PMShifter: Enabling Persistent Memory Fluidness in

Linux
Theodore Michailidis Steven Swanson Jishen Zhao
University of California, San Diego University of California, San Diego University of California, San Diego
tmichail@eng.ucsd.edu swanson@eng.ucsd.edu jzhao@eng.ucsd.edu
Abstract 23-24, 2022, Virtual Event, Singapore. ACM, New York, NY, USA,

Intel recently released the first commercial server-grade per-
sistent memory (PM), Optane DC Persistent Memory. PM
bridges the long-standing gap between volatile and non-
volatile storage devices, as its byte-addressability and non-
volatility allow it to be used partly as storage and memory
simultaneously. One downside of conventional memory man-
agement design is that such distinction needs to be made at
boot time or explicitly set through a user-level program. This
limits the flexibility offered by the device, as data persistence
requirements vary over time.

To address this issue, we propose PMShifter, which trans-
parently and dynamically configures PM between memory
and storage. To enable this flexible configuration, PMShifter
also targets inefficient memory compaction, page migration
and PM-oblivious NUMA policies. We evaluate PMShifter on
micro-benchmarks and real-life workloads, showing up to
12.3x improved page migration throughput, faster retrieval
of up to 12.77x more large physically contiguous memory
segments during compaction, while running Redis displayed
64% reduced tail latency and 2.09x improved throughput.

CCS Concepts

« Information systems — Phase change memory; « Soft-
ware and its engineering — Memory management.

Keywords

Persistent Memory, Non-volatile Memory, Operating Sys-
tems, Memory Management

ACM Reference Format:

Theodore Michailidis, Steven Swanson, and Jishen Zhao. 2022.
PMShifter: Enabling Persistent Memory Fluidness in Linux. In 13th
ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 22), August

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

APSys °22, August 23-24, 2022, Virtual Event, Singapore

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9441-3/22/08.
https://doi.org/10.1145/3546591.3547523

8 pages. https://doi.org/10.1145/3546591.3547523

1 Introduction

Intel recently released the first commercially available server-
grade persistent memory, named Optane DC Persistent Mem-
ory [7], allowing researchers to investigate its practical de-
sign challenges. Studies have shown that Optane is up to 8x
larger compared to DRAM, while having 2x higher latency
and up to 7x lower bandwidth [28].

PM can be subdivided to main memory and direct access
(DAX) storage chunks, maximizing its utilization by differ-
ent type of workloads. Leveraging this feature is essential
in data centers, where applications vary substantially [9]
between DAX-intensive and memory-bound applications.
Since memory accounts for approximately 40% of modern
server costs [1], it is crucial to not only leverage any idle
PM DAX segments as memory, but also to actualize it in a
performant manner.

Previous work on hybrid memory systems has focused
mostly on the efficient placement of pages in the right device
[3,4,11,14, 17,19, 23, 27]. However, there is a lack of work on
how and when to partition a dual-mode device like PM, and
the associated costs. Since memory requirements change
over time, there is no ideal configuration for PM. When
the system is under memory pressure, leveraging on the fly
idle DAX segments as memory could substantially reduce
operational costs. We introduce the term shift to describe
this online transition of a DAX PM segment to memory and
vice versa.

Efficiently addressing PM partitioning is burdensome, due
to substantial design challenges. First, the distinction has to
be made either at boot time [8] or by explicitly using user-
level programs during runtime[10]; both are impracticable
in data centers, where interactions and restarts should be
minimized.

Second, conventional memory management lacks sup-
port for PM as part of the main memory. These issues are
related mainly to page migration, memory fragmentation and
NUMA page placement, all of which are interconnected. Fast
page migration and memory fragmentation have a cyclic de-
pendency, since randomly migrating a page to another device
can exacerbate memory fragmentation, while a fragmented

https://doi.org/10.1145/3546591.3547523
https://doi.org/10.1145/3546591.3547523

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

memory can reduce page migration throughput. In addition,
page migration goes through the memory allocation critical
path, affecting both the system and page migration perfor-
mance. Last, as recent work has shown [13], modern OS lack
support for accurate NUMA page placement in hybrid mem-
ory systems. They are built upon the erroneous assumption
that memories’ attributes, such as latency and bandwidth,
are similar.

We introduce PMShifter, the first practical work that en-
ables online, transparent PM shifting. When under memory
pressure, PMShifter utilizes unused DAX segments to extend
the main memory, allowing to fully utilize the available space.
We identify and propose fixes for the associated pathologies
in the memory subsystem, optimizing both PM shifting and
the overall performance of hybrid memory systems.

PMShifter consists of 2 main components, the Shifter
and the Migrator, while introducing minimal modifications
on NUMA PM page handling. The Shifter is responsible for
memory pressure monitoring and shifting PM segments, em-
ploying an adjusted version of the Exponential Moving Aver-
age [26]. The Migrator enables faster page migration through
its combined compaction and page migration scheme, while
avoiding the memory allocator to alleviate increasing the
pressure in the central allocation point.

At the same time, PMShifter makes lightweight changes
to the existing DRAM memory compaction mechanism to
address both the fragmentation and high compaction failure
rates issues. PMShifter uses a slightly modified version for
PM, as a collaborative method to allow fast, non-intrusive dy-
namic PM shifting from memory to DAX. Finally, PMShifter
introduces simple changes to the NUMA logic to avoid the
related performance issues.

2 Background

This section focuses on the Linux memory management
background related to hybrid memory systems.

2.1 Memory Hotplug in Linux

Memory hotplug is a feature in Linux that allows increasing
or decreasing the total amount of physical memory the sys-
tem sees while it is running. Adding and removing pages is
called online and offline, respectively, and offlined pages are
invisible to the system, thus cannot be used.

In order to offline an allocated page, a new page has to
be allocated and then populated with the contents of the
old page. Then, the virtual-to-physical mapping has to be
updated and the corresponding TLB entries invalidated. The
last step is to update the page’s metadata to reflect the offline
status. This process is extremely costly, stalling the system
and workloads that use offlined pages. Contrarily, offlining
a free page involves only updating the metadata.

Theodore Michailidis, Steven Swanson, and Jishen Zhao

Free Scanner

N

L .Allocated Page |:| Free Page

Migrate Scanner

Figure 1: Compaction routine and target memory state

2.2 Memory Fragmentation

Memory fragmentation is considered a major memory man-
agement issue[24], with our measurements showing that
a fragmented memory can increase allocation latency by
up to 2.6X. To alleviate this problem Linux uses a memory
compactor to defragment the memory. The compactor uses
two scanners, termed migrate and free. The former scans for
allocated pages from the left-most end of the memory (mi-
grate area), while the latter browses for free pages, starting
from the right-end (free area). The process of compaction
(Figure 1) is the following: (i) The migrate scanner looks for
a suitable pageblock (2 MB block) to migrate pages from.
(ii) The free scanner tries to find one or more pageblocks
that can accommodate the pages to be migrated from the
previous step. (iii) The pageblocks’ contents from step (i)
are migrated to pageblocks from step (ii).

This process continues until the two scanners converge or
the compactor determines that the cost of compaction will
exceed a certain limit. In addition, during the first 2 steps,
the allocated and free pages are held in two lists, termed
migrate list and free list, respectively. While pages are in
these lists, they are considered invisible to the rest of the
system and cannot be utilized. Linux v5.9 introduced peri-
odic compaction, as an effort to prevent extreme memory
fragmentation.

2.3 Hot/cold pages in the kernel

When the demands exceed the memory capacity, the kernel
resorts to swapping out cold pages. Linux identifies cold
pages by maintaining two lists termed active and inactive,
that hold hot and cold pages, respectively.

2.4 NUMA Policies

In a Non-Uniform Memory Access (NUMA) system, each
node consists of a CPU with one or more memory nodes.
The CPUs can access these local memory nodes faster than
the remote nodes. We use the terms NUMA memory node
and memory node interchangeably in the rest of the paper.
Allocation and Page Migration The OS sorts the NUMA
memory nodes based on the NUMA topology, and uses that
ordering during allocation or page migration to choose the
closest target.

PMShifter: Enabling Persistent Memory Fluidness in Linux

Automatic NUMA Balancing. The goal is to minimize or
eliminate inter-NUMA accesses from processes. To accom-
plish that the kernel periodically tries to bring pages within
the same node the processes are running to. This feature is
known as automatic NUMA balancing [6],

3 Motivation

This section contains the related shortcomings we identified
in Linux memory management. We show how compaction
in Linux fails to address the fragmentation issue and limits
its performance. In addition, we demonstrate how NUMA al-
location and migration policies lead to easily-avoided perfor-
mance degradation in hybrid DRAM/PM systems. We exhibit
how page migration, a core function in a hybrid memory
system, increases the pressure on the centralized allocation
path and leads to excessive memory fragmentation.

3.1 PM wastage

Statically configuring PM leads to suboptimal use. Under
memory pressure, using unutilized PM DAX regions can
alleviate the pressure and eliminate the need for swapping.
However, simply supporting dynamic shifting is not enough:
we need to minimize shifting frequency, shift as early as
possible, and avoid interfering with workloads’ execution.

3.2 Memory Compaction Pathologies

Prematurely ending the compaction process is a significant
source of overhead. The key reasons for that are: (i) The free
scanner skips 2 MB and 4 MB pageblocks, to avoid breaking
the physical contiguity in these free area pageblocks. This
limits the space where the compacted pages can be moved,
and also creates a mix of allocated and free pages in the
free area, leading to a never-ending cycle of fragmenting
and compacting the memory. (ii) The free scanner skips
pageblocks that cannot accommodate entirely the pages to be
migrated from the first step of compaction. (iii) Pages that are
unavailable (e.g. pinned pages) during a compaction run, are
excluded by both scanners in future subsequent compaction
runs. Last, if the migrate scanner encounters an unmovable
page in a pageblock, it has to release all previously collected
pages from the migration list. This leads to wasted work
and stalls workloads, since the pages in the list cannot be
accessed throughout the entire process.

3.3 Inefficient Page Migration

We identify two main sources of inefficiency in the current
page migration mechanism: First, since the allocator is one
of the most crucial and centralized points in the kernel, fre-
quent page migrations can slow down both the system and
workloads. Second, the allocator always reserves the left-
most regions that fit the memory needs. This adds overhead

APSys 22, August 23-24, 2022, Virtual Event, Singapore

to the memory compactor that will move them again to the
rightmost side of the memory. Thus, the number of actual
migrations is doubled, doubling TLB invalidations and other
associated costs.

3.4 Challenges in NUMA policies

NUMA autobalancing is associated with the following major
performance drawbacks: First, it unmaps pages, but cannot
guarantee that page migrations will occur. This leads to un-
necessary overhead, primarily due to page faults caused by
the unmapping. Second, there is no intuition about which
pages to migrate. Ideally, we would want to move hot pages
to local DRAMs.

In addition, NUMA ordering and allocation policies in Linux
fail to recognize the different performance attributes between
DRAM and PM, leading to severe performance degradation.
When Linux tries to migrate a page from a PM node, the
ordering policy will prioritize a remote PM over the remote
DRAM under the same NUMA node, leading to significant
performance degradation.

4 PMShifter: NUMA-aware Dynamic
Persistent Memory

PMShifter’s goal is to fully leverage the available PM capac-
ity by dynamically configuring the PM memory and storage
segments, according to existing memory pressure. We tackle
the aforementioned compaction pathologies by developing
two different compactors (one for each memory device) as
we show that the priorities in the two devices are differ-
ent. PMShifter, combines DRAM compaction and PM page
migration, as an effort to accelerate both operations, avoid
the allocation critical path, and mitigate the fragmentation
problem. In addition, we use a coordinated PM compaction-
shifting scheme to reduce the cost of shifting. In terms of
NUMA management, PMShifter adapts the NUMA mem-
ory ordering that is followed during page migration and
allocation, to limit the performance degradation caused by
erroneous NUMA page placements.

4.1 Migrator

The Migrator uses a lightweight holistic compaction-migration
mechanism to combat fragmentation and boost both opera-
tions’ performance. It accelerates page migration throughput
and increases total physical contiguity.

4.1.1 Compaction. In an effort to maintain compatibility,
we build the Migrator on top of the 3-step Linux compaction
process, while introducting the following improvements: (i)
We increase the pageblock size from 2 MB to 4 MB. This
is the biggest-sized segments that the Linux memory alloca-
tor keeps track of [5]; aiming to keep the biggest segments

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

Phase 1: Gather allocated pages from top N less
loaded 4MB pageblocks in DRAM.

Y Y Y .

4MB 4MB 4MB

[I g v

Migration List Migration List

Phase 2: Gather top N "hot"
allocated pages from PMEM

Theodore Michailidis, Steven Swanson, and Jishen Zhao

Phase 3: Gather 2*N rightmost
free pages from DRAM

A _J

Free Scanner

Phase 4: Migrate pages from
Migration List to Free List

Free List

Figure 2: Combined DRAM compaction and page migration from PM in PMShifter

clean, increases the physical contiguous memory available,
reduces the total allocation time due to the increased bigger
segments’ availability, and lowers the demand for synchro-
nous compaction. (ii) We skip pageblocks that contain
unmovable pages. We check this in O(1) since this infor-
mation is provided as a flag field in each pageblock. This
optimization prevents the memory compaction overhead
described at the end of section 3.2. (iii) The free page scan-
ner in PMShifter does not skip empty 2 MB and 4 MB
pageblocks. This allows to efficiently use the whole space
that is available in the free area, without adding any kind
of overhead. (iv) The PM and DRAM scanners do not
keep pageblocks state between compaction runs. As we
described in 3.2, the Linux compactor skips unusable page-
blocks for multiple runs. We empirically found that these
pageblocks are limited in number, while this "unused" status
does not persist between multiple runs.

In terms of which pageblocks to compact, we differentiate
in DRAM and PM. In DRAM, the goal is to end up with the
utmost amount of clean pageblocks. Since we compact a
fixed amount of pageblocks, we prioritize the ones that have
the fewest allocated pages in them, to maximize the number
of clean pageblocks. We check the emptiest pageblocks by
maintaining a bitvector that tracks utilized 4 KB pages in
each pageblock. This is efficient both in terms of speed and
space, since it only reserves 96 MB for a 3 TB memory. Our
goal about PM compaction is different: we want to keep the
leftmost end of the memory clean; the intuition about this
decision will become clear in Section 4.2.

4.1.2 PM Page Migration. PMShifter’s goal is to avoid
migrating pages that would cause memory pressure, setting
a minimum free space that should always be available. We
empirically set this free page threshold to be over 3x the
number of pages to migrate. PMShifter uses the active list to
determine which pages to migrate to DRAM. The advantage
of this is that we avoid extra overhead for hot page tracking,

while using a carefully designed and maintained hotness
tracking mechanism.

4.1.3 Combined Mechanism. The process for the com-
bined migration is as follows: First, we assemble a migration
list containing DRAM pages for compaction and PM pages
for migration. Second, we scan the memory space and gather
free pages in DRAM to accommodate the pages from the mi-
gration list. Finally, we do the actual migration between the
migration and free lists. Figure 2 shows the entire process of
our combined DRAM compaction and PM page migration
mechanism. By combining migration and compaction in the
Migrator, we achieve three things: First, we increase the
rate of migration by batch migrating pages. Yan et al. [27]
displayed that increasing the number of pages under migra-
tion, also increases the migration throughput. Second, we
avoid contributing to the memory fragmentation by directly
migrating pages to the right-most end of the memory. Third,
we avoid the centralized allocation path by using the free
page scanner during compaction to find free target pages.

If there are no PM pages for migration, then we only run
the compaction mechanism. We use a background periodic
kernel thread for this part, migrating up to 400 MB in each
iteration to avoid adding significant overhead.

4.2 Shifter

In this section, we describe what the functionality of the
Shifter and focus on the following 3 important matters: (i)
when should the shifting occur, (ii) how to choose the PM
areas that should undertake the shifting, to minimize the
cost, and (iii) what happens if there is no available PM space
to shift or if there need to increase the available DAX space.

4.2.1 Memory Pressure Classification. The Shifter’s
goal is to accurately predict whether we need to shift mem-
ory according to memory pressure. We do this by adjusting
the Exponential Moving Average [26] formula to measure
the memory pressure at any time:

PMShifter: Enabling Persistent Memory Fluidness in Linux

MP; = a = free_space + (1 — a) * MP;_;

Where MP; is the memory pressure at time t, free_space de-
notes the total free space in every DRAM-PM pair, and a is
a smoothing factor which is used to remove the noise from
short-term fluctuations.

The Shifter uses a periodic background thread that man-
ages PM shifting and checks every second the existing mem-
ory pressure. If MP; is greater than the given threshold, it
shifts memory until the free available memory is increased by
5x%. To prevent fluctuating shifting to both directions (mem-
ory to storage and vice-versa), we use a 5-second interval
in-between different direction shifting. We fine-tune all the
variables to accurately predict the need for shifting.

4.2.2 PM area selection. Choosing the right memory ar-
eas to undertake the memory to storage conversion is crucial
to PMShifter’s performance. The goal here is twofold: (i)
maintain the contiguity, and (ii) minimize the cost. The for-
mer can be achieved by either pruning the start or the end
of the PM address space. The latter dictates our decision of
what to prune: since we want to reduce the cost, we need to
offline and convert a region that probabilistically has fewer
allocated pages. The intuition behind this is the fact that
offlining multiple allocated pages at once is extremely costly
and time consuming, as described in the end of section 2.1.

Trying to keep the leftmost PM memory regions clean
helps us alleviate the cost of offlining allocated pages. This
intuition is what led us to separate the logic between the
DRAM and PM compactors: the former tries to maximize the
total number of clean pageblocks, while the latter prioritizes
keeping the left-most PM area clean. Another benefit is that
we remove page migration from the critical path, avoiding
disrupting workloads’ execution.

Despite keeping clean the leftmost end of the memory;, it
might contain some allocated pages. To avoid the cost of of-
flining multiple allocated pages, we first check our bitvector
for each pageblock to offline, and limit this operation to up to
100 MB. We also check if the free space in DRAM is enough
to comfortably accommodate potential allocated pages that
will be offlined. In our prototype, this check is the same as
for page migration, where the amount of free space should
be at least 3% the amount that we want to offline.

4.2.3 Insufficient PM space. When there is an absence of
PM to utilize under memory pressure, PMShifter falls back
to the default case, swapping. When there is need for DAX-
enabled space, and some portion of PM is used as memory,
we just shift and evict the pages. This eviction leads to page
migrations from PM to DRAM or swapping, depending on if
DRAM has enough space to accommodate these pages.

APSys 22, August 23-24, 2022, Virtual Event, Singapore

800 -

700 A

600 -

500 ;
—e— Linux compactor

400 | —@— PMShifter's DRAM compactor
—»- PMShifter's PMEM compactor
300 A

Total #2MB blocks available

200 A

100 A
0 50 100 150 200 250 300
Time (s)

Figure 3: Recovery of 2 MB pageblocks for vanilla Linux
and PMShifter.

4.3 NUMA Efficiency

We fix the NUMA pathologies that we described in 3.4 with
the following changes: (i) We disable NUMA autobalancing
for PM, allowing PMShifter to manage which pages should
be migrated and how frequently. This allows PMShifter
to minimize the use of PM only when it is needed, while
keeping the hottest pages in DRAM. (ii) We change the
allocation/page migration ordering to prioritize the DRAMs
over the PMs, for each remote DRAM-PM pair.

5 Evaluation

For our evaluation we use a mix of memory-intensive mi-

crobenchmarks, and real-world applications. The former are

used to isolate and demonstrate how our modifications affect

individual parts of the memory subsystem, while the latter

to show the impact of our changes in real-world situations.
Our evaluation targets to address the following:

e [s Shifter elastic and proactive?

e How fast can our DRAM and PM compactors restore
the physical contiguity, compared to vanilla Linux?

e How does the Migrator perform?

e What is the impact of our NUMA ordering changes?

5.1 Configuration

We performed our experiments in a dual-socket, 24-core per
socket machine. Each socket has 6 memory channels, and
the total amount of memory that we used includes 32 GB
Micron DDR4 DIMM and 256 GB Intel Optane DC Persistent
Memory. We built PMShifter on top of Linux 5.6.19, which
we also use to evaluate our changes. We also modified the
Linux compactor to reflect the changes introduced in v5.9.

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

5.2 Fragmentation

We use the modified periodic Linux 5.9 compactor and com-
pare it with PMShifter’s compactors. In a virtual machine
with 12 GBs of memory, we use a kernel-level workload to
severely fragment the memory’, until there are nearly non
2 MB and 4 MB pageblocks available. We track how these
numbers change over the course of 3 minutes to evaluate
how fast each compactor can restore physical contiguity. We
run this experiment for each compactor, each time in a fresh
VM instance, and track the total number of 2 MB pageblocks,
as the sum of 2 MB and 4 MB pageblocks. We track only
these pageblocks, as the biggest contiguous segments that
the Linux memory allocator keeps track of; a large number
of these pageblock being available are a good memory frag-
mentation index. For each compactor we try to compact up
to 200 MB every 5 seconds.

Figure 3 shows how fast the three compaction mechanisms
can increase the total free 2 MB pageblocks. For the first
272 seconds, the default compactor recovered none, while
PMShifter’s compactors start almost immediately restoring
these pageblocks. Regarding the PM compactor, there is a
big plunge starting from second 160, but then it continues
retrieving physically contiguous pageblocks. This is antic-
ipated, since we do not set an upper limit on the regions
that the PM migrate scanner looks for allocated blocks. After
the first three minutes, we notice that the PM compactor
continues recovering more 2 MB segments.

The result is that our DRAM and PM compactors reclaim
up to 12.77X more 2 MB physical contiguous blocks com-
pared to Linux. At the same time, our compactors initiate
this 2 MB clean block retrieval much earlier.

5.3 Combined Page Migration

We measure the efficacy of PMShifter’s combined page migra-
tion mechanism by comparing it with a compaction followed
by a migration in vanilla Linux. We vary the size of total
migrated pages between 4 MB and 1.6 GB, half of which are
used for compaction in DRAM and half for migration from
PM, and measure the throughput and number of failed page
migrations. Figure 4 shows the corresponding rates of migra-
tion for each method. The average speedup of our method is
5.88% over the default method.

We also measure the number of failed migrations. In our
case, the number of failed migrated pages is usually zero,
but always less than 0.0083%, while for Linux it is between
41.4% and 49.9%. In PMShifter, a migration can only fail
when there is a rapid change in the page status between
the migrate list assembly and actual migration. For Linux,
this high failure percentage is primarily attributed to the

We use a VM instead of our machine, because this kernel workload can
potentially corrupt the kernel memory

Theodore Michailidis, Steven Swanson, and Jishen Zhao

300

286

BN Linux
B PMShifter

N

o

o
L

i

o

o
L

Rate of migration (pages/millisecond)

4MB 40MB 400MB 1.6GB

Pages migrated (MB)
Figure 4: Migration throughput for combined page mi-
gration in vanilla Linux and PMShifter. Higher is bet-
ter.

’r—\‘, —————— '\‘-‘
254 _1 o o S
20 1
151
—— Used memory
o 101 --- Total memory
&)
2 0 20 40 60 80 100
E T ——————=-—=—=C N
3 ot "
30 1
20 1
10 4
0 10 20 30 40 50 60
Time (s)

Figure 5: Total memory size and allocated memory in
PMShifter: (i) when running connected components in
Galois with a 65M node, 1.8B edges input graph (up),
and (ii) for a microbenchmark with varying memory
allocation/freeing rate (down).

scanners’ early meeting, described in subsection 2.2. At the
same time, PMShifter migrates the pages on the right side
of DRAM, avoiding any fragmentation exacerbation, which
would lead to further future migrations.

5.4 Impact On Real-Life Workloads

We use Galois [15], an object-based parallelization system, to
evaluate the PMShifter’s performance and malleability. We
run the Galois connected components implementation over a
large input graph from Stanford Network Analysis Platform
(SNAP) [18], with 65 million nodes and 1.8 billion edges. This

PMShifter: Enabling Persistent Memory Fluidness in Linux

Operation Mset | Set Get | Lpush | Rpop
Throughput 2.02x | 1.62x | 1.92x | 2.09x | 1.92x
90th latency | 0.49x | 0.64x | 0.59x | 0.48x | 0.57x
99th latency 0.49x | 0.56x | 0.48x | 0.48x 0.36x
99.9th latency | 0.50x | 0.64x | 0.55x | 0.52x | 0.39x
Table 1: Redis throughput and latency in PMShifter
compared to vanilla Linux. For throughput higher is
better, for latency lower is better

workload is divided in two phases: (i) reading and preprocess-
ing the graph and (ii) executing the connected components
algorithm. The total system and workload memory required
is approximately 28 GB. We limit the local DRAM to 20 GB.
Upper Figure 5 shows the total amount of used memory
and the total available amount of memory. We derive the
following: First, in the initial stage (5s - 10s), where Galois
is allocating most of the memory, PMShifter detects a rapid
change in the allocation rate, and starts shifting PM stor-
age segments, correctly predicting the amount of memory
needed in the near future. Second, from second 18 till the
end, the total amount of used memory is roughly stabilized;
PMShifter notices that the allocation rate has dropped and
the amount of memory needed is less, so it starts offlining
the pages. Third, after PMShifter shifts back the PM seg-
ments, the total amount of memory and used memory are
close, showing that PMShifter correctly identifies that this
memory is not needed, avoiding wasting PM as memory at
all. We note that the remote DRAM is not used at all, which
is the intended case to avoid any performance degradation.
Next, we use Redis, an in-memory data store, to evaluate
our NUMA modifications. We run redis-benchmark [22]
with a memory consumption of 16 GB, and measure the la-
tency and throughput for 5 different operations: mset, set,
get, 1push, rpop. We fully consume the local DRAM, to en-
sure that it will not receive any pages during the experiment.
We first run redis-server on local PM, populate the server
with the key values, offline the local PM node, and then run
the Redis operations. Offlining the node forces the OS to
migrate the allocated pages to the next memory node ac-
cording to the policy. Since the local DRAM is full, the pages
are migrated to remote PM in Linux, and remote DRAM
in PMShifter. Table 1 contains Redis’ throughput, and 90th,
99th, and 99.9th latency PMShifter compared to vanilla Linux,
showing that PMShifter can offer up to 2.09x better through-
put with approximately 50% reduction across all latencies.

5.5 Hybrid Memory Shifting Elasticity

We test PMShifter’s elasticity with a microbenchmark that
uses different allocation and freeing rates. Lower Figure 5
shows the corresponding total allocated and total size of
memory. We notice that PMShifter responds accordingly to

APSys 22, August 23-24, 2022, Virtual Event, Singapore

any allocation rate and absence of total free memory, while
it avoids withholding unnecessary PM memory segments.
We repeat this for a fixed allocation/freeing rate and observe
similar elasticity, but omit the results due to space limitation.

6 Related Work

Dynamic Memory Storage Division. A dynamic distinc-
tion between memory and storage has been briefly discussed
in the past by Song et al. [25], where PM was split between
storage and a dynamically configured part. However, it does
not take into account associated memory management issues
and misses a prototype.
Compaction. lluminator [21] modifies the memory alloca-
tor to avoid polluted pageblocks, containing both movable
and unmovable pages. Ingens [16] uses the default memory
compactor periodically. MEGA [20] compacts pageblocks
based on their fullness and age of virtual-to-physical map-
pings. These solutions are orthogonal or complementary to
PMShifter’s compactors.
Identifying Hot Pages. Yan et al. [27] use the active and
inactive lists to identify hot and cold pages. HeteroOS [11]
and Ingens [16] use the kernel’s idle page tracking feature
[12], which is associated with frequent TLB invalidations.
Ingens uses the EMA for past accesses to ameliorate this
cost.

Thermostat [2] also uses the idle page tracking feature, but
limits the overhead by using classification to predict which
pages are accessed frequently.

7 Conclusion
This paper proposes PMShifter, the first complete work on

dynamic PM configuration. Our evaluation shows that PMShifter

adapts well to the memory needs of the system, working
proactively and avoiding interfering with workloads’” and
the system’s normal execution. PMShifter also increases the
page migration throughput, both within and across different
memory nodes, and fixes PM-unaware migration policies.
Last, it improves compaction, both in terms of speed and
total amount of physical contiguity restored.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. This paper is supported in part by NSF grants 1829524,
1817077, and SRC/DARPA Center for Research on Intelligent
Storage and Processing-in-memory.

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.

APSys ’22, August 23-24, 2022, Virtual Event, Singapore

[10

[11

(12

[13

(14

(15

(16

[l

]

—

—

]

]

[

=

In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419-434.
https://www.usenix.org/conference/nsdi20/presentation/agache
Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
Transparent Page Management for Two-Tiered Main Memory. SIG-
PLAN Not. 52, 4 (April 2017), 631-644. https://doi.org/10.1145/3093336.
3037706

Santiago Bock, Bruce R. Childers, Rami Melhem, and Daniel Mossé.
2014. Concurrent Page Migration for Mobile Systems with OS-
Managed Hybrid Memory. In Proceedings of the 11th ACM Confer-
ence on Computing Frontiers (Cagliari, Italy) (CF ’14). Association for
Computing Machinery, New York, NY, USA, Article 31, 10 pages.
https://doi.org/10.1145/2597917.2597924

Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sud-
hanva Gurumurthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid
Memory Page Scheduler with Machine Intelligence. In Proceedings
of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 37-48. https:
//doi.org/10.1145/3307681.3325398

Mel Gorman. Online; Accessed May, 2021. Chapter 6 Physical Page
Allocation. https://www.kernel.org/doc/gorman/html/understand/
understand009.html.

Mel Gorman. Online; Accessed May, 2021. Foundation for automatic
NUMA balancing. https://lwn.net/Articles/523065.

Intel. Online; Accessed May, 2021. Intel Optane DC Persistent Mem-
ory. https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

Intel. Online; Accessed May, 2021. Intel Optane DC Persistent Memory
- Quick Start Guide. https://www.intel.com/content/dam/support/
us/en/documents/memory-and-storage/data- center-persistent-
mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf.
Intel. Online; Accessed May, 2021. Reimagining Memory and Storage
in the Data Center. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-optane-technology/reimagine-
memory-storage-in-the-data-center.html.

PMDK Team Intel. Online; Accessed May, 2021. Documentation for
ndctl and daxctl. https://pmem.io/ndctl.

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS: OS Design for Heterogeneous Memory Management
in Datacenter. In Proceedings of the 44th Annual International Sym-
posium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17).
Association for Computing Machinery, New York, NY, USA, 521-534.
https://doi.org/10.1145/3079856.3080245

The kernel development community. Online; Accessed May, 2021.
Idle Page Tracking. https://www.kernel.org/doc/html/latest/admin-
guide/mm/idle_page_tracking.html.

Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring
the Design Space of Page Management for Multi-Tiered Memory Sys-
tems. In 2021 USENIX Annual Technical Conference (USENLX ATC 21).
USENIX Association, 715-728. https://www.usenix.org/conference/
atc21/presentation/kim-jonghyeon

A. Kokolis, D. Skarlatos, and J. Torrellas. 2019. PageSeer: Using Page
Walks to Trigger Page Swaps in Hybrid Memory Systems. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 596-608. https://doi.org/10.1109/HPCA.2019.00012

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic Paral-
lelism Requires Abstractions. SIGPLAN Not. 42, 6 (June 2007), 211-222.
https://doi.org/10.1145/1273442.1250759

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Theodore Michailidis, Steven Swanson, and Jishen Zhao

Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA)
(OSDI’'16). USENIX Association, USA, 705-721.

Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread
and Memory Placement on NUMA Systems: Asymmetry Matters. In
Proceedings of the 2015 USENIX Conference on Usenix Annual Technical
Conference (Santa Clara, CA) (USENLX ATC ’15). USENIX Association,
USA, 277-289.

Jure Leskovec and Andrej Krevl. Online; Accessed May, 2021. SNAP
Datasets: Stanford Large Network Dataset Collection. http://snap.
stanford.edu/data.

Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards Programming
Heterogeneous Memory Asynchronously. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16).
Association for Computing Machinery, New York, NY, USA, 369-383.
https://doi.org/10.1145/2872362.2872401

Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019.
MEGA: Overcoming Traditional Problems with OS Huge Page Man-
agement. In Proceedings of the 12th ACM International Conference on
Systems and Storage (Haifa, Israel) (SYSTOR ’19). Association for Com-
puting Machinery, New York, NY, USA, 121-131. https://doi.org/10.
1145/3319647.3325839

Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association
for Computing Machinery, New York, NY, USA, 679-692. https://doi.
org/10.1145/3173162.3173203

Redis. Online; Accessed May, 2021. Redis benchmark. https://redis.io/
topics/benchmarks.

Jee Ho Ryoo, Lizy K. John, and Arkaprava Basu. 2018. A Case for
Granularity Aware Page Migration. In Proceedings of the 2018 Inter-
national Conference on Supercomputing (Beijing, China) (ICS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 352-362.
https://doi.org/10.1145/3205289.3208064

Nikolay Savvinov. Online; Accessed May, 2021. Memory fragmenta-
tion: the silent performance killer. https://savvinov.com/2019/10/14/
memory-fragmentation- the-silent-performance-killer.

Hyeonho Song and Sam H. Noh. 2018. Towards Transparent and
Seamless Storage-As-You-Go with Persistent Memory. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage
18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/song

Wikipedia contributors. Online; Accessed May, 2021. Exponential
Moving Average — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/wiki/Moving_average.

ZiYan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Nimble Page Management for Tiered Memory Systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI,
USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 331-345. https://doi.org/10.1145/3297858.3304024

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In 18th USENLX Conference on File and
Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA,
169-182. https://www.usenix.org/conference/fast20/presentation/

yang

https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3093336.3037706
https://doi.org/10.1145/3093336.3037706
https://doi.org/10.1145/2597917.2597924
https://doi.org/10.1145/3307681.3325398
https://doi.org/10.1145/3307681.3325398
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://www.kernel.org/doc/gorman/html/understand/understand009.html
https://lwn.net/Articles/523065
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology/reimagine-memory-storage-in-the-data-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology/reimagine-memory-storage-in-the-data-center.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology/reimagine-memory-storage-in-the-data-center.html
https://pmem.io/ndctl
https://doi.org/10.1145/3079856.3080245
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://doi.org/10.1109/HPCA.2019.00012
https://doi.org/10.1145/1273442.1250759
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/2872362.2872401
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
https://doi.org/10.1145/3205289.3208064
https://savvinov.com/2019/10/14/memory-fragmentation-the-silent-performance-killer
https://savvinov.com/2019/10/14/memory-fragmentation-the-silent-performance-killer
https://www.usenix.org/conference/hotstorage18/presentation/song
https://www.usenix.org/conference/hotstorage18/presentation/song
https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Hotplug in Linux
	2.2 Memory Fragmentation
	2.3 Hot/cold pages in the kernel
	2.4 NUMA Policies

	3 Motivation
	3.1 PM wastage
	3.2 Memory Compaction Pathologies
	3.3 Inefficient Page Migration
	3.4 Challenges in NUMA policies

	4 PMShifter: NUMA-aware Dynamic Persistent Memory
	4.1 Migrator
	4.2 Shifter
	4.3 NUMA Efficiency

	5 Evaluation
	5.1 Configuration
	5.2 Fragmentation
	5.3 Combined Page Migration
	5.4 Impact On Real-Life Workloads
	5.5 Hybrid Memory Shifting Elasticity

	6 Related Work
	7 Conclusion
	References

