signature of some message M . Then AE picks r ∈ {0, 1}l−1 at random,
computes z = tag(M, r), and returns (r, z) to E.

Suppose E requests verification of some (M,µ) where µ = (r, z). Then AE returns 1 if
z = tag(M, r) and 0 otherwise.
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If E is successful (which AE can determine because AE is answering all verify queries) then AE
outputs 1; else AE outputs 0.

Clearly AE makes at most q′ = (qs + qv) · (n+ 1) oracle queries. It is easy to check that there is
an oracle machine U and a constant c such that UE = AE and the running time of AE is bounded
by t+ clq′, for any E. Now let

ε1 = Pr
g
R←F

[AgE = 1 ] and ε2 = Pr
g
R←R

[AgE = 1 ] .

We leave to the reader to check that ε1 = ε. Theorem 4.1 implies that ε2 ≤ δR. Thus

AdvAE
(F,R) = ε1 − ε2 ≥ ε− δR .

This completes the proof of Theorem 4.2.

A.3 Proof of Proposition 4.3

Actually we prove something a little stronger, namely that the adversary can forge the signature
of almost any message of her choice. Specifically, suppose A′, B′ are distinct b-bit strings; we will
show how to forge the signature of the message M4 = A′ . B′. (The extension to messages of more
than two blocks is simple and is omitted.)

The adversary E chooses a b-bit string A 6∈ {A′, B′} and another b bit string B 6∈ {A′, B′, A}.
She then sets M1 = A .B, M2 = A′ . B and M3 = A .B′. She also sets q = b(qs − 1)/2c. Now she
mounts the following attack–

(1) For i = 1, 2, she makes the signing query Mi a total of q times. Let (ri,j , zi,j) denote the
answers, i = 1, 2 and j = 1, . . . , q.

(2) She makes the signing query M3. Let (r, z3) denote the answer.

Notice that the total number of signing queries made is 2q+ 1 ≤ qs. Now let Coll be the event that
there exist j1, j2 such that r1,j1 = r2,j2 . Then:

(3) If Coll is true then E sets µ = (r, z) where z = z1,j1 ⊕ z2,j2 ⊕ z3. She then makes the verify
query (M4, µ).

(4) Else, she picks a random r′ ∈ {0, 1}l−1 and lets z′1, . . . , z
′
qv be distinct L-bit strings, for example

the qv lexicographically least L-bit strings. She makes the qv verify queries (M4, (r
′, z′j)) for

j = 1, . . . , qv.

Note the number of verify queries made is at most qv. For the analysis, first assume Coll is not
true. Then E executes Step (4). But the tag Ra(0 . r

′)⊕Ra(1 . 〈1〉l−b−1 . A′)⊕Ra(1 . 〈2〉l−b−1 . B′)
is uniformly distributed, so clearly E is successful with probability qv · 2−L. Now note that if Coll
is true then

Ra(0 . r)⊕Ra(1 . 〈1〉l−b−1 . A′)⊕Ra(1 . 〈2〉l−b−1 . B′) = z .

Thus (r, z) is a valid MAC of M4, meaning E is successful if Coll is true. We now want to lower
bound the probability of Coll. We will need the following counterpart of Fact A.1 which provides
a lower bound on the same quantity.

Fact A.4 Let P (m, t) denote the probability of at least one collision in the experiment of throwing t
balls, independently at random, into m buckets. Then P (m, t) ≥ 1− e−(t2−t)/(2m).

To estimate the above we will use the following.

Fact A.5 If 0 ≤ x ≤ 1 then 1− e−x ≥
(

1− 1

e

)
· x.
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Proof: Consider the function fα : [0, 1]→ R defined by fα(x) = 1− e−x − xe−α, where α ∈ [0, 1]
is a parameter which we want to choose so that fα ≥ 0 on its entire domain [0, 1]. First note that
fα(0) = 0. Now, the derivative of fα is f ′α(x) = e−x − e−α. Thus f ′α(x) ≥ 0 for x ∈ [0, α] and
f ′α(x) ≤ 0 for x ∈ [α, 1]. This means fα increases as x goes from 0 to α, then decreases. Thus, if we
guarantee that fα(1) ≥ 0 it follows that fα ≥ 0 on [0, 1], on desired. But fα(1) = 1− (1/e)− e−α.
Thus setting e−α = 1− (1/e) does indeed guarantee fα(1) ≥ 0, concluding the proof.

By symmetry Pr [ Coll ] ≥ (1/2) · P (2l−1, 2q). Let x = [(2q)2 − 2q] · 2−l. Note q ≤ (qs/2) − (1/2)
by choice of q, whence our assumption q2s ≤ 2l implies x ≤ 1. Now use the above facts to see that
Pr [ Coll ] is at least (

1− 1

e

)
· x

2
≥
(

1− 1

e

)
· (2q)2 − 2q

2 · 2l
.

But (qs/2)− 1 ≤ q ≤ (qs/2)− (1/2) so (2q)2 − 2q ≥ (qs − 2)2 − (qs − 1) ≥ q2s − 3qs. Thus

Pr [ Coll ] ≥
(

1− 1

e

)
· q

2
s − 3qs
2 · 2l

.

Thus the success probability ε of E is indeed at least the maximum of the above and qv · 2−L.

A.4 Proofs of Theorems 5.1 and 5.2

It is easy to see what the counter buys us. In terms of the proof of Theorem 4.1 in Appendix A.1
above, we can think as though Pr [ Distinct ] = 1, because the counter values, now playing the
roles of seeds, are distinct by definition, given that qs < 2l−1. Now Equation 2 can be argued as
before, and Pr [ Succ ] is bounded by just this. The proof of Theorem 5.2 is just like the proof of
Theorem 4.2 in Appendix A.2 above.

A.5 Proof of Proposition 5.3

Let M be any message. We show how to forge its signature. The adversary sets C = 1. She
then picks qv distinct L-bit strings z1, . . . , zqv , for example the lexicographically least ones. She
makes no sign queries. She just makes the qv verify queries (M4, (C, z

′
j)) for j = 1, . . . , qv. Since

tagR,b(a,M,C) is uniformly distributed (a being the shared key used for the scheme) her success

probability is clearly qv · 2−L.

B The high-speed network setting

XOR schemes are particularly useful for message authentication over high speed networks. Here
we describe the problem in this setting in more detail.

See Figure 2. The message M comes to the signer down a wire, at the rate of νN bits per
second (“N” for “network”). We visualize the message as a sequence of b-bit blocks (buffering, for
example, to create this illusion) so that we view ourselves as getting a sequence of b-bit blocks (at a
rate of νN/b blocks per second). We assume the last block M [n] is followed by some sort of marker
(or is otherwise distinguished) so that the signer knows when the message is over.

The signer has available some hardware—simple logic, plus some reasonable number of chips
to compute Fa (“Fa-boxes”), plus some fixed amount of memory. The amount of this hardware
is fixed, independent of n. In particular, the message may be long and the signer does not have
enough memory to store it. Nor can the signer see unrecorded bits once they’ve gone by. Rather,
the MAC computation must be “on-line” in the following sense.
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Figure 2: The first message block is being acted on by the hardware. In another b/νN seconds, the second
message block will be acted on. The signature is produced after all blocks are processed.

Let the memory have some initial content y0 (this value may be computed by the hardware).
Now, upon receiving M [1] the signer computes some function G of y0 and M [1]. (G is specified
by the hardware, and the hardware can compute it in the time b/νN between block arrivals.) Call
the result y1. This value is written to memory, and replaces the value of y0 that used to be there.
Upon receiving M [2], the same function G is applied to y1 and M [2] to compute a value y2 which
replaces y1. And so on. After n steps the memory contains a value yn. A little more processing is
allowed (the number of steps is the latency λ of the scheme, and must be fixed and independent
of n). Then the signer must output the MAC of M = M [1] · · ·M [n].

Suppose an Fa-box computes at a rate of νF bits per second (ie. Fa(x) is known lνF seconds
after x is presented to the box). The constant νF is determined by the underlying chip technology.
Let ω = νN/νF ; this is the factor by which the network is faster than the cryptographic hardware.
If ω ≤ 1 (the Fa-boxes can “keep pace” with the network bandwidth) then SigCBCF,n is a good

solution to our problem: set b = l = L; set the initial content y0 of the memory the memory to 0l;
the function G is G(y, x) = Fa(y)⊕ x; and MAC = yn is the output.

On the other hand, suppose ω > 1. Then we can’t compute Fa in the interval of time between
block arrivals. For example, say the ratio is two. In order to “keep up” with the network we could
try to set two Fa-computations off and running in parallel. We have enough Fa-boxes, but the
scheme itself must admit parallelism if the extra Fa boxes are going to help. For SigCBCF,n, the
extra hardware is useless.

Technological evolution has made ω > 1 on modern Gigabit-networks. Furthermore, this value
continues to increase: advances in communications technology are outpacing speed increases of
cryptographic hardware.

In our scheme, all the computations of Fa required to get z can be made in parallel, and the
final results need only to be XORed to get z. This is what we mean by the scheme being “fully
parallelizable.” One can check that furthermore, the parallelizability is on-line: using p = ωl/b
Fa-boxes we can compute SigRF,b at a rate which enables us to keep up with the network. Thus,
we can arbitrarily match network bandwidth by adding additional hardware, something which was
impossible with SigCBCF,n.
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