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ABSTRACT

CPU processor design involves a large set of increasingly
complex design decisions, and simulating all possible designs
is typically not feasible. Sensitivity analysis, a commonly
used technique, can be dependent on the starting point of
the design and does not necessarily account for the cost of
each parameter. This work proposes a method to simultane-
ously analyzes multiple parameters with a small number of
experiments by leveraging the Plackett and Burman (P&B)
analysis method. It builds upon the technique in two spe-
cific ways. It allows a parameter to take multiple values and
replaces the unit-less impact factor with cost-proportional
values.
Categories and Subject Descriptors: C.4 [Performa-
nce of Systems][Design Studies]
General Terms: Design, Experimentation, Performance
Keywords: Plackett and Burman, Bottleneck, Cost opti-
mized

1. INTRODUCTION

Since simulation of all design points is often not feasible;
sensitivity analysis is a commonly used design exploration
technique. This method varies a single parameter across
its design space while keeping other parameters fixed. How-
ever, the reported importance of parameters is dependent on
the choice of fixed values. The Plackett and Burman(P&B)
method [2] has been proposed to address the shortcomings
of sensitivity analysis [3]. P&B takes in a low value and
high value for each parameter and runs a defined set of ex-
periments. Endpoints for all parameters are varied simul-
taneously and an impact factor representng the percentage
contribution to performance is calculated. The calculation
needs O(N) experiments vs exponential brute force experi-
ments. The method is not iterative, hence the total simu-
lation time is bound by the longest experiment. However,
existing proposals have key shortcomings. (1) There is little
direction in choosing endpoint values and there is no way to
get impact values for intermediate points. (2) The impact
factors do not account for the resource costs of varying the
parameter. We leverage P&B, but improve the technique by
allowing a parameter to take multiple values and replacing
the unit-less impact factor with cost-proportional values.

1.1 Plackett and Burman Method

P&B is a method for finding the dependence of some quan-
tity to a set of independent variables, using few experiments.

Figure 1: Impact over 12 benchmarks

Parameter Description Low Value (-1) High Value (+1) Intermediate Values

CPUFreq CPU frequency 1GHz 2GHz 100 MHz Steps
L2Size Shared L2 cache size 256KB 1MB 512KB
NCPU Number of Cores 1 4 2
INTFreq Shared interconnect frequency 200MHz 800MHz 100MHz Steps
L2Freq Shared L2 cache frequency 1GHz 2GHz 100MHz Steps

MEMFreq Memory system frequency 266MHz 800MHz 133MHz Steps
MEMWidth Memory width 32 bits 64bits -
INTOut Interconnect queue size 4 32 -

MEMQSize Memory controller queue size 4 16 -
MEMChan Memory system channels 1 2 -
L2Asso L2 cache associativity 8 32 -

Table 1: Parameter Values for our System

We use the P&B design with foldover [1], requiring 2N ex-
periments for N parameters. For the system under test, the
architect has to choose a low end value (-1) and a high end
value (+1) for each parameter. Table 1 shows the values
for our system. Using the chosen values, and experiments
specified by the design matrix, measurements are collected.
After measurements, the absolute and percentage contribu-
tion of impact of each parameter is computed as described
in [3]. Figure 1 shows the impact values for our system
over 12 benchmarks. CPUFreq, L2Size and NCPUs have
the highest influence on performance.

2. VARYING BOUNDS

The P&B method specifies sets of experiments using com-
binations of +1 and -1 values but leaves the selection of
the actual values up to the architect. Since typically lower
bounds are more constrained, we primarily consider varia-
tions on upper bounds. Another concern with P&B is that
it provides impact for the parameter over the entire range.
An architect typically looks for the proverbial “knee” of the
curve – if most of the marginal gain (impact) can be achieved
by small increases in a parameter, we can forego the cost of
fully provisioning the resource. We address this problem by
setting the original upper bound to an intermediate value
and rerunning the tool with a higher upper bound. This way
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Description IBench1 IBench2 IBench3 IBench4 Nat IPReassembly Pktcheck JSEngine BROW 1 BROW 2 BROW 3 BROW 4 Average

Config B vs A (% slowdown vs A) +1.3 +5.2 +3.8 +3.4 +0.0 +0.0 +0.2 +0.6 +3.4 +0.0 +1.2 +1.3 +1.7
Config C vs A (% slowdown vs A) +7.0 +30.8 +35.4 +30.2 +16.2 +16.3 +15.3 +16.1 +24.3 +26.5 +24.4 +41.2 +23.6
Config D vs A (% slowdown vs A) +6.7 +19.1 +26.4 +24.9 +11.6 +11.3 +7.9 +8.8 +21.0 +18.5 +18.3 +23.8 +16.5

Table 2: Evaluating runtime performance of configurations.

Figure 2: Impact with changing +1 values.

Figure 3: Operating points close to Max Impact.

we can identify the incremental impact of a parameter over
various ranges and be able to identify knees. The number
of extra P&B experiments for a single new max value of one
parameter is N experiments. To add K design points for N
parameters we require 2N + KNxN or O(KN

2) experiments
(far less than O(KN ) exhaustive search experiments).

We add intermediate steps and analyze the impact values.
Figure 2 shows results for the CPUFreq parameter. With
this modification, we can determine not only what design
parameters have high impact, but also what value or size
of that parameter is required to get arbitrarily close to the
full impact. Thus, we should be able to identify a resource-
efficient design by establishing a performance threshold (e.g.,
within 1%, 3%, or 5% of the maximum impact), and setting
each of the high-impact parameters at the lowest parameter
that meets that threshold. Figure 3 shows the resulting
design points varying by benchmark and within the 1/3/5%
thresholds.

Based on this analysis, we can define sets of “interesting”
design points. The configurations are (A) all parameters at
the highest values, (B) six high impact factors set to their
highest value, low impact factors set to min value (this is the
design that would come out of the P&B analysis alone), (C)
the six high impact factors set by the 3% threshold, (D) sim-
ilar to C, but NCPU set to its highest value. Table 2 shows
simulation results for these configurations relative to the ex-
ecution time of the highest end system. Config B suffers only
a 1.7% runtime increase versus config A. This system gives
good performance, but does not allow us to compromise on
resources for the high-end parameters. Cutting resources

more aggressively is possible with our methodology. Config
C targets the 3% operating points for the high-impact pa-
rameters. It is still within 24% of the best design, despite 5
resources being at their minimum value, and 5 of the other
6 being below their max value. Config D maximizes NCPU
and goes within 17% of peak performance but has a higher
energy cost despite the increased performance. Our tech-
nique allows us to navigate a very complex and dense design
space with few experiments and arrive at a set of designs
that provide high resource efficiency. Those designs sacrifice
little in performance, yet provide significant area and energy
advantages over the maximal system.

3. INCORPORATING COST MODELS

Previously we described how we can arrive at designs that
use processor resources efficiently. However, we have not yet
empowered the architect to make the best performance/cost
decisions, since the impact factors are essentially unitless. It
is difficult to compare between parameters because impact
in the current form is not associated with cost required to
achieve that impact. To evaluate parameters with respect
to resource usage we define cost normalized marginal impact.
Cost normalized marginal impact is defined as the P&B im-
pact gained by moving from one design choice to another,
divided by the increment of resources used at the new design.
We specifically evaluate power normalized marginal impact
values. Next, we formalize algorithms that utilize the cost
normalized marginal impact values to derive designs that
meet fixed power budgets. The algorithms work by choos-
ing parameters with the highest cost normalized marginal
impact at each step. Using our algorithm, we derive designs
that consume 70% of the power but performs within 5.6%
of the full design, or consume 50% of the power but perform
within 19% of peak performance.

4. CONCLUSION

This work proposes a method to simultaneously analyze
multiple parameters with a small number of experiments
by leveraging the P&B analysis method. We extract the
impact for multiple intermediate points. There is an increase
in the number of experiments, but still few enough to be
highly practical. With these intermediate points, we can
choose incremental points in the design space that get close
to full performance with a significant decrease in resources.
This paper also incorporates a cost model with the P&B
method. We produce results that can lead the architect
directly to an architecture that sets the intermediate value
of each parameter so as to maximize performance for a given
cost constraint.
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