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ABSTRACT

This work addresses the need for stateful dataflow prograats t
can rapidly sift through huge, evolving data sets. Thesa-itaien-
sive applications perform complex multi-step computatiaver
successive generations of data inflows, such as weekly vagids;r
daily image/video uploads, log files, and growing sociaivoeks.
While programmers may simply re-run the entire dataflow when
new data arrives, this is grossly inefficient, increasingulela-
tency and squandering hardware resources and energy.nadter
tively, programmers may use prior results to incrementaityor-
porate the changes. However, current large-scale datassiog
tools, such as Map-Reduce or Dryad, limit how programmers in
corporate and use state in data-parallel programs. Stfaiglard
approaches to incorporating state can result in customijéreode
and disappointing performance.

This work presents a generalized architecture for contiatmlk
processing (CBP) that raises the level of abstraction fiddimg in-
cremental applications. Atits core is a flexible, groupwisecess-
ing operator that takes state as an explicit input. Unifystegeful
programming with a data-parallel operator affords sevinatia-
mental opportunities for minimizing the movement of datatia
underlying processing system. As case studies, we show hew o
can use a small set of flexible dataflow primitives to perforabw
analytics and mine large-scale, evolving graphs in an inergal
fashion. Experiments with our prototype using real-wordadin-
dicate significant data movement and running time redustief
ative to current practice. For example, incrementally cotimg
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1. INTRODUCTION

There is a growing demand for large-scale processing of un-
structured data, such as text, audio, and image files. lIttis es
mated that unstructured data is now accumulating in datgersen
at three times the rate of traditional transaction-based [#8].
For instance, YouTube integrates 20 hours of new video ateinu
Facebook analyzes 15 TB's of information a day [20], andrirée
search companies regularly crawl the Internet to maintaishf in-
dices. Many large-scale Internet services, such as soefaionk-
ing sites or cloud-computing infrastructures, analyzalgtes of
system and application-level logs on a daily basis to mom&r-
formance or user behavior [27].

These environments often require data processing systeafs t
sorb terabytes of new information every day while runningaety
of complex data analytics. This data “deluge” presents ndgta
management challenges, and non-relational informaticlyais
is quickly emerging as a bedrock technology for these lagde
data processing efforts. Today, parallel data processistes,
like Map-Reduce [10] and Dryad [14], offer a scalable platfo
that can leverage thousands of cheap PC's for large datagsoc
ing tasks. For example, the social networking site Facehsels
Hive [1], a high-level relational programming languageadoop
(an open-source Map-Reduce), to manage their 2.5 petabyde d
warehouse [20].

Many of these applications must combine new data with data
derived from previous batches or iterate to produce resahsd
state is a fundamental requirement for doing so efficientiar

PageRank using CBP can reduce data movement by 46% and cugxample, incremental analytics re-use prior computafietiew-

running time in half.

Categories and Subject Descriptors
H.3.4 [Systems and Softwarg Distributed systems

General Terms
Algorithms, Design, Performance
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ing outputs to be updated, not recomputed, when new datesuri
Incremental/iterative variants exist both for updating #imswers
(views) to relational queries [3] and for non-relationaja@ithms
such as spatio-temporal queries [19], data clustering41R,and
page rank [8], to name a few. Such an approach has obvious po-
tential for large performance improvements, increasirgsiae of
problems that may be tackled with a given hardware/enerdgdiu
However, current bulk-processing models limit how program
mers incorporate state into their data-parallel progranften forc-
ing programmers to add state by hand. To avoid this complexit
they may re-use existing dataflows and re-process all datang
for a larger compute cluster to avoid performance penalfider-
natively, they may add state by re-reading prior outputstanirsy
data in an external storage service. In either case, statgsgle
the purview of the bulk-processing system, where it eitheats
it as any other input or is unaware of it, limiting the oppoities
for optimization. We find (Section 5.1) that this can lead ta r
times proportional to total state size, not the changesate ssig-
nificantly reducing the performance gains promised by imenetal
algorithms. Moreover, current bulk-processing primisivare de-



signed for single-shot operation, not for environmentfwintin-
uous data arrivals. Thus they provide few mechanisms farteyn
nizing processing across inputs or defining which data tecty
process next.

This paper describes the design and implementation of arsyst
for continuous bulk processii@BP). A core component of CBP is
a flexible, stateful groupwise operattranslate that cleanly inte-
grates state into data-parallel processing and affordsakfunda-
mental opportunities for minimizing data movement in theenhy-
ing processing system. Additionally CBP offers powerfutadi@aw
management primitives to accommodate continuous execwtien
using one or more translate operators and a scalable and faul
tolerant execution platform based on a modified Hadoop.

This paper makes the following contributions:

e Stateful groupwise operator: We propose a data processing op-
erator.translate that combines data-parallel processing and access
to persistent state through grouping. This abstractiofiamtwo
common programming practices: the inclusion of state tase-
prior work for incremental processing, and groupwise pssio®,

a well-known interface for bulk-data processing.

e Primitives for continuous bulk processing: Continuous datafl-
ows require precise control for determining stage exenuwdia in-
put data consumption. The CBP model includes primitive$ tha
support control flow and allow stages to synchronize exenwtiith
respect to multiple inputs. These features simplify thestretion

of incremental/iterative programs for large, evolvingadsets.

o Efficient implementation: As we will show, emulating state-
ful dataflow programs with current bulk processing opesgtsuch

as those in the Map-Reduce model, leads to unacceptablerperf
mance (running time superlinear in input size). Thus, wégtes
custom execution system (Section 4.5) that minimizes daiem
ment by taking advantage of constructs in the CBP model. &hes
constructs allow the system to optimize the incrementaligirg
and modification of state records.

e Applications and evaluation: We explore CBP using a vari-
ety of processing tasks, including a simplified web crawlwue
and two incremental graph processing algorithms (Pagef&ink
and clustering coefficients [26]), using real-world datgluding
Yahod web and Facebook crawls. We find the CBP model can
express many incremental processing constructs and thate d
implementation of the model can ensure incremental pedooa
for a range of workloads. Our experiments that incrementain-
pute a web crawl queue (described in the next section) reidinee
cumulative running time from 425 to 200 minutes (53%), when
compared to a non-optimized approach.

1.1 Example

As a motivating example, consider the challenge Interratcbe
engines face to keep indices up-to-date with the evolving ege-
pus. To do so, they must optimize their crawl, looking for thest
valuable, rapidly changing parts of the web. This is an ttega
process; they first crawl a part of the web, add it to the ctitbemf
crawled pages, rank the new and previously found links, aitidie
another crawl on the highest-ranked links. A “single shatgess-
ing approach re-processes all cached web pages after edih pa
crawl. While obviously inefficient (the ratio of old to newtdanay
be ten to a thousand times), this can occur in practice dussto i
simplicity and the ability of bulk-processors, like Map®Ree, to
easily scale up.

Figure 1 shows a bulk-incremental workflow to compute thevtra
queue for a web indexing engine. Though crawling is a complex
issue, this workflow gives a high-level overview of how onehti

crawled pages
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Figure 1: A dataflow for incrementally computing a web crawl
queue. Edges represent flows of data, and stages marked with
an S are stateful.

leverage state. The first processing staéract links extracts the
in-links from the raw web page text. Next, theunt in-linksstage
counts the number of times particular URLs and web sitesappe
within the newly crawled pages. This stage has two outputs, o
for each count. Thenergestage combines those counts with the
current known set of crawled pages. This stage sends newmand u
dated URLSs from the last crawl to the next two stages thatesaod
threshold the updates. Those URLs whose scores pass thedftte
are the next crawl queue.

This workflow supports incremental computation in multivie
ys. First, it runscontinuously an external crawler reads the output,
crawls the new pages, and waits for the workflow to run again.
As in a data stream management environment [2], edges tiansm
only new or updated data items, and the execution systenrongy
stages when there is sufficient (as defined by the prograniata)
on each input edge. Second, stages provide incrementagsiog
by leveraging persistent state to store prior or partialltegstages
marked withS). Many analytics exhibit opportunities for this kind
of incremental processing, including the standard set gfexgate
operators (e.g., min, median, sum, etc.), relational djmer& [3],
and data mining algorithms [18].

1.2 Related work

Non-relational bulk processing: This work builds upon recent
non-relational bulk processing systems such as Map-Re(did}e
and Dryad [14]. Our contributions beyond those systemsvere t
fold: (1) a programming abstraction that makes it easy toesg
incremental computations over incrementally-arrivinggcl§2) ef-
ficient underlying mechanisms geared specifically towartina-
ous, incremental workloads.

A closely related effort to CBP enhances Dryad to automiiica
identify redundant computation; it caches prior resultavoid re-
executing stages or to merge computations with new input [24
Because these cached results are outside the dataflowaprogr
mers cannot retrieve and store state during execution. @Bzt
different approach, providing programmers explicit ascesper-
sistent state through a familiar and powerful groupwisegssing
abstraction.

Our work also complements recent efforts to build “onlineéipA
Reduce systems [9]. While their data pipelining technigfoes
Map-Reduce jobs are orthogonal to the CBP model, the work als
describes a controller for running Map-Reduce jobs cowtisly.
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Figure 2: The progression from a stateless groupwise procsig primitive to stateful translation, 7°(-), with multiple inputs/outputs,

grouped state, and inner groupings.

The design requires reducers to manage their own interatd, st
presenting a significant programmer burden as it remairsdait
of the bulk-processing abstraction. The controller presiimited
support for deciding when jobs are runnable and what data the
consume. In contrast, CBP dataflow primitives afford a raofye
policies for controlling these aspects of iterative/imsemtal datafl-
ows.

Twister [11], a custom Map-Reduce system, optimizes repeat
edly run (iterative) Map-Reduce jobs by allowing accesstaics
state. Map and Reduce tasks may persist across iteratioms; a
tizing the cost of loading this static state (e.g., from gouirfile).
However, the state cannot change during iteration. In eshtCBP
provides a general abstraction of state that supportstisgdates,
and removals.

Data stream management:CBP occupies a unique place be-
tween traditional DBMS and stream processing. Data stream m
agement systems [2] focus on near-real-time processingntii-
ously-arriving data. This focus leads to an in-memory, rée-
a-time processing paradigm, whereas CBP deals with dsilkleant
data and set-oriented bulk operations. Lastly, CBP perayittic
data flows, which are useful in iterative computations arfteiot
scenarios described below.

Incremental view maintenance: Traditional view-maintenance
environments, like data warehousing, use declaratives/ibat are
maintained implicitly by the system [3, 25]. In contrast, EBan
be thought of as a platform for generalized view-mainterarc
CBP program is an explicit graph of data transformationstép-
deed, one can support relational view maintenance on topiof o
framework, much like relational query languages have bageréd
on top of Map-Reduce and Dryad (e.g., DryadLINQ [28], Hivg [1
Pig [22]).

2. STATEFUL BULK PROCESSING

This paper proposes a groupwise processing opefamsla-
tion, and dataflow primitives to maintain state during contiraiou
bulk data processing. We designed the translate operaba ton
repeatedly, allowing users to easily store and retrievie sta new
data inputs arrive. The design also enables a range of mmetpti-
mizations for the underlying bulk-processing system. Beistion
first gives an overview of groupwise processing and thenrdesc
translation in detail through successive examples. It é&ydsum-
marizing the CBP model (Table 1) programmers use to creats-ir
lation stages.

We choose to add state tageoupwiseprocessing construct be-
cause itis a core abstraction enabling parallel data psougsHere
we use thereduce : {k,v[]) — s[] function from the Map-Reduce
model as our exemplar groupwise processor. It transforowds

v grouped by key:! into zero or more new output recorslsGroup-
wise processing underlies many relational and user-defimed
cessing steps. Indeed, upper-layer languages such asZpign@
Hive [1] programs compile into a sequence of Map-Reduce, jobs
leveraging the inherent data partitioning, sorting, armiggred-
uce provides. Equivalently, DryadLINQ [28] and SCOPE [6] com-
pile programs directly into compute DAGs of similar opeva8
on more general dataflow systems like Dryad [14]. Such am-inte
face has proven popular enough not only to warrant its inmiuis
these upper-layer languages, but also in commercial dsgalzaich
as Greenplum, Aster, and Oracle.

2.1 Example 1: A basic translate operator

We begin by studying the incremental crawl queue (Figure 1)
dataflow in more detail, where each stage is a separateatems|
operator. We illustrate translate with a simplified versafrthe
count in-linksstage, calledURLCount that only maintains the fre-
quency of observed URLs. This stateful processing stage bas
gle input that contains URLSs extracted from a set of crawlet w
pages. The output is the set of URLs and counts that changhd wi
the last set of input records.

For illustration, Figure 2 presents a progression from &esta
less groupwise primitive, such asduce, to our proposed translate
operator,7'(-), which will eventually implementURLCount Fig-
ure 2(a) shows a single processatggethat invokes a user-defined
translate function7’(-). To specify the grouping keys, users write
a RouteBy(r) function that extracts the grouping key from each
input recordr. In the case ofJRLCount Route By extracts the
URL as the grouping key. When the groupwise operator exscute
the system reads input records, callsute By, groups by the key
k, partitions input data (we illustrate a single partitioajd runs
operator replicas in parallel for each partition. Eachiogpthen
callsT'(-) for each grouping key with the associated records].

We call each parallel execution of an operatoeanch

To maintain a frequency count of observed URLSs, e Cou-
nt translator needs access to state that persists acrossseiogh
ure 2(b) adds a logical state module from which a translate-fu
tion may read or write values for the current grouping keyoum
case URLCountstores counts of previously seen URLs, maintain-
ing state records of the typeurl, count}. However, as the next
figure shows, translate incorporates state into the grgupper-
ation itself and the semantics of reading and writing to #tate
module are different than using an external table-based.sto

Figure 2(c) shows the full-featured translation function:

T :(k,F& Fi* ... F™), with multiple logical input and output
flowsand grouped state. As the figure shows, we found it useful

'Unlike Map-Reduce, in our model keys are assigned at the en-
trance to a key-driven operation (e.g., group-by or joiny €o not
exist outside the context of such an operation.



[ Function

Description

| Default ]

Translate(Key,AF(™, ..., AF")— (AFQU, ..., AF0"

Per-Stage: Groupwise transform from input t
output records.

Runnable(framingKeys, state}- (reads, removes, state)

Per-Stage: Determines if stage can execute ahdRunnableALL
what increments are read/removed.

FrameBYy(r, state)— (Key, state) Per-Flow: Assign records to input increments. FrameByPrior
RouteBy(r) — Key Per-Flow: Extract grouping key from record. RouteByRcd
OrderBy (r) — Key Per-Flow: Extract sorting key from record. OrderByAny

Table 1: Five functions control stage processing. Defaultinctions exist for each except for translation.

URLCOUNT_T(url, iz, . [], Fi", )

~ state
newcnt— F'", size()
if £ ,.10] # NULL then

newcnt— newent +Fi

.write({url, newcnt})
.write({url, newcnt})

[0].cnt
lrout

state

out
Irupdates
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Figure 3: Translator pseudocode that counts observed URLSs.
to model state using explicitpopbackflows from a stage output
to a stage input. This allows translate to process statedsdixe
any other input, and avoids custom user code for managirgsacc
to an external store. It also makes it simple for the systerden-
tify and optimize flows that carry state records. For simpégesul
translators like’ RLCount one loopback sufficedg** to F&™.

Figure 3 shows pseudocode for oiRL Count translate func-
tion called within this stage. With multiple logical inputs is
trivial to separate state from newly arrived records. Itrdsuthe
number of input records grouped with the giveri, and writes the
updated counts to state and an output flow for downstreanestag
A translation stage must explicitly write each state requmeksent
in F&" to F$** to retain them for the next processing epoch. Thus
atranslator can discard state records by not propagaténg th the
output flow. Note that writes are not visible in their groupsikthe
following epoch.

We can optimize thd/RL Count translator by recognizing that

in may update only a fraction of the stored URL counts each
epoch. Current bulk-processing primitives provide “fulter” grou-
pings, calling the groupwise function for all found groupikeys.
Here URLCount takes advantage of translation’s ability to also
perform “inner” groupings between state and other inputsesg
inner groupings only call translate for state records thgehmatch-
ing keys from other inputs, allowing the system to avoid exgpee
scans of the entire state flow. However, to improve perforaan
this requires the underlying processing system to be abtarto
domly read records efficiently (Section 4.5.2).

2.2 Example 2: Continuous bulk processing

We now turn our attention to creating more sophisticatedstra
lators that either iterate over an input or, in incrementaliren-
ments, continuously process newly arrived data. A key duest
for CBP is how to manage continuous data arrivals. For exampl
an incremental program typically has an external procesaticig

| (URL,time) |
, FrameBy<r>=hour
n

state *F/i\n *Fén
RouteBy<r>=URL

SetDiff T(url, S[1, All, BID{
if S.hasNext() then {
S.write(url); // propagate state
} else {
S.write(url); // write new state
if (A.hasNext() && !B.hasNext())
Adiff.write(url);
if (B.hasNext() && !A.hasNext())
Bdiff.write(url);

out out out
Etate lFAdW lFBdwf

Figure 4: A stage implementing symmetric set difference of
URLSs from two input crawls, A and B.

or more records from each input flow, processes them, anéswrit
zero or more records to output flows. Thus a flBWs a sequence
of records passed between two processing stages over time. T
sequence of records read from a given input flow is callethpnt
increment and a speciainput framingprocedure determines the
sizes of the input increments. The sequence of records btdpu
a given flow during one epoch form awutput increment CBP
couples the framing function with a second functiomnability,
which governs the eligibility of a stage to run (Section 4ay also
controls consumption of input increments.

We illustrate these concepts by using a CBP program to com-
pare the output of two experimental web crawletsand B. The
stage, illustrated in Figure 4, has an input from each cnawt®se
records contain (url,timestamp) pairs. Similarly, theram output
for the unique pages found by each crawler. The translatpteim
ments symmetric set difference, and we would like to repus t
difference for each hour spent crawlifg.

First, the stage should process the same hour of output fodim b
crawlers in an epoch. A CBP stage defines per-ffovame By(r)
functions to help the system determine the input incremesmm
bership. The function assignsraming keyto each record, allow-
ing the system to place consecutive records with identicah{
ing keys into the same increment. An increment is not eligtbl
be read until a record with a different key is encounteradere,
FrameBy returns the hour at which the crawler found the URL as
the framing key.

However, the stage isrrunnableunless we have an hour’s worth

input. CBP systems must decide when to run each stage based o®f crawled URLs orboth ;" and F'". A stage’s runnability func-
the records accumulating on the input flows. In some casgs the tion has access to the status of its input flows, includingréimaing
may act like existing bulk-processing systems, in whichréeve(a keys of each complete increment. The function returns adsool
Dryad vertex or a Map-Reduce job) runs when a batch of records value to indicate whether the stage is eligible to run, as agthe

exists on each input. They may behave in a manner similartto da
stream processors [2], which invoke a dataflow operator veimgn

2Note that this is thehangein unique URLSs observed; the outputs

input has a single tuple available. Or they may behave in some won't include re-crawled pages (though that is easily done)

hybrid fashion.
During each processing epoch, the translaldr,), reads zero

The use ofpunctuationg2] can avoid having to wait for a new
key, although we have not implemented this feature.



set of flows from which an increment is to be consumed and the se
from which an increment is to be removed.

For our symmetric set difference stagennability returnstrue
iff both input flows contain eligible increments. If both upflow
increments have the same framing key, the runnability fandh-
dicates that both should be read. On the other hand, if tingifiga
keys differ, the runnability function selects only the onimthe
smaller key to be read. This logic prevents a loss of synéhaen
tion in the case that a crawler produces no data for a paatitwlur.

Finally, the stage’s translation functiofetDiff_T, is ready to
process observed URLSs, storing them in state records. Tdgs's
Route By(r) function extracts the URL from each input record as
the grouping key for state and crawler records. If there isates
record for thisurl, then it either was reported in a prior epoch or
belongs to both crawls (the intersection). In this caserduestator
only needs to manually propagate the state record. Otherttis
URL has not been seen and it is written to state. If it was seen
exclusively by either crawl, we add it to the appropriatepoifiow.

Framing and runnability are a powerful combination thaba#

RouteBy<a> : mcx{k,, k;} RouteBy<b>:aALL
in input flows
FO

Figure 5: Users specify per-input flow Route By functions to
extract keys for grouping. Special keys enable the broadcas
and multicast of records to groups. Here we show that multi-
cast addresancX is bound to keysk, and ks.

returns a multicast addressicX, associated with grouping keys
k1 andks. We describe both mechanisms in more detail in Sec-
tion 4.5.3.

2.4 Summary

Naturally, multiple translation stages may be strung togeto
build more sophisticated incremental programs, such amtie-

stages to determine what data to present to a stage, and-to synmental crawl queue. In general, a CBP program itself (likg- Fi

chronize consumption of data across multiple input flowswik
framing functions, runnability functions may maintain asdhamount
of state. Thus it may contain significant control logic. Wevdna
used it to synchronize inputs (e.g., for temporal joinsdperly in-
terleave writes to and reads from state, and to maintaiic &bakup
tables (read but not remove an increment). Finally, aptitina
such as PageRank can use it to transition from one iteraligseg
to another, as we show in Section 3.1.2.

2.3 Support for graph algorithms

Groupwise processing supports obvious partitionings aplr
problems by assigning a single group to each vertex or edge. F
example, programmers can write a single translator thatesses
all vertices in parallel during each processing epoch. Inymases,
those per-vertex translation instances must access ssteiated
with other vertices. To do so, each vertex sends “messages” t
other vertices (addressed by their grouping key) so that iy
exchange data. Such message passing is a powerful tectiarque
orchestrating large computations (it also underlies Gadegjraph
processing system, Pregel [17]), and the CBP model supgports

Translation complements message passing in a number of ways
First, using a second loopback flow to carry messages allows a
inner grouping with the state used to store the graph. Thes th
system will call translate only for the groups representimessage
destinations. Second, message passing can take advafftdge o
generality of theRoute By construct.

Often a computation at a single vertex in the graph affeatseso
or all of the vertices in the graph. For example, our incretaen
PageRank translator (Section 3.1.2) must broadcast (gpdatank
from dangling nodes (nodes w/o children) to all other nodehé
graph. Similarly, an update may need to be sent to a subskeof t
nodes in the graph. Whil®oute By can return any number of
grouping keys from within a record, there is no simple waydor
translator to write a record that includes all nodes in ttagbr Itis
difficult to know the broadcast (or multicast) keysepriori.

To address this issu®oute By supports logical broadcast and
multicast grouping keys. Figure 5 shouute By returning the
specialALL broadcast key for the input record d@ff™. This en-
sures that the recortdl becomes associated with all groups found
in the input flows. While not shown, it is also possible to litiie
broadcast to particular input flows, e.g., only groups foumstate.
Translators may also associate a subset of grouping keysawit
single logical multicast address. HeReute By on input flowFi"

ure 1) is a directed grapR, possibly containing cycles, of trans-
lation stages (the vertices), that may be connected withiplal
directed flows (the edges). Here we summarize the set of oatafl
control primitives in our CBP model that orchestrate thecetien

of stateful dataflow programs.

As our examples illustrate, CBP controls stage proceshiogigh
a set of five functions, listed in Table 1. An application mhgpase
these functions, or accept the system-provided defawtefe for
translate). The default framing functiéthameByPrior returns the
epoch number in which the upstream stage produced the record
causing input increments to match output increments gestbtey
upstream stages. The default runnability functiB®annableAll,
makes a stage runnable when all inputs have increments and th
reads and removes each.

The defaultRoute By function,RouteByRcd, gives each record
its own group for record-wise processing. Such translatars
avoid expensive grouping operations, be pipelined for pass ex-
ecution over the data, and avoid state maintenance overh8ad-
ilarly, the Order By function, another key-extraction function that
provides per-flow record ordering, has a def@dderByAny, which
lets the system select an order that may improve efficiengy, (&s-
ing the order in which the data arrives).

3. APPLICATIONS

The collection of default behaviors in the CBP model support
range of important incremental programs, such as the ireméath
crawl queue example from Section 1.1, which uBesnableAll
and FrameByPrior for all its stages. Here we showcase the extra
flexibility the model provides by building stateful, iteirat algo-
rithms that operate on graphs.

3.1 Mining evolving graphs

Many emerging data mining opportunities operate on langgye
ing graphs. Instances of data mining such graphs can be found
in systems biology, data network analysis, and recommandat
networks in online retail (e.g., Netflix). Here we investigal-
gorithms that operate over Web and social network graphe Th
Web is perhaps the canonical example of a large, evolvinghgra
and we study an incremental version of the PageRank [5] igthgor
used to help index its content. On the other hand, the exgosi
growth of community sites, such as MySpace or Facebook, have
created extremely large social network graphs. For ingtdRace-
book has over 300 million active users (as of September 2869,
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Figure 6: Incremental clustering coefficient dataflow.

CLUSTERINGCOEFFICIENT_T(nOdeF (7. o i, o FH 1)
if Fin _ hasNext(then state— F7 . next()

state A state
foreach edge inF} Jes
state.adj.add(edge.dst);
foreach edge ian'ggeS
foreach target in state.adj
F;;g}.Wr_ite(target,edge.src,edge.dst);
foreach update inF'; ..
state.adj[update.src].adj.add(update.dst);
if FE% ..hasNext(then
recalcCo(state)F 2t write(node,state.co);

1
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1 .write(state);
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Figure 7: The clustering coefficients translator adds new eges
(2-3), sends neighbors updates (4-6), and processes thoge u
dates (7-10).

www.facebook.com/press). These sites analyze the saeiphgo
support day-to-day operations, external querying (Fauehexi-
con), and ad targeting.

3.1.1 Clustering coefficients

We begin with a simple graph analysis, clustering coeffigien
that, among other uses, researchers employ to ascertaithevhe
connectivity in social networks reflects real-world trustaela-
tionships [26]. This example illustrates how we load graipihs a
stateful processing stage, how to use groupwise processitgy-

atively walk across the graph, and how messages may be used t

update neighbor’s state.

The clustering coefficient of a graph measures how well algrap
conforms to the “small-world” network model. A high clustey
coefficient implies that nodes form tight cliques with theimedi-
ate neighbors. For a node, with NV neighbors and edges among
the neighbors, the clustering coefficient= 2E /N (N — 1).This
is simple to calculate if each node has a list of its neigtsoeigh-
bors. In a social network this could be described as a “fSenfd
friends” (FoF) relation.

For graph algorithms, we create a grouping key for each @niqu
node in the graph. This allows the calculation to proceecinaltel

for each node during an epoch, and us to store state records de

scribing each vertex. Figure 6 illustrates the single fithttage

for incrementally computing clustering coefficiefitsThe input
,ff;ges carries changes to the graph in the form of (src,dst) node

ID pairs that represent edges. Records on the state flonerefer

the node and its clustering coefficient and FoF relation. hEac

put’s Route By returns a node ID as the grouping key.

Figure 7 shows the translator pseudocode. The translatet mu
add new graph nodgsupdate adjacency lists, and then update the
FoF relations and clustering coefficients. Line 1 retriexemde’s
state (an adjacency listdj, of adjacencies). Each record ﬁtﬁges

4Going forward we hide the loop in state loopback flows.
SFor ease of exposition we do not show edge deletions.
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Figure 8: Incremental PageRank dataflow.

INCRPAG ERANK_T(nodeFé",FfE",F;'?",F‘ﬁy,Fg}Ug FEm)
if F'z'*.hasNext(Xhen makeGraph();startWeight();
if F‘ﬁy.hasNext()hen sendWeightToNeighbors();
if F&*.hasNext(then updateSupernode();
if F& B .hasNext(then resetRankState();
elseif F* .hasNext(then

doPageRankOnG();

o0 WN R

Figure 9: Pseudocode for incremental PageRank.

represents a new neighbor for this node. Lines 2-3 add these n
neighbors to the local adjacency list. While that code alerseffi-
cient to build the graph, we must also send these new neighbor
every adjacent node so that they may update their FOF relatio

To do so, we send a record to each adjacent node by writing
to the loopback flowFgtt. (lines 4-6). During the next epoch,
RouteBy for F - routes these records to the node designated by
target. When the system caltsanslatefor these nodes, lines 7-10
process records ofi{" .., updating the FoF relation and recalculat-
ing the clustering coefficient. Finally, line 11 propagadey state
changes. Note that the runnability function allows the stiagex-
ecute if input is available oanyinput. Thus during one epoch, a
translate instance may both incorporate new edges andtadpu
coefficients for prior changes.

There are several important observations. First, it takes t
epochs to update the cluster coefficients when the graptgekan
This is because “messages” cannot be routed until the foltpw
epoch. Second, Figure 6 shows state as an “inner” flow. Thus
translationonly occurs for nodes that have new neighbors (input
on F.j,..) or must update their coefficient (input éf" ). These
two flows actively select the graph nodes for processing epobh.
Finally, where a single input record into tlh#RLCounttranslator
causes a single state update, here the work created by aalding
edge grows with the size of state. Adding an edge createsagess
to update the FoF relation for all the node’s neighbors. Tassage
count (and size) grows as the size and connectivity of thetgira
crease. We explore these implications further in Secti8n 5.

3.1.2 Incremental PageRank

PageRank is a standard method for determining the relative i
portance of web pages based on their connectivity [5]. mergal
PageRank is important because (1) computing PageRank enthe
tire web graph still takes hours on large clusters and (2)pitamt
changes to the web graph occur on a small subset of the wels(new
blogs, etc.). However, truly incremental PageRank is ehgling
because small changes (adding a link between pages) cagatep
throughout the entire graph. Here we implement the appratém
incremental PageRank computation presented in [8], whiesh-
olds the propagation of PageRank updates. This algorithestas
input a set of link insertions in the web graph; other appneac
exist to incorporate node additions and removals [8].

Figure 8 illustrates our incremental PageRank dataflowchwhi



shares many features with clustering coefficient. It usesttime
format for input edges, groups records by vertex, storescadicy
lists in state records, uses an inner state flow, and sendss&ges”

a stage can be run. The system passes the function the set of
flow connectors with un-read increments and the associaeat f
ing keys, and an application-defined piece of state. fTin@able

to other nodes on loopback flows. We skip the sundry details of function has access to each flow connector’s meta data fem-,

translation, and instead focus on how to manage an algotiiin
has several distinct iterative phases.

At a high level, the algorithm must build the graph, find the
subgraphG affected by newly inserted edges, compute transition
probabilities to a supernode (W — G), and then compute PageR-
ank forG (pages i) retain their rank). This algorithm has been
shown to be both fast and to provide high-quality approxiomest
for a variety of real and synthesized web crawls [8].

Figure 9 shows high-level pseudocode for the PageRanKdrans
tor. Internally, the translator acts as a per-node everdlbgrusing
the presence of records on each loopback flow as an indiction
run a particular phase of the algorithm. Here thenability func-
tion plays a critical role in managing phase transitiongxtlu-
sively reads each successive phase’s input after the ppot be-
comes empty. Thusinnability first consumes edges froﬁ)jgges,
then I (to find G), then F"* (updating the supernode), and fi-
nally Fi* (to begin PageRank o). WhendoPageRankOnG
converges, the second stage writesAdr. record tongﬁ;. This
causes the translator to reset graph state, readyingfiiséffe next
set of edge insertions.

This design attempts to minimize the number of completescan
of the nodes ifi¥ by using both “inner” state flows and the multi-
cast ability of theRouteByfunction. For example, when calculat-
ing PageRank fo67, leaves inG multicast their PageRank to only
nodes inG. We discuss the multicast APl more in Section 4. Fi-
nally, note that we place all the phases in a single trans|&iher
organizations are possible, such as writing a stage for phabe,
though this may make multiple copies of the state. In any,case
envision such analytics as just one step in a larger dataflow.

4. DESIGN AND IMPLEMENTATION

CBP architectures have two primary layers: dataflow andiphys
cal. The physical layer reliably executes and stores thdteesf a
single stage of the dataflow. Above it, the dataflow layer ples
reliable execution of an entire CBP dataflow, orchestratiregex-
ecution of multiple stages. It ensures reliable, orderadgport of
increments between stages and determines which stagesaae r
for execution. The dataflow layer may also compile the Idgica
dataflow into a more efficient physical representation, ddje
on the execution capabilities of the physical layer. Sudbraated
analysis and optimization of a CBP dataflow is future work.

4.1 Controlling stage inputs and execution

ber of enqueued increments) and determines the set of flow con
nectors from which to readeadSet and removeremoveSetin-
crements for the next epoch. If theadSetis empty, the stage is
not runnable. After each epoch, the IDC updates each flowemmnn
tor, marking increments as read or removing increment eefsgs.
Increments may be garbage collected when no flow connedtor re
erences them.

4.2 Scheduling with bottleneck detection

The IDC must determine the set of runnable stages and the or-
der in which to run them. Doing so with prior bulk processing
systems is relatively straightforward, since they take &G&0#s in-
put. In that case a simple on-line topological sort can deites
a vertex (stage) execution order that respects data depeede
However, CBP presents two additional criteria. Fiftiay con-
tain cycles, and the scheduler must choose a total ordeagésto
avoid starvation or high result latency (makespan). Secositg
the runnability function, stages can prefer or synchropizeess-
ing particular inputs. This means that increments can “hgelon
input flows, and that the stage creating data for that inpubnger
needs to run.

Our simple scheduler executes in phases and may test egelssta
runnability function. It can detect stage starvation and respond
to downstream backpressure (a bottleneck stage) by notnginn
stages that already have increments in all outputs. Fudlildedf
this algorithm are available in our techreport [15]).

4.3 Failure recovery

The dataflow layer assumes that the physical layer providesia
execution of individual stages and reliable storage of irable in-
crements. With such semantics, a single stage may be esbtart
the physical layer fails to run a stage. The executed staggfEs
a naming convention for each produced increment, requitita
be tagged by its source stage, flow id, and increment indegs@h
may be encoded in the on-disk path and increment name. Oace th
physical layer informs the IDC of success, it guaranteesrtsilt
increments are on disk. Dryad used similar techniques tarens
dataflow correctness under individual job failures [14].

Next, the IDC updates the run-time state of the dataflow. This
consists of adding and deleting increment references stiegi
flow connectors. The controller uses write-ahead loggingtord
its intended actions; these intentions contain snapslidtestate
of the flow connector queue. The log only needs to retain thie la

The dataflow layer accepts a CBP dataflow and orchestrates thelntention for each stage. If the IDC fails, it rebuilds stétem the

execution of its multiple stages. The incremental dataflon-c
troller (IDC) determines the set of runnable stages ane&ssalls
to the physical layer to run them.

The IDC maintains dlow connectara piece of run-time state,
for each stage’s input flow. Each flow connector logicallyreects
an output flow to its destination input flow. It maintains aitad,
ordered queue of identifiers that represent the incremeaitable
on the associated input flow. Each output flow may have maltipl
flow connectors, one for each input flow that uses it as a source
After a stage executes, the IDC updates the flow connectors fo
each output flow by enqueueing the location draning key of
each new output increment. The default, witlbefaultFraming
framingfunction, is for the stage to produce one output increment
per flow per epoch.

The IDC uses a stagefsnnablefunction to determine whether

XML dataflow description and rebuilds the flow connectors and
scheduler state by scanning the intentions.

4.4 CBP on top of Map-Reduce

We divide the design and implementation of the CBP model into
two parts. In the first part we mapanslate onto a Map-Reduce
model. This is a reasonable starting point for the CBP playsic
layer due to its data-parallelism and fault-toleranceufiest. How-
ever, this provides an incomplete implementation of thadiae
operator and CBP dataflow primitives. Further, such a “black
box” emulation results in excess data movement and spageusa
sacrificing the promise of incremental dataflows (SectionT3)e
next section describes our modifications to an open-sourap-M
Reduce, Hadoop, that supports the full CBP model and optisniz
the treatment of state.



The design of our bulk-incremental dataflow engine buildsrup
the scalability and robustness properties of the GFS/MeguRe
architecture [13, 10], and in particular the open-sourcelémen-
tation calledHadoop Map-Reduce allows programmers to specify

data processing in two phases: map and reduce. The map func-

tion outputs a new key-value paffk1, v1 }, for each input record.
The system creates a list of valugs],, for each key and passes
these to reduce. The Map-Reduce architecture transparaati-
ages the parallel execution of the map phase, the groupirdl of
values with a given key (the sort), and the parallel exeaubiothe
reduce phase.

We now describe how to emulate a single CBP stage using a
single Map-Reduce job. Here we describe the Map and Reduce
“wrapper” functions that export translafé(-). In CBP applica-
tions data is opague to the processing system, and thes@eavrap
functions encapsulate application data (a record) insidgpalica-
tion data unit(ADU) object. The ADU also contains tHd owl D,
Rout eByKey, andOr der ByKey.

While the Map-Reduce model has one logical input and output,
current implementations allow a Map-Reduce job to procesgs m
tiple input and write multiple output files. In CBP, tli¢ owl Ds
within each ADU logically separate flows, and the wrapperecod
uses thd | owl Dto invoke per-flow functions, such d@oute By
and Order By that create the routing and ordering keys. This
“black-box” approach emulates state as just another irgnd out-
put) file of the Map-Reduce job.

e Map: The map function wrapper implements routing by run-
ning the RouteBy function associated with each input flow. It
wraps each input record into an ADU and sets thew D, so
the reduce function can separate data originating from iffier-d
ent flows. Map functions may also run one or mpreprocessors
that implement record-wise translation. The optional NReztuce
combiner has also been wrapped to support distributivegebahic
translators.

e Reduce: The Hadoop reducer facility sorts records by the

Rout eByKey embedded in the ADU. Our CBP reduce wrapper
function multiplexes the sorted records intostreams, upcalling
the user-supplied translator functi@i(-) with an iterator for each
input flow. Per-flow emitter functions route output frdfi(-) to
HDFS file locations specified in the job description. Like thap,
emitter functions may also run one or more per-reqmstprocess-
ing steps before writing to HDFS.

Thus a single groupwise translator becomes a job with a mdpde
pair, while a record-wise translator can be a map-only jdbyed
by Hadoop) or a reduce postprocessor.

4.4.1 Incremental crawl queue example

We illustrate the compilation of a CBP dataflow into Map-Reslu
jobs using our incremental crawl queue examples from Figure
This dataflow is compiled into two Map-Reduce jobs: Counksin
and DecideCrawl. Figure 10 shows the two jobs and which stage
each wrapper function implements. In both jobs all input 8ow
RouteBy the site, and order input by the URL. Otherwise all in-
put flows use the default framing and runnability functiofihe
first Map-Reduce job implements botixtract linksand count in-
links. It writes state ADUs with both site and URL routing keys
to maintain counts for each. The second job places botieand
thresholdas postprocessing steps on the groupwisggetransla-
tor. This state flow records all visited src URLs.

8An efficient implementation of CBP over a Map-Reduce environ
ment requires deterministic and side-effect-free traosda

input files in HDFS

(src url file)

CountLinks Job

(site|url, indegree)

N\

Map: ExtractLinks
Reduce: CountlnLinks

(url,indegree)

N

(sr url) (site,indegree)

Map: Identity Mapper DecideCrawl Job
Reduce: Merge
PostProcess: Score

PostProcess: Threshold
ylurh)

Figure 10: The Map-Reduce jobs that emulate the CBP incre-
mental crawl queue dataflow.

4.4.2 Increment management

Map-Reduce implementations use shared file systems as a re-
liable mechanism for distributing data across large chgsteill
flow data resides in the Hadoop distributed file system (HDF53
controller creates fiow directoryfor each flowF' and, underneath
that, a directory for each increment. This directory cargaine or
more files containing the ADUs. As discussed in Section 4t&gw
Hadoop signals the successful completion of a stage, theotien
updates all affected flow connectors.

We emulate custom (non-default) framing functions as past p
cessing steps in the upstream stage whose output flow the-down
stream stage sources. The reduce wrapper calfstaei ng func-
tion for each ADU written to that output flow. By default, threre-
ment directory name is the stage’s processing epoch thatagenl
these ADUs. The wrapper appends the resulingni ngKey to
the increment directory name and writes ADUs with that keghsa
directory. The wrapper also adds thReam ngKey to the meta
data associated with this increment in the input flow’s flowroec-
tor. This allows a stagesinnablefunction to compare those keys
to synchronize input increments, as described in Sectdn 2.

45 Direct CBP

We now modify Hadoop to accommodate features of the CBP
model that are either inexpressible or inefficient as “blaok”
Map-Reduce emulations. The first category includes featsmeh
as broadcast and multicast record routing. The secondargtep-
timizes the execution of bulk-incremental dataflows to emshat
data movement, sorting, and buffering work are proportitmar-
riving input size, not state size.

4.5.1 Incremental shuffling for loopback flows

The system may optimize state flows, and any loopback flow in
general, by storing state in per-partition side files. Maggice
architectures, like Hadoop, transfer output from each magmnce
or task to the reduce tasks in thghufflephase. Each map task
partitions its output intaR sets, each containing a subset of the
input’s grouping keys. The architecture assigns a redusle tta
each partition, whose first job is to collect its partitionrfr each
mapper.

Hadoop, though, treats state like any other flow, re-mapgird
re-shuffling it on each epoch for every groupwise translegtuf-
fling is expensive, requiring each reducer to source outmmrh f
each mapper instance, and state can become large relatie to
put increments. This represents a large fraction of thegasing
required to emulate a CBP stage.

However, state is local to a particular translate instamckamly
contains ADUs assigned to this translate partition. Whandia-
tors update or propagate existing state ADUs in one epocdiseth



ADUs are already in the correct partition for the next epothus
we can avoid re-mapping and re-shuffling these state ADUs. In

keys to fetch during the merge and issues reads in parahiel pfo-
cess ends when the ADU cache fills, limiting the memory faatpr

stead, the reduce task can write and read state from/to arSHDF or all keys are fetched. The reduce task probes the ADU cathe o
partition file. When a reducer starts, it references the file by parti- each call to the translate wrapper, and misses fault in fleedihg

tion and merge sorts it with data from the map tasks in the abrm
fashion.

Note that a translator instance may add state ADUs wRosgeBy
key belongs to a remote partition during an epoch. Thes®te
writes must be shuffled to the correct partition (transhaiistance)
before the next epoch. We accomplish this by simply testibg/a
in the loopback flow's emitter, splitting ADUs into two grasipo-

key.

4.5.3 Multicast and broadcast routing

The CBP model extends groupwise processing by supporting a
broadcastALL address and dynamic multicast groups. Here we
describe how to do so efficiently, reducing duplicate resard
the data shuffle. We suppofiLL Route By keys by modifying

cal and remote. The system shuffles remote ADUs as before, butmappers to sendLL ADUs to each reduce task during the shuffle

writes local ADUs to the partition file. We further optimizeig
process by “pinning” reduce tasks to a physical node thatshal
replica of the first HDFS block of the partition file. This agei
reading data from across the network by reading HDFS datadsto
on the local disk. Finally, the system may periodically hedfie
the partition files in the case of data skew or a change in pemre
count.

4.5.2 Random access with BIPtables

Here we describe BIPtables (bulk-incremental processibigs),
a simple scheme tmdexthe state flow and provide random state
access to state. This allows the system to optimize the @recu
of translators that update only a fraction of state. For eplama
translator may specify ainner state flow, meaning that the system
only needs to present state ADUs whdgeuteBykeys also exist
on other inputs. But current bulk-processing architectare opti-
mized for “streaming” data access, and will read and procgsgs
in their entirety. This includes direct CBP with state ot files
(described above), which reads the entire partition fileéf/¢he
translator is extremely selective.

phase. At this point, the reduce wrapper will add these tufie
the appropriate destination flow before each call to traesiince
the partition count is often much less than the number ofggdn
state, this moves considerably less data than shuffling #ssages
to each groupALL may also specify an optional set of input flows
to broadcast to (by default the system broadcasts to altsipu

While broadcasting has an implicit set of destination keyrs f
each epoch, we provide translator authors the ability tondefiul-
ticast groups dynamically. They do so by callingsociate(k
, mecaddr), which associates a target kiywith a multicast group
mcaddr. Atranslator may call this for any number of keys, making
any key a destination for ADUs whogevute By returnsmcaddr.
The association and multicast address are only valid fergpoch;
the translator must write to this multicast address in tineesepoch
in which it associates keys.

Under the hood, calls tessociate place records of§,mcaddr}
on a dynamically instantiated and hidden loopback flow named
fmeadar- The system treats input records routed to a multicast ad-
dress in a similar fashion tALL ADUs, sending a single copy to
each reduce task. That record is placed in an in-memory laash t

However, the success of this approach depends on reading andle keyed bymcaddr. When the reduce wrapper runs, it reads the

writing matched keys randomly from a table faster than madi
and writing all keys sequentially from a file. Published perf
mance figures for Bigtable, a table-based storage infretsimei [ 7],
indicate a four to ten times reduction in performance fordcmn
reads relative to sequential reads from distributed filéesys like
GFS[13] for 1000-byte records. Moreover, our recent ingest
tion indicates even achieving that performance with opmiree
versions, such as Hypertable, is optimistic, requiringrapens to
select under 15% of state keys to improve performance [16¢ T
design outlined below outperforms sequential when ratrgeas
many as 60% of the state records (Section 5.2).

hidden loopback flow to determine the set of multicast adw®s
bound to this key and probes the table to retrieve the data.

4.5.4 Flow separation in Map-Reduce

While the Fl ow D maintains the logical separation of data in
the black-box implementation, the Map-Reduce model andbljpd
implementation treat data from all flows as a single inputusrh
the system sorts all input data but must then re-separateséd
onfl ow D. It must also order the ADUs on each flow by that
flow’s OrderBykeys. This emulation causes unnecessary compar-
isons and buffering for groupwise translation.

BlPtables leverages the fact that our CBP system needs only Consider emulating a groupwise translator withinput flows.

simple (key, ADUSs) retrieval and already partitions andsstate
ADUs, making much of the functionality in existing tablexsts
redundant or unnecessary. At a high level, each state ipartit
now consists of arindexand data file. While similar to HDFS
MapFi | es or Bigtable’sSSTabl e files, they are designed to ex-
ist across multiple processing epochs. Logically, the ditgas

an append-only, unsorted log that contains the state ADlttewr
over the last, epochs. Because HDFS only supports write-once,
non-append files, we create additional HDFS data files eamthep
that contain the new state inserts and updates.

Each translate instance reads/writes the entire index dileec
sponding to its state partition each epoch. They use an imange
index (like Bigtable) for lookups, and write the index filesasorted
set of key to{ epoch, offset} pairs. To support inner state flows us-
ing BIPtables, we modified reduce tasks to query for state ADU
in parallel with the merge sort of mapper output and to steasls
in an ADU cache. This ensures that calls to the translate perap
do not stall on individual key fetches. Our system learnsststeof

A Hadoop reduce tasks calls the reduce function with a siitgle
erator that contains all records (ADUs) sharing a particiky.
Direct CBP emulates the individual flow iterators®f-) by feed-

ing from a single reduce iterator, reading the flow iteratmrs of

f 1 ow D order forces us to buffer skipped tuples so that they can
be read later. A read to that last flow causes the system tertib#
majority of the data, potentially causing OutOfMemoryEsrand
aborted processing. This occurs in practice; many of oumgkes
apply updates to state by first reading all ADUs from a paldicu
flow.

We resolve this issue by pushing the concept of a flow into Map-
Reduce. Reduce tasks maintain flow separation by assagésirh
mapper with its source input flow. While the number of trarsfe
from the mappers to reducers is unchanged, this reducesithigan
of primary (and secondary) grouping comparisons orRbateBy
(andOrderBy) keys. This is a small change to the asymptotic analy-
sis of the merge sort of records fromm mappers fronO (rlogm)
to O(rlog™). This speeds up the secondary sort of ADUs sharing



aRout eByKey in a similar fashion; the reduce task now employs
n secondary sorts based only on feder ByKey. This allows
each flow to define its own key space for sorting and permis-rea
ing flows in an arbitrary order that avoids unnecessary ADfebu

ing.
5. EVALUATION

Our evaluation establishes the benefits of programmingeincr
mental dataflows using the CBP model. It explores how the vari
ous optimizations for optimizing data movement improve pibe
formance of our three example programs: the incrementalcra
queue, clustering coefficients, and PageRank. We built &P C
prototype using Hadoop version 0.19.1, and the implemientat
consists of 11k lines of code.

5.1 Incremental crawl queue

This part of the evaluation illustrates the benefits of ofting
the treatment of state for incremental programs on a noiadri
cluster and input data set. These experiments use the phyeéd-
ization of the incremental crawl queue shown in Figure 10x i®u
put data consists of 27 million web pages that we divide iatoin-
put increments (each appr. 30GB) for the dataflow. We ranxur e
periments on a cluster of 90 commodity dual core 2.13GHz Xeon
with two SATA harddrives and 4GB of memory. The machines
have a one gigabit per second Ethernet connection to a shaiteth
fabric.

500 " "
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- ©-7.5GB-Direct g
400} —6—30GB-Black box ~ /
—0—30GB-Direct 09

Time elapsed (min)
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% data processed
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Figure 11: Cumulative execution time with 30GB and 7.5GB
increments.

The goal of our system is to allow incremental algorithms to
achieve per-epoch running times that are a function of timetau
of state updates, not the total amount of stored state. Xatdar
the incremental crawl queue, the number of state recordtepda
directly proportional to the number of arriving input redsr Thus,
as our test harness feeds the incremental crawl queue sivecies
crements, we expect the running time of each successivenmest
to be almost constant. To measure the effectiveness of dir op
mizations, we compare executions of the “black-box” enioiat
with that of direct CBP.

For some dataflows, including the incremental crawl quehe, t
benefits of direct CBP increase as increment size decredes.
is because processing in smaller increments forces state titobe
re-shuffled more frequently. Figure 11 shows the cumulaiive
cessing time for the black-box and direct systems with tfednt
increment sizes: 30GB (the default) and 7.5GB (dividingahg-
inal increment by 4). Though the per-stage running time ofadi
CBP rises, it still remains roughly linear in the input size.( con-
stant processing time per increment). However, runnine tising
black-box emulation grows super linearly, because the tatine
movement of the state flow slows down processing.

Figure 12 shows a similar experiment using 30GB increments,
but reports the individual epoch run times, as well as thetimas
for the individual CountLinks and DecideCraw! jobs. Thipex-
ment includes the strawman, non-incremental processipgaph
that re-computes the entire crawl queue for each arrivigein
ment. In this case we modify the dataflow so that runs do nat rea
or write state flows. As expected, the running time of the non-
incremental dataflow increases linearly, with the majodfythe
time spent counting in-links. While the incremental dataftdfers
a large performance improvement (seen in Figure 12(b))rthe
time still increases with increment count. This is becabsebtack-
box emulation pays a large cost to managing the state flovghwhi
continues to grow during the execution of the dataflow. Evailht
this reaches 63GB for theountlinksstage at the 7th increment.

Figure 12(c) shows run times for the direct CBP implementa-
tion that uses incremental shuffling (with reducer pinniagdl flow
separation. Note that state is an “outer” flow in these erpents,
causing translation to access all state ADUs each epoch &ve
incremental shuffling allows each stage to avoid mappingsané
fling state on each new increment, resulting in a nearly eorst
runtime. Moreover, HDFS does a good job of keeping the jpamtit
file blocks at the prior reducer. At the 7th increment, piignin
direct CBP allows reducers to read 88% of the HDFS state block
from the local disk.

5.2 BIPtable microbenchmarks

These experiments explore whether randomly reading a subse
of state is faster using BIPtable than reading all of statpise-
tially from HDFS. We identify thebreak-everhit rate, the hit rate
below which the random access outperforms the sequentiabac
The test uses a stage that stores a set of unique integersirin an
ner state flow; input increments contain numbers randondydr
from the original input. Changing input increment size ades
the workload'shit rate, the fraction of accessed state. We run the
following experiments on a 16-node cluster consisting ciDnutel
Xeon 2.4GHz machines with 4GB of RAM, connected by a Gigabit
switch. We pre-loaded the state with 1 million records (5&)M
Here translation uses a single data partition, running omgles
node, though HDFS (or Hypertable) runs across the cluster.
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Figure 13: Running time using indexed state files.

Figure 13 compares running times for four configuratidBi$t-
able outperformsSequentiglwhich reads the entire state partition
file, for every selectivity. One benefit is thAtPtabledoes not sort
its records; it uses hashing to match keys on other inputsnéa-
sure this effectsequential, no sortloes not sort the partition file
(and will therefore incorrectly execute if the translataites new
keys during an epoch). In this case, BIPtable still outgentose-
guential access when accessing a majorit$(%) of state. For
reference we include a prior result [16] using Hypertakiéailed
to produce data when reading more than 50% of state. Firglly,
is relatively straightforward for BlPtables to leverageD33o im-
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Figure 12: The performance of the incremental versus landmik crawl queue.

p!’QVe random access pel'fol’mance; a quign_that promiS@to S 200 —&— Non-incremental shuffling 5300 —— Non-incremental shuffling
nificantly extend the performance benefit of this design.[16] . —6—Incremental shuffling o —6—Incremental shuffling
c —8— Multicast ;250 —8— Multicast
. _ £ 9]

5.3 Clustering coefficients g 150 S 200

Here we explore the performance of our clustering coefficien 735 g 150
translator (Figure 7). These graph experiments use a CcloBg5 £ 100 S
machines with 160GB drives, 4GB of RAM, and 2.8GHz dual core E % 100
Xeon processors connected by gigabit Ethernet. We incriziten 3 S0 2 50
compute clustering coefficients using a publicly availdtdeebook - 15} A "
crawl [26] that consists of 28 million edges between “frisfidVe o - 10 15 20 25 30 ored o 15 20 25 30
randomize the graph edges and create increments contdifikng Epoch Epoch
edges a piece. These are added to an initial graph of 50k edges (2) Running time. (b) Data shuffled.

connecting 46k vertices.
Figure 14(a) shows the cumulative running time for processi
successive increments. We configure the translator to Usedter Figure 14: Incremental clustering coefficient on Facebook dta.
groupings and successively enable incremental shufflidgnaun-
ticast support. First note that, unlike the incrementaitigueue,

running times with incremental shuffling are not constartisTs (described above). Here our incremental change is theiandit
because the mapped and shuffled data consists of both message?800 random edges (contained in a single input increment).
and state. Recall that these messages must be materialidekt Figure 15 shows the cumulative execution time for this psece

at the end of the prior epoch and then shuffled to their destina AS Section 3.1.2 explained, the dataflow proceeds in thresqsh
tion groups during the next epoch. In fact, the message wlum CcOMputing PageRank on the original graph (epochs 1-3),rfindi
increases with each successive increment as the graph begom  the subgrapld7 (epochs 4-8), and re-computing PageRank for nodes
creasingly more connected. in G (epochs 9-16). Here we have purposefully reduced the number
Additionally, map tasks that emulate multicasting (i.e,rbpli- of iterations in the first phase to highlight the incremewtahpu-
cating an input record for each destination) take four tdistes as ~ tation. For this incremental graph update, the affectegsyh
long to execute as map tasks that operate on state recordsopla ~ contains 40k nodes. _ _ _
interleaves these longer map tasks with the smaller stapetasis; Here we eyaluate the impact of |ngremental shuffl!ng andrinne
they act as stragglers until state becomes sufficientlygléagpund state flows via BIP_tabIes. Note that this dataflow requirediinect
epoch 24). At that point incremental shuffling removes ova5 ~ CBP implementation, specifically broadcast support foppgat-
of the total shuffled data in each epoch, enough to impactimgnn N9 weights from dangling nodes. Without it, local disksefillwith

times. Even before then, as Figure 14(b) shows, incremehtst intermediate data for even small graphs. o
fling frees a significant amount of resources, reducing triéeih Unlike clustering coefficient, incremental shuffling impes cu-
movement by 47% during the course of the experiment. mulative running time by 23% relative to only using broadcap-

For this application the critical optimization is multitiagy, which ~ POrt. Improvements occur primarily in the last phase asetiaee
both eliminates the user emulating multicast in map tasksran ~ fewer messages and processing state dominates. Aftenrputing
moves duplicate records from the data shuffle. In this casestd PageRank, incremental shuffling has reduced bytes move@%y 4
CBP improves cumulative running time by 45% and reduces data Finally, we see a significant gain by using inner state flow®(8

shuffled by 84% over the experiment’s lifetime. ables), as each epoch in the last phase updates only 0.5% of th
state records. In this case our architecture reduced battorie
5.4 PageRank and CPU usage, ultimately cutting running time by 53%.

This section explores the impact of direct CBP optimization
the incremental PageRank dataflow. We have verified thabit pr 6. CONCLUSION

duces identical results for smaller, 7k node graphs usingra n A goal of this work is to allow programmers to take advantage
incremental version. As input we use the “indochina-200&bw  of incremental processing in much the same way as prior otk p
graph obtained from [4]; it contains 7.5 million nodes an@® hil- cessing systems have simplified parallel programming. Wevee

lion edges. These experiments execute on 16 nodes in oterclus the model strikes a rich balance between sufficient flexjbftr
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