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Abstract—High-assurance systems, such as flight control and
banking systems require strict guarantees on information flows
or else face catastrophic consequences. Information flow tracking
(IFT) is a frequently used security measure for preventing
unintended information flows in such systems. Recently, Gate
Level Information Flow Tracking (GLIFT) has been proposed to
track information flows at the hardware level. GLIFT enables
a concrete understanding of all information flows from Boolean
gates. It unifies the notions of explicit flows, covert channels, and
even timing channels at the gate level and provides a general
approach for enhancing important security properties such as
integrity and confidentiality. This article presents a new encoding
scheme for GLIFT with fewer encoding states by combining
two states into one. Unlike the previous method, this reduction
in encoding states allows the GLIFT tracking logic to operate
independently from the original circuit. This independence allows
for the GLIFT logic to be configured as both redundancy and
tracking logic for the original circuit. Further, experimental
results show this new state assignment provides on average
25.7% reductions in area, 31.4% reductions in delay, and 48.6%
decrease in simulation time for several IWLS benchmarks.

I. INTRODUCTION

High assurance systems used for sensitive financial or mili-
tary information processing all demand a level of security far
beyond the norm. Two common security policies that usually
need to be upheld in such systems are non-interference [1]
and Bell LaPadula [2], which are frequently used to address
data integrity and confidentiality. The non-interference policy
requires that an untrusted sub-system should never influence a
trusted one, e.g., passengers should never be able to trigger an
action in the flight control system from the user network on an
airplane. The Bell LaPadula policy demands that information
never leaks from a classified sub-system to an unclassified
one, e.g., a secret key for data encryption should never flow to
portions other than cipher text. While these are very strong and
useful policies, they are difficult to deploy and even harder to
verify in practice. Among the different approaches to enforce
integrity and confidentiality, information flow tracking (IFT)
is a frequently used technique due to its efficiency in detecting
unintended information flows.

IFT provides an effective approach for preventing unin-
tended interaction between different components in a system.
However, previous IFT methods tend to force programmers to
comply with new typing systems and design rules that lead to

higher design complexity [3], [4], introduce large overheads
to system performance [5] or use coarse granularity labels and
propagation policies which are overly conservative [6], [7]. In
addition, they all ignore hardware specific side channels. While
information flows appear in various forms at program language
(PL), operating system (OS) and instruction set architecture
(ISA) levels, they can be precisely defined in a way that unifies
the notions of explicit flows, covert channels, and even timing
channels at the gate level.

Gate level information flow tracking (GLIFT) [8] provides
a concrete understanding of how information flows through
AND, OR, NOT and other Boolean gates, and all the way up to
the system stack. It is able to detect all logical flows including
those through hardware specific side channals such as timing
channels. Timing channels in caches [9] and branch predictors
[10] have previously been shown to leak secret keys due to
their nondeterministic latencies. There are ad hoc methods to
fix these very specific timing channels such as clock fuzzing
[11], but there has never been a systematic approach that
can detect and ultimately eliminate them. GLIFT provides
the first such methodology. By taking a bottom-up approach
to information flow security using GLIFT, these hardware
specific flows can be eliminated. However, we have observed
that GLIFT logic described using the current method requires
intermediate wires from the original circuit, causing the GLIFT
logic and original circuit to be nested. This would increase the
complexity for circuit design and verification. Additionally, the
previous GLIFT logic generation method encodes a data bit
and its label separately [8], which leads to extra number of
encoding states and further, area and delay overheads.

This article proposes a new encoding scheme for GLIFT
and reduces the total number of encoding states. Conse-
quently, GLIFT logic described using the new encoding is
self-contained and independent from the original circuit. Apart
from information flow tracking, the new GLIFT logic can
function as circuit redundancy for fault tolerance. Experimen-
tal results using IWLS benchmarks have also shown significant
reduction in area, delay and simulation time. Specifically, this
article makes the following contributions:

• Proposing a new state assignment for GLIFT with re-
duced number of encoding states;

• Enabling both information flow tracking and circuit re-



dundancy without introducing extra logic;
• Presenting quantitative analysis of the GLIFT logic for

IWLS benchmarks to show reductions in terms of area,
delay and simulation time.

The remainder of this article is organized as follows: Section
II introduces the fundamentals of GLIFT, covering the basic
concepts, the existing encoding technique for GLIFT logic
representation and its drawbacks. In Section III, we propose
an improved encoding technique for GLIFT, and perform
a comparison to the existing scheme. Section IV presents
experimental results in terms of area, delay and simulation
time using IWLS benchmarks. We conclude in Section V.

II. FUNDAMENTALS OF GLIFT
This section introduces how data bits are labeled in GLIFT

and illustrates how information flows are tracked at the gate
level with a simple example. It also discusses how GLIFT logic
is currently defined and constructed. Finally, the drawbacks of
the existing encoding technique are covered.

A. How GLIFT Tracks Information Flows
In information flow analysis, data are usually associated

with a label indicating their trustworthiness or security level.
This label is propagated through the system under pre-defined
policies and checked to prevent unintended information flows.
GLIFT uses fine granularity labels and propagation policies.
Each data bit is associated with a tag called taint. A logic
variable is said to be tainted when its taint is logic true and
untainted when its taint is logic false. Taint is propagated from
the input to the output of a function if the tainted input has an
influence on the output. As an example, consider the two-input
AND gate (AND-2) in Figure 1 (a).
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Fig. 1. (a) A two-input AND gate. (b) Partial truth table of AND-2 with
taint information. (c) The GLIFT logic of AND-2 is Abt +Bat + atbt.

Figure 1 (b) shows the partial truth table of AND-2 with
taint information, where at, bt and ot are the taints of A, B and
O respectively. When both inputs of AND-2 are tainted, the
output will surely be tainted. Similarly, when both inputs are
untainted, the output will be untainted. These obvious cases
are excluded from the truth table so that we can focus on the
more subtle ones in which only one input is tainted.

For a better understanding of taint, let’s consider the first
row (A = 0, B = 0, at = 0, bt = 1). When changing the value
of the tainted input B, the output does not change. Thus, the
tainted input does not have an influence on the output and

the output should be marked as untainted (ot = 0). In this
case, the untainted ‘0’ which dominates the logic value at
the output and prevents tainted information from flowing to
the output. Then let’s consider row 4 (A = 0, B = 1, at =
1, bt = 0). When changing the value of the tainted input A,
a change at the output will be observed. Thus, the tainted
input has an influence on the output and the output should be
marked as tainted (ot = 1). Once the GLIFT logic for AND-2
is simplified, the resulting circuit is shown in Figure 1 (c).

Upon the basic concepts, the next subsection introduces
the currently used encoding technique and tracking logic
generation method for GLIFT.

B. Existing Encoding Technique and GLIFT Logic Generation
Method

In the existing encoding technique [8], taint is independent
from the logic value of the data bit since they are encoded as
separate bits. Using this encoding technique, previous work
[12] has formalized GLIFT logic for AND, OR and NOT
gates as shown in Equation 1 to Equation 3 in order to create
GLIFT logic for circuits constructively with these building
blocks. Here, sh(f) is used to denote the GLIFT logic for
logic function f and ai is the taint of Ai (i = 1, 2, · · · , n).
The minus sign in the equations means removing the last term
from the expression.

sh(f) = sh(f) (1)

sh(f = A1 ·A2 · · ·An) =
n∏

i=1

(Ai + ai)− f (2)

sh(f = A1 +A2 + · · ·+An) =
n∏

i=1

(Ai + ai)− f (3)

To generate GLIFT logic for a circuit in linear time, one
needs to build a library containing tracking logic for basic
primitives, divide a given function into logic constructs and
generate GLIFT logic for these subsections constructively in a
manner similar to technology mapping. In the existing GLIFT
logic generation method [8], a library containing tracking logic
for the AND, OR and NOT gates is constructed. Such a library
is functionally complete in generating GLIFT logic for any
given Boolean circuit.

The existing encoding technique is capable of describing
GLIFT logic. However, it contains extra encoding states and
further, area and delay overheads, which will be discussed in
detail in the next subsection.

C. Drawbacks of the Existing Encoding Technique
In the existing encoding technique, a data bit can be either

‘0’ or ‘1’ while its taint can be either tainted or untainted.
Thus, there are four encoding states in the existing technique.
However, as proved by [12], a data bit and its taint never
appear in the same product term in simplified GLIFT logic.
In other words, the logic variable can be omitted from a
product term that contains its taint. Let’s assume the input
A of function f is tainted, i.e., at = 1 and use sh(f) to



denote the GLIFT logic of f . We have sh(f) = sh(f) · at,
since at = 1. As a result, the input A can be omitted from
sh(f) ·at. In other words, the logic value of a tainted variable
can be ignored in taint propagation. Thus, we can combine
the tainted ‘1’ and tainted ‘0’ states in the existing encoding
technique to a single one for encoding state reduction.

Additionally, from the encoding technique and GLIFT logic
generation method introduced, one may notice that the number
of product terms in the GLIFT logic for some logic primitives
increases exponentially to the number of inputs. As an exam-
ple, according to Equation 2, the number of product terms in
the GLIFT logic for an n-input AND gate is 2n − 1. Such
an exponential increase in the number of product terms leads
to complex GLIFT logic for basic gates and further even
more complex GLIFT logic for circuits. As a consequence,
large area and delay overheads are observed in the GLIFT
logic represented in that manner [12]. Further, the exponential
increase of product terms in GLIFT logic represented also
leads to long simulation time for design verification.

As mentioned, data bits and their taints are encoded sepa-
rately in the existing encoding scheme. As a result, both the
data bits and their taints need to be present in the GLIFT logic.
More specifically, GLIFT logic needs to reference intermediate
wires from the original design, which leads to a nested design
of the original circuit and its GLIFT logic. This causes the
resulting circuit to be harder to optimize and verify.

Since the existing encoding technique has extra number of
encoding states, large overheads in area, delay, and high design
complexity, we propose a more efficient encoding technique
in the following section.

III. AN IMPROVED ENCODING TECHNIQUE FOR GLIFT

The improved encoding technique reduces the total number
of encoding states. In addition, it separates the GLIFT logic
from the original design and enables the GLIFT logic circuit
to function as both tracking logic and circuit redundancy.

A. An Improved Encoding Technique
As described in Section II-C, the logic value of a tainted

variable can be ignored in taint propagation; the tainted ‘1’ and
tainted ‘0’ states can be combined to a single one to reduce
the total number of encoding states to three, namely untainted
‘0’, untainted ‘1’ and tainted. For simplicity, we use symbols
(U, 0), (U, 1) and (T, X) to denote these states respectively.

In the binary implementation of GLIFT logic, at least two
Boolean bits are needed to encode three states. Consequently,
there are a total of 24 possible encoding schemes. It is
impossible to find an encoding technique that is optimal for all
circuits because the problem is hard in nature [13] and optimal
encodings are usually specific to given circuits. However, since
GLIFT logic is constructed using tracking logic for Boolean
gates, it is possible to perform area and delay analysis on
GLIFT logic for the basic constructs under different encoding
schemes. After testing all 24 possible encoding schemes, those
that report the smallest area with a short delay (those that
have a slightly shorter delay report significantly larger area)

are shown in Table I. As an example, in the first encoding
scheme, (U, 0), (U, 1) and (T, X) are encoded to be “00”,
“11” and “01”.

TABLE I
NEW ENCODINGS WITH THE SMALLEST AREA AND A BALANCED DELAY.

Encodings (U, 0) (U, 1) (T, X)
Encoding 1 00 11 01
Encoding 2 00 11 10
Encoding 3 11 00 01
Encoding 4 11 00 10

To distinguish from the old encoding technique, the new
one uses a different way to denote encoding results. For a
given variable, we use its name with subscripts of 1 and 0
to denote the two-bit encoding result for that variable. As an
example, the two-bit encoding result of a given variable A is
denoted by A1 and A0. In the next subsection, we will create
GLIFT logic for the AND, OR and NOT gates using the new
encoding technique.

B. GLIFT Logic for Boolean Gates under the New Encoding
Test results have shown that the four different encoding

schemes in Table I share exactly the same GLIFT logic for the
AND, OR and NOT gates. Thus, we choose the first encoding
scheme for further analysis. Table II and Table III show the
results of logic AND and OR operations on the new symbols.
As an example, the AND operation results of (U, 0) with (U,
0), (U, 1) and (T, X) are all (U, 0) as shown by row 2 in
Table II.

TABLE II
LOGIC AND OPERATION ON NEW ENCODING SYMBOLS.

AND (U, 0) (U, 1) (T, X)
(U, 0) (U, 0) (U, 0) (U, 0)
(U, 1) (U, 0) (U, 1) (T, X)
(T, X) (U, 0) (T, X) (T, X)

TABLE III
LOGIC OR OPERATION ON NEW ENCODING SYMBOLS.

OR (U, 0) (U, 1) (T, X)
(U, 0) (U, 0) (U, 1) (T, X)
(U, 1) (U, 1) (U, 1) (U, 1)
(T, X) (T, X) (U, 1) (T, X)

From these two tables we can discover that the new symbols
are compatible with the rules defined for the logic AND and
OR operations. Thus, the GLIFT logic for the AND and OR
gates will be simply two AND and OR gates respectively.
However, AND gate together with OR gate do not make up a
complete function set that is able to describe all logic circuits.
To make it complete, at least the NOT gate should be included.
Unfortunately, the new symbols are incompatible with the
rules defined for logic NOT in that the inverse of “01” becomes
“10”, which is not defined. Thus, we need to study the logic
NOT operation on the new encoding symbols as defined in
Table IV and formalize GLIFT logic for the NOT gate.



TABLE IV
LOGIC NOT OPERATION ON NEW ENCODING SYMBOLS.

NOT (U, 0) (U, 1) (T, X)
(U, 1) (U, 0) (T, X)

Let’s denote the two inputs to GLIFT logic for a NOT gate
by A[1:0] and the outputs by O[1:0]. From Table IV, one can
formalize the following GLIFT logic for the NOT gate.

O1 = A0

O0 = A1

(4)

It is important to notice that O1 gets the inverse of A0

and O0 gets the inverse of A1 which adheres to our encoding
technique, namely the inverse of (T, X) remains as “01”.

When considering n-input gates with inputs A1, A2 · · ·An,
the GLIFT logic for AND and OR gates can be formalized as
shown in Equation 5 and Equation 6 respectively.

O1 = A11 · · ·A21 ·An1

O0 = A10 · · ·A20 ·An0
(5)

O1 = A11 + · · ·+A21 +An1

O0 = A10 + · · ·+A20 +An0
(6)

The GLIFT logic for n-input NAND and NOR gates can be
formalized as that for n-input AND and OR gates followed
by the GLIFT logic for the NOT gate. These are given in
Equation 7 and Equation 8 respectively.

O1 = A10 · · ·A20 ·An0

O0 = A11 · · ·A21 ·An1

(7)

O1 = A10 + · · ·+A20 +An0

O0 = A11 + · · ·+A21 +An1

(8)

With the GLIFT logic for the AND, OR and NOT gates,
one can constructively generate GLIFT logic for any Boolean
circuit. The next subsection first gives an insight into the ad-
vantages of both encoding techniques when targeting different
application scenarios and then defines encoding and decoding
logic needed to convert between the two techniques.

C. Encoding and Decoding Logic
As will be shown with experimental results, the new en-

coding can be more efficient in modeling taint propagation.
However, it is not as efficient as the old one in data storage
and transmission. This is because tainted ‘1’ and tainted ‘0’
share the same code “01”. An additional bit is needed to
distinguish the two, which will consume extra memory and
communication bandwidth. In order to take advantage of both
encodings, there needs to be encoding and decoding logic that
perform the conversion between different encodings.

For input A and its taint at (old encoding), the following
encoding logic is needed to convert them to the new encoding,
which is denoted by A1 and A0.

A1 = A · at
A0 = A+ at

(9)

At the output, decoding logic is needed to determine the
taint ot (old encoding) upon O1 and O0, which are the taint
outputs in the new encoding. This is achieved through a single
exclusive OR operation as shown in Equation 10.

ot = O1 ⊕O0 (10)

The encoding and decoding logic are linear to the number of
I/Os of a design. They only need to be deployed in the top level
entity. Thus, they will not introduce significant overheads in
area and delay as compared to the taint propagation logic. With
the encoding and decoding logic, one can perform conversions
between the two encoding schemes. The following subsection
carries out a comparison of GLIFT logic represented in both
encodings.

D. Comparison to the Old Encoding Technique
Figure 2 (a)∼(c) and (d)∼(h) show the GLIFT logic for

basic gates represented in the old and new encoding techniques
respectively.

t t t t t t t t
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Fig. 2. (a)∼(c) GLIFT logic for AND/NAND, OR/NOR and NOT gate
using the old encoding technique. (d)∼(h) GLIFT logic for AND, NAND,
OR, NOR, and NOT gate using the new encoding technique.

To represent the GLIFT logic for the NOT gate, the old
encoding technique simply uses a wire as shown in Figure 2
(c) while the new encoding uses two inverters as shown in
Figure 2 (h). The new GLIFT logic tends to report larger area
and delay if the original design consists of more NOT gates
than AND and OR gates.

From Figure 2 (d) to (g), we can see that the new GLIFT
logic only introduces an additional gate without changing the
number of logic levels. In the best case, the GLIFT logic
circuit represented in the new encoding technique will be twice
of the original circuit in area and equal in delay if there is no
NOT gate in the design. It will be half in area and delay on
average when compared to the GLIFT logic represented in the
old encoding technique. Such a conclusion can be drawn by
comparing Figure 2 (a)∼(b) and (d)∼(g) and will be reinforced
in the results section.

As given in Equations 5 to 8, the GLIFT logic for n-
input AND, OR, NAND and NOR gates are two product
terms whose size is linear to n. This is different from the
old encoding technique, where the number of product terms
increases exponentially to n as shown in Equations 2 and 3.
Additionally, the GLIFT logic represented in the new encoding



technique has a constant one logic level even for a large n.
By comparison, logic levels in the GLIFT logic for AND and
OR represented using the old encoding technique increases
linearly to n according to Equations 2 and 3.

Besides the AND, OR, NAND and NOR gates, the old
GLIFT logic for more complex Boolean gates are also more
complicated. For a better understanding, let’s consider the two-
input multiplexer (MUX-2), whose logic equation is O =
AB + BC. To generate GLIFT logic for MUX-2 using the
old encoding, one needs to divide the function into two AND
gates and an OR gate and generate tracking logic for them
step by step. Under the new encoding, this process is more
straightforward. One can directly write out the new GLIFT
logic for MUX-2 as shown in Equation 11. Further, tracking
logic can be easily created for large components as long
as their logic functions are specified in sum-of-products or
product-of-sums, or more generally in a form in which all
inverse operations are applied to logic variables only.

O1 = A1B1 +B0C1

O0 = A0B0 +B1C0

(11)

Further, by observing a partial logic circuit such as shown
in Figure 3, one can discover another difference between the
two encoding techniques. In the old encoding technique, the
original logic variables and intermediate results (the wires with
shadow) are referenced by the GLIFT logic, which results
in a nested design of the GLIFT logic and original circuit.
In the new technique, the encoding results contain all the
information necessary for taint propagation. Thus, taint is
propagated independent of the original circuit and GLIFT logic
is separated from the original design.

Old GLIFT
Circuit
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Circuit

New GLIFT
Circuit

Old 
GLIFT AND Old 

GLIFT OR
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GLIFT AND New 
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D
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O1
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ot
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Fig. 3. Partial circuit with GLIFT logic represented in both encodings. The
old GLIFT circuit needs intermediate results from the original design. The
new GLIFT circuit is completely independent from the original circuit.

Now that the GLIFT logic is separated from the original
circuit, it can be designed and verified independently. As
a result, the design complexity is decreased and the design
process can be parallelized. In addition, such separation is
quite useful for a static verification scenario, in which the
GLIFT logic is only used to verify if the original circuit
under test complies with pre-defined information flow policies
and will be removed when the verification completes. Further,
such separation also facilitates the 3-D integration of GLIFT
logic as a stacked security layer as described in [14] because

communication between the security layer and the original
design is significantly reduced.

Apart from separation from the original design, the new
GLIFT logic can also be configured as redundancy for fault
tolerance. This will be covered in the next subsection.

E. Enabling Circuit Redundancy
Another highlight of the new encoding is that it enables

GLIFT logic to function as circuit redundancy when no input
is tainted. Such highlight originates from the observation that
when no input is tainted, the new GLIFT logic will behave
exactly the same as the original design.

According to Figure 2 (d), (f) and (h), the GLIFT logic
for the basic constructs used in the constructive method, i.e.,
AND, OR and NOT, are two AND, OR and NOT gates
correspondingly. In Equation 9, when at = 0, both A1 and
A0 will take the value of A. Similarly, all inputs to the new
GLIFT circuit will take values of their original variables when
they are not tainted. Thus, in the case when no input is tainted,
the new GLIFT logic will be just twice the original design and
it will function as circuit redundancy.

For a better understanding, let’s consider the original circuit
and GLIFT logic for a two-input multiplexer as shown in
Figure 4. When no input is tainted (at = 0, bt = 0 and
ct = 0 in the old encoding), we have A1 = A0 = A,
B1 = B0 = B and C1 = C0 = C. When these values are
propagated through the GLIFT logic, the same values will be
observed at the outputs of both the original circuit and the
GLIFT logic, i.e., O1 = O0 = O. In other words, GLIFT
logic acts as redundancy to the original design.
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Fig. 4. The original circuit and GLIFT logic for a two-input multiplexer.
The outputs O1 and O0 will be equal to O when no input is tainted. In this
case, the new GLIFT logic functions as circuit redundancy.

This highlight of the new encoding technique can be quite
useful because high-assurance systems usually require circuit
redundancy for fault tolerance. One can ground all the taints
(setting all the taints in the old encoding to zero) and check if
the original circuit and the GLIFT logic have identical outputs
for fault detection. It implements triple modular redundancy
(TMR) [15] since there are two redundant bits for each output.
If a fault is detected in the original circuit, the GLIFT logic
can be temporarily used as substitute of the original design.

Now that a comparison of efficiency has been performed
theoretically, the following section presents a comparison of
the two encoding techniques in terms of area, delay and
simulation time using IWLS benchmarks.



IV. EXPERIMENTAL RESULTS

Apart from being able to be configured as circuit redun-
dancy, GLIFT logic circuits represented in the new encoding
technique achieve significant reductions in area, delay and
simulation time. In subsection IV-A, GLIFT logic for IWLS
benchmarks are generated using both encoding techniques for
area and delay analysis. Subsequently, simulation time results
are provided in subsection IV-B.

A. Area and Delay Results

Area and delay are important issues that need to be taken
into consideration in GLIFT logic design if GLIFT is to be
fabricated for dynamic information flow tracking. We carried
out experiments on several IWLS benchmarks to obtain area
and delay reports for GLIFT logic circuits represented in
both encoding techniques. ABC [16] is used as the synthesis
tool. The resyn2 synthesis script in ABC is used to optimize
the GLIFT logic circuits because it provides a good tradeoff
between area and delay [16]. The mcnc library embedded in
ABC does not provide units for area and delay results. Table V
shows some statistics of the original benchmarks used in our
experiments including the number of I/O, number of gates,
area and delay.

TABLE V
STATISTICS OF BENCHMARKS USED FOR AREA AND DELAY ANALYSIS.

Benchmark # of I/O # of Gates Area Delay
ttt2 24/21 158 384 6.5
alu2 10/6 678 1737 11.0
alu4 14/8 3569 9264 14.4
vda 17/39 1210 2973 10.6
x1 51/35 483 1167 10.4
i5 133/66 253 515 9.0
i6 138/69 437 983 4.6
i7 199/67 501 1151 5.3
i8 133/81 28441 72544 13.8
i9 88/63 10717 27152 11.9

frg2 143/139 4748 11597 14.1
too large 38/3 6568 16819 18.6

t481 16/1 515 1270 14.0

In our experiment, both encoding techniques are used for
GLIFT logic representation. The GLIFT logic circuits are then
synthesized for area and delay reports, which are shown in
Table VI. The area results include both the original benchmark
and its GLIFT logic. Reductions in area and delay achieved
by the new encoding technique are given in percentage.

From Table VI, we can discover that GLIFT logic rep-
resented in the new encoding technique gives significantly
smaller area and delay. As an example, the GLIFT logic for
alu4 described using the old encoding technique reports an
area/delay of 52893/47.4, while that represented using the new
one reports a result of 27791/17; there are 47.5% reduction in
area and 64.1% reduction in delay.

The new encoding technique has also achieved significant
reductions in area and delay when applied to the remain-
ing benchmarks in the IWLS benchmark set. On average,
the GLIFT logic represented in the new encoding technique

TABLE VI
AREA/DELAY RESULTS OF LOGIC CIRCUITS (BOTH ORIGINAL

BENCHMARK AND ITS GLIFT LOGIC).

Benchmark Area Delay
OldEnc.|NewEnc.|Reduc. OldEnc.|NewEnc.|Reduc.

ttt2 2988 1324 55.7% 21.7 9.2 57.6%
alu2 8518 5025 41.0% 32.8 13.9 57.6%
alu4 52893 27791 47.5% 47.4 17.0 64.1%
vda 14742 9041 38.7% 34.9 13.1 62.5%
x1 8875 4257 52.0% 37.0 13.0 64.9%
i5 6461 2395 62.9% 16.5 10.5 36.4%
i6 5379 3679 31.6% 9.3 7.7 17.2%
i7 8819 5886 33.3% 12.0 8.4 30.0%
i8 400907 206727 48.4% 47.5 16.8 64.6%
i9 159116 77677 51.2% 35.1 14.5 58.7%

frg2 162214 38050 76.5% 45.0 17.0 62.6%
too large 182469 48230 73.6% 63.1 21.4 66.1%

t481 11115 4920 55.7% 44.1 17.8 59.6%
Average 51.4% 54.0%

decreases the area by 25.7%, delay by 31.4% and area-
delay production by 53.5% on the 30 largest benchmarks
in the complete set. The improvement in area results from
simpler GLIFT logic for basic logic gates, especially for large
AND and OR gates. In addition, the new encoding technique
also reduces the number of logic levels and thus achieves
significantly smaller delay results.

Area and delay overheads are major concerns when deploy-
ing GLIFT logic in a dynamic application scenario. Table VII
lists overheads of new GLIFT logic circuits in terms of area
and delay. The area results for GLIFT logic include both the
original benchmark and tracking logic.

TABLE VII
AREA/DELAY OVERHEADS OF NEW GLIFT LOGIC CIRCUITS (ORIGINAL

BENCHMARK INCLUDED IN GLIFT LOGIC).

Benchmark Area Delay
Orig.|GLIFT|Overhead Orig.|GLIFT|Overhead

ttt2 384 1324 3.45 6.5 9.2 1.42
alu2 1737 5025 2.89 11.0 13.9 1.26
alu4 9264 27791 3.00 14.4 17.0 1.18
vda 2973 9041 3.04 10.6 13.1 1.24
x1 1167 4257 3.65 10.4 13.0 1.25
i5 515 2395 4.65 9.0 10.5 1.17
i6 983 3679 3.74 4.6 7.7 1.67
i7 1151 5886 5.11 5.3 8.4 1.58
i8 72544 206727 2.85 13.8 16.8 1.22
i9 27152 77677 2.86 11.9 14.5 1.22

frg2 11597 38050 3.28 14.1 17.0 1.21
too large 16819 48230 2.87 18.6 21.4 1.15

t481 1270 4920 3.87 14.0 17.8 1.27
Average 3.48 1.30

From Table VII, we can discover that the area of the GLIFT
logic is about twice the original design (after removing the
original circuit) and the delay is comparable to the original
design. These results well agree with what are shown in Fig-
ure 2 and are reinforcements of discussions in Section III-D.

B. Simulation Time Results
From area and delay analysis, we can see that the GLIFT

logic usually dominates the original design due to its com-



plexity. Consequently, it takes a long time to verify a design
that integrates its GLIFT logic. Simulation time is another
important factor that should be taken into consideration.

Several IWLS benchmarks are used for simulation time anal-
ysis. GLIFT logic represented in both encoding techniques are
simulated under Modelsim 6.4a using LFSR (Linear Feedback
Shift Register) as the random source. For each benchmark,
we simulated until a coverage of 95% is reached. In the
simulation, a total number of 222 vectors are tested, which
meets the simulation coverage requirement. The simulation
time results are shown in Figure 5. The data over the bars are
simulation time reductions in percentage.

Percentage Number Old!Enc New!Enc
10% 104858 6.44 3.41
20% 209715 7.81 4.65
30% 314573 10.05 5.79

ALU2(10/6)""1048576

30% 314573 10.05 5.79
40% 419430 13.05 7.37
50% 524288 15.85 8.65
60% 629146 18.41 9.64
70% 734003 21.86 11.43
80% 838861 24 82 12 5980% 838861 24.82 12.59
90% 943718 27.16 14.24

100% 1048576 30.85 15.13
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Fig. 5. Simulation time for GLIFT logic represented in different encoding
techniques.

From Figure 5, the simulation time of GLIFT logic rep-
resented in the new encoding technique is on average half of
tracking logic represented in the old encoding as shown by the
percentage data. One of the reasons for such an improvement
is that the GLIFT logic for n-input AND and OR gates
represented by the new encoding technique is constantly two
product terms whose size is linear n while that represented
using the old technique has a 2n−1 equal size product terms.
The other reason which contributes to shorter simulation time
is that the new encoding technique reduces the number of logic
levels in the GLIFT logic, which is discussed in Section III-D.

From the experimental results, we can see that the new
encoding technique is far more efficient in describing taint
propagation for GLIFT because of the significant reductions
in area and delay. These improvements are essential when
GLIFT is to be deployed into hardware for high-assurance
systems since overhead of the existing GLIFT logic is too
large to be practical to go in a fabricated chip. The reduction
in simulation time will speed up circuit testing even if GLIFT
is only used to statically verify if a circuit complies with pre-
defined information flow policies.

Theoretically, GLIFT logic represented using both encoding
techniques can potentially be optimized to the same circuit
after encoding and decoding logic are inserted. Equivalence
check using the cec command integrated in the ABC tool
has further enforced such theoretical analysis. However, logic
optimization is a hard problem and GLIFT logic is far more
complex than the original circuit. Reductions in product term
count and the number of logic level in GLIFT logic represented
in the new encoding technique result in far better implemen-
tation results and also shorter simulation time.

V. CONCLUSION

GLIFT provides an effective way to understand all in-
formation flows and prove important security properties of
a system. Generating optimized GLIFT logic circuits is a
critical issue due to their large overheads in area and delay.
This article proposes an improved encoding technique for
GLIFT logic representation. The proposed encoding technique
is functionally equivalent to the existing one in modeling taint
propagation but simplifies the GLIFT logic for large AND,
NAND, OR and NOR gates. The new encoding technique
separates the GLIFT tracking logic from the original design
and enables the GLIFT logic to be configured as circuit
redundancy for fault tolerance. Experimental results have also
shown that the proposed encoding technique decreases the
area, delay and simulation time of GLIFT logic circuits by
20% to 60% as compared to the old encoding technique.
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