
Gamification to Aid the Learning of
Test Coverage Concepts

Eman Sherif Andy Liu Brian Nguyen Sorin Lerner William G. Griswold
{esherif, a6liu, brnguyen}@ucsd.edu {lerner, wgg}@cs.ucsd.edu

Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404

Abstract—The ability to effectively and efficiently test software
is an important practice in software testing that is often under-
emphasized in computer science education. Many students find
learning about testing to be uninteresting and difficult to learn.
This causes numerous students to develop inadequate testing
habits, which can be detrimental to their professional careers.
To encourage students to develop better testing habits, we used
gamification to make the learning experience more engaging and
enjoyable. In this paper we explore this idea by integrating
gamification and statement coverage into a turn-based game
called CoverBot. To test the effectiveness of CoverBot with respect
to both teaching statement coverage and increasing engagement
and enjoyment, we conducted a user study. We found that
gamification makes the learning about statement coverage more
engaging and enjoyable while also enhancing the participants
performance and understanding of statement coverage.

Index Terms—Computer-aided instruction, gamification, soft-
ware testing, statement coverage.

I. INTRODUCTION

Today, almost everybody is reliant on software and a minor
bug in the code can cause major inconveniences. Examples
of software malfunctions include identify theft, data leaks,
crashes, or even glitches in video games. Software testing
plays an important role in preventing these malfunctions, but
requires human work to ensure the production of a high-
quality test suite. However, many software engineers struggle
to create effective test cases and fail to see the importance of
testing. This can result in substandard testing and compromise
software quality. An underlying problem is that students in
software engineering find testing to be trivial and uninterest-
ing, which can be attributed to a lack of proper motivation
during their education or the difficulty of the material [1, 4].

Traditionally, software testing techniques are taught in a
classroom where students have little motivation and interest.
Moreover, there is minuscule time spent on software testing
material compared to other aspects of the software devel-
opment cycle [11]. In recent years researchers have turned
to gamification as a possible solution to increase motivation
and engagement within software testing. Gamification is “the
application of game-design elements and game principles in
non-game contexts” [2, 10].

For example, Microsoft developed a game called Code
Hunt that helped students learn how to find and fix bugs and
omissions within their code as test cases are added to a test

suite [5]. This application was found to be much more efficient
and motivating for students to learn coding.

Another successful application of gamification can be seen
by a competitive web-based game called Bug Catcher, mainly
used for software testing competitions [9]. In Bug Catcher,
the game displays a Java class with several bugs in it, and the
player must enter a potential test case to detect the bug that
fits the requirements.

Rojas and Fraser designed the game Code Defenders, which
helped players learn how to perform mutation testing. Mu-
tation testing assesses the quality of a test suite by plant-
ing artificial faults (“mutants”) in a program and measuring
how many of them can be found [6]. Code Defenders is a
competitive, team-based game where two opposing teams will
battle each other within a Java class, utilizing this specific
testing technique. One side will be the “attackers” and try
to create mutations within the code, while the other side
will be creating tests to detect them. Code Defenders utilizes
competition, feedback, and incentives as primary gamification
features. Their research shows that gamifying software testing
can be practical and is a promising field of research to explore.

In this paper we apply gamification to learning the statement
coverage concept. Statement coverage is a more elementary
testing concept than mutation testing and is more likely
to be taught in an introductory programming or software
engineering class. An advantage of the statement coverage
approach is that there exist automated tools to assess coverage.
With statement coverage, the developer tries to create inputs
to a code segment such that every statement is executed in
order to better verify its functionality. Rather than testing every
input the code could execute, statement coverage seeks to both
minimize the number of test cases and maximize the amount
of code covered [4, 5]. At the same time, statement coverage
helps developers detect unused branches, missing statements,
and dead code. Statement Coverage is a useful technique for
students to learn early in their CS curriculum, which is why
we chose to gamify this specific software testing concept.

II. OUR APPROACH

As past studies have shown, games can increase motivation
and enhance the learning experience for students learning
about a specific topic [7]. There are a wide range of possible
game design elements and principles that can be integrated into

978-1-7281-6807-4/20/$31.00 ©2020 IEEE

 32nd IEEE Intl. Conference on Software Engineering Education & Training

320Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2023 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A screenshot of a level from CoverBot

the process of learning statement coverage. Here we focus on
applying gamification features that have been studied to be the
most satisfactory for the user [3, 8].

� Graphics/Animations
� Sound Effects/Music
� A Scoring System
� Combat System
� Level Progression
With these features in mind, our goal is to create a game that

can facilitate the process of teaching students the importance
of statement coverage. We propose a game called CoverBot
that incorporates gamification with a learning environment for
statement coverage. In CoverBot, the player acts as a character
who’s survivability depends on how effectively the player is
able to execute all lines of code in a given level with the fewest
amount of inputs as possible. Fig 1 shows an example of a
level with the block of code on the left and character models
on the right.

The player’s goal is to successfully defeat the enemy in
the fewest attempts possible (to avoid taking damage) and
continue to the next level. Here are some rules to playing
CoverBot:

1) The enemy’s maximum health value is equal to the total
lines of code given.

2) The player types in an input that is passed into the
method shown on the left.

3) The damage dealt to the enemy is equal to the number
of new lines executed compared to the previous inputs.

4) The enemy will attack if and only if the player doesn’t
execute any new lines compared to their previous inputs.

5) The enemy’s attack value adjusts based on the level that
the player is on, increasing as the game goes on.

6) The player’s health status carries over to future levels.
Fig. 2 shows a walk through of a level for CoverBot:
1) The upper-left panel in Fig. 2 shows the player typing

in the value ’4’
2) The top-right panel in Fig. 2 shows that 7 new lines were

executed so the player deals 7 damage to the enemy.
The lines that were executed have markers placed next
to them.

Fig. 2. A walk-through of a level in CoverBot

3) The bottom-right panel in Fig. 2 shows the player typing
in the value ’2’. This input is redundant because it
doesn’t execute any new lines.

4) The bottom-right panel in Fig. 2 shows the player taking
one damage because no new lines of code were executed
with the input ’2’.

The player continues to go through these steps with different
inputs until all lines of code are executed on a given level (or
their health goes to zero). If the player is able to execute all
lines before the enemy defeats them, they win the level and
move onto the next one. However, if the player is defeated
they will be prompted to start the level over again. The levels
are designed to be progressive, from introductory to more
advanced, in order to enable students to build proficiency while
sustaining confidence and a sense of accomplishment.

We claim that this game design is able to deliver exercises
to students that teach them the benefits of statement coverage,
while sustaining engagement by both rewarding them with
proper and unique inputs and punishing them if they provide
redundant inputs.

III. EXPERIMENTAL DESIGN

To evaluate whether gamification was effective in teaching
students about statement coverage, we conducted an exper-
iment using a within-subjects design that focused on the
player’s preference, engagement, enjoyment, and performance.
For the experiment, we have two treatments that each par-
ticipant went through: a gamified version of CoverBot (ex-
perimental group) and a non-gamified version of CoverBot
(control group), discussed below. Each version has four levels
(or exercises) for the participant to complete. The order of
the treatments was randomized and balanced between all
participants.

A. Control

To accurately account for the effects of gamification, we
created a control version of our game that has the essential
gamification elements stripped away (See Section II). In the
control version, the player only had the ability to view past
inputs and and which lines had been executed by them. A
typical level of our control can be found in Fig. 3.

321Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2023 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. A screenshot of a ”level” from our control

Notably, we retained feedback on what inputs had been en-
tered, which lines had been executed, as well as a progression
of increasing difficult exercises. Thus, the mechanics of how
to progress through a “level” (i.e., exercise) in our control
remains similar to CoverBot. Fig. 4 illustrates what the user
is shown after entering the value ’4’ on the same level we saw
in the previous CoverBot example, Figures 1 and 2.

Fig. 4. A screenshot of a ”level” from our control

B. Recruitment and Participants

Participants were recruited using an online interest form.
They represent a wide range of software developers, with
a majority being college undergraduates studying Computer
Science (See Table I). Participants were asked to fill a survey
before the experiment began, which provided us with some
information about their background.

C. Data Collection

Given the circumstances at the time due to COVID-19, the
experiments were conducted over the internet using the Zoom
video conferencing app. The participants were asked to down-
load the necessary files and run them while screen sharing so
we could observe their play-through of each version.

Each participant was randomly assigned either the gamified
or non-gamified version first. We observed and recorded the
user’s gameplay for each version, focusing on the number
of successful inputs. Immediately after each treatment, the
participant filled out a Google form survey which asked them
to personally rate their levels of engagement, enjoyment, and if

it was educational. Also, there was a section for the participant
to give general feedback on their experience with that specific
version of CoverBot. Once the levels were completed, each
participant filled out a final comparison form, which asked
them to rate each treatment compared to the other one. After 7
participants went through the study, we noticed that when our
participants used the non-gamified program they had signifi-
cantly more attempts. Therefore we decided to start measuring
our future participants’ number of successful attempts over
the number of total attempts for both the gamified and non-
gamified versions. This number would give us the percentage
of attempts which were unique and accurate.

IV. RESULTS AND DISCUSSION

Through our comparison surveys we were able to gather
data on four main points: preference, engagement, enjoy-
ment, and performance. Overall, 90% of participants preferred
CoverBot over our control.

Participants were asked to rate their enjoyment and engage-
ment on a 5-point Likert scale. The mean reported enjoyment
was 4.35 for CoverBot and 2.95 for the control (See Table II).
The mean reported engagement was 4.30 for CoverBot and
3.45 for the control (See Table III). T-tests confirm that the
mean enjoyments and engagements are meaningfully different,
significant for alpha=0.05 (See Table V).

Participants also performed better while playing CoverBot
(See Table IV). For instance, using CoverBot, participants
had a ratio of 128 successful inputs to 168 total inputs, a
mean accuracy of 76.2%. Participants playing the control,
on the other hand, had a ratio of 147 successful inputs
to 218 total inputs, a mean accuracy of 67.4%. Moreover,
participants using CoverBot were more efficient with their
successful inputs; that is, they required fewer successful inputs
to complete a level. Participants using CoverBot took a mean
of 2.44 attempts to complete a level, whereas in the control it
took a mean 3.03 attempts to complete a level. T-tests confirm
that the mean accuracies and efficiencies are meaningfully
different, significant for alpha=0.05 (See Table V).

TABLE I
SUMMARY OF PARTICIPANT DEMOGRAPHICS (20 TOTAL).

Category Demographic Number Proportion
Gender Female 10 50%

Male 10 50%
Ethnicity/Race Asian 11 55%

Black 3 15%
Latino 3 15%
White 2 10%
Middle Eastern 1 5%

Age 18 - 22 15 75%
23 - 25 3 15%
30+ 2 10%
< 3 months 2 10%

Coding experience < 1 year 3 15%
< 2 years 8 40%
� 2 years 7 35%

Knowledge of None 12 60%
statement coverage Some (varying) 8 40%

322Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2023 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PARTICIPANT ENJOYMENT

Version Mean Std. Dev.
CoverBot 4.35 0.587
Control 2.95 1.146

TABLE III
PARTICIPANT ENGAGEMENT

Version Mean Std. Dev.
CoverBot 4.30 0.571
Control 3.45 0.997

TABLE IV
PARTICIPANT PERFORMANCE

Version Successful
Attempts

Total
Attempts

Success
Rate

Successful
Attempts/Level

CoverBot 128 168 76.2% 2.44
Control 147 218 67.4% 3.03

TABLE V
T-TESTS FOR KEY STATISTICS

Samples t-value p-value
Enjoyment 5.016 0.00001
Engagement 6.144 0.00104
Success Rate 2.525 0.00930
Successful Attempts / Level 4.001 0.00026

Additionally, we saw that participants consistently preferred
CoverBot, demonstrating that its gamification elements made
CoverBot more enjoyable and engaging. Many participants
characterized CoverBot as ”fun and enjoying,” other par-
ticipants described the game as a ”calming and interactive
experience”. Also, the added incentive of winning the game
made participants perform better. Some participants stated that
CoverBot encouraged them to ”input only correct values”.
However, when describing the control, many participants
expressed how they ”did not care about their inputs”. Fur-
thermore, to gauge their knowledge of statement coverage we
asked them to describe it and explain how they would be able
to use it when testing their code. 8 out of 12 participants
who didn’t know what statement coverage was beforehand
were able to accurately describe it by saying phrases similar
to ”reaching all lines of the code” and ”trying to execute
all lines with few tests cases”. Therefore, CoverBot was
also an effective way of teaching statement coverage to our
participants.

A. Limitations and Threats to Validity

The study presented here is of a relatively small population,
mostly from a single computer science program. Still, this
population is highly representative of the target population
for CoverBot. The study was also short, essentially a lab
study. A longer study embedded in a course could have
revealed longer trends regarding engagement, performance,
and possibly learning.

B. Future Work

There are additional gamification techniques that might
further improve engagement, etc. Also, as just mentioned

above, we could run longer experiments with more participants
and measure learning outcomes. In the longer term, there are
many other ideas to explore:

� A multiplayer variant of the game. Interacting with other
students might make the material more enjoyable to learn
about.

� A leader board system. This could instill a form of com-
petition that would keep players engaged and motivated
to continue playing the game.

� A dynamic way of loading in levels. The levels in Cover-
Bot are hard coded. If we were able to load in levels based
on existing methods (code), one could easily increase the
diversity and number of levels.

� Better animations and sounds. An improvement to the
quality of our animations and sound effects could make
players feel more immersed in the experience.

� Incorporation of other programming languages Changing
our game to also include other languages such as C++,
Python, or JavaScript can widen the scope of our target
audience.

Even more broadly, we could investigate gamification of
other aspects of testing, for example test suite reduction,
fuzzing, and performance testing.

V. CONCLUSION

In this paper we investigated gamification techniques to
aid students in learning statement coverage, an imperative but
tedious subject to learn. We designed CoverBot, a turn-based
game that incorporates gamification and statement coverage.
The principle gamification elements we used in CoverBot
include level progression, a scoring/combat system, animation,
and sounds.

In order to test the effectiveness of CoverBot we conducted
a within-subjects design user study. Through our experiment
we were able to measure the engagement, enjoyment, perfor-
mance, and preference ratings of our participants. We found
that CoverBot created a more enjoyable and engaging envi-
ronment. Additionally, our participants performed better when
playing CoverBot and were able to give accurate descriptions
of statement coverage.

ACKNOWLEDGMENTS

We thank the Early Research Scholars’ Program, Christine
Alvarado, and Vignesh Gokul for this opportunity.

REFERENCES

[1] A. Deak, T. Stålhane, and G. Sindre, “Challenges and strategies for
motivating software testing personnel,” Information and software Tech-
nology, vol. 73, pp. 1–15, 2016.

[2] C. Dichev, D. Dicheva, G. Angelova, and G. Agre, “From gamification
to gameful design and gameful experience in learning,” vol. 14, pp. 80–
100, 12 2014.

[3] D. L. Kappen and L. E. Nacke, “The kaleidoscope of effective gamifica-
tion: deconstructing gamification in business applications,” in Proceed-
ings of the First International Conference on Gameful Design, Research,
and Applications, pp. 119–122, 2013.

[4] E. F. Barbosa, M. A. G. Silva, C. K. D. Corte, and J. C. Maldonado,
“Integrated teaching of programming foundations and software testing,”
in 2008 38th Annual Frontiers in Education Conference, 2008.

323Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2023 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.

[5] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. De Halleux, “Code
hunt: Experience with coding contests at scale,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2,
pp. 398–407, IEEE, 2015.

[6] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser, “Code defenders:
Crowdsourcing effective tests and subtle mutants with a mutation testing
game,” in Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, p. 677–688, IEEE Press, 2017.

[7] K. Welbers, E. A. Konijn, C. Burgers, A. B. de Vaate, A. Eden, and
B. C. Brugman, “Gamification as a tool for engaging student learning:
A field experiment with a gamified app,” E-Learning and Digital Media,
vol. 16, no. 2, pp. 92–109, 2019.

[8] P. Buckley and E. Doyle, “Gamification and student motivation,” Inter-
active learning environments, vol. 24, no. 6, pp. 1162–1175, 2016.

[9] R. Bryce, Q. Mayo, A. Andrews, D. Bokser, M. Burton, C. Day,
J. Gonzolez, and T. Noble, “Bug catcher: A system for software testing
competitions,” in Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, (New York, NY, USA),
p. 513–518, Association for Computing Machinery, 2013.

[10] S. Deterding, R. Khaled, L. Nacke, and D. Dixon, “Gamification: Toward
a definition,” pp. 12–15, 01 2011.

[11] T. Shepard, M. Lamb, and D. Kelly, “More testing should be taught,”
Communications of the ACM, vol. 44, no. 6, pp. 103–108, 2001.

324Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2023 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.

