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Wei Hu, Jason Oberg, Student Member, IEEE, Janet Barrientos, Dejun Mu, and Ryan Kastner, Member, IEEE

Abstract—Embedded systems found in critical infrastructures
require tight information flow controls to prevent unintended
interference between different system components. These critical
embedded systems require extensive testing and verification to
ensure strict enforcement of information flow policy. To assist in
this process, gate level information flow tracking (GLIFT) has
been proposed to expose all flows of information through Boolean
gates. However, the current work in this realm only considers a
two-level linear security lattice (LOW � HIGH). In this letter, we
expand the theoretical aspects of GLIFT to multi-level security
lattices and provide an analysis of the overheads using IWLS
benchmarks. Results show that expanding GLIFT to a multi-level
lattice produces overheads and we discuss potential research on
its applications.

Index Terms—Critical Embedded Systems, Hardware Security,
Gate Level Information Flow Tracking, Security Lattice

I. INTRODUCTION

CRITICAL embedded systems such as those found in the
military, industrial infrastructures and medical devices

all require strict guarantees on information flow security
because of the extremely high cost of a failure. These systems
require rigorous design and testing to ensure that untrusted
information never affects trusted computation or that secret
information never leaks to unclassified domains. The require-
ments, for both integrity and confidentiality, can be captured
by the formal model of information flow security. This model
classifies data objects in a system into different security levels,
tracks the flow of information between security domains, and
enforces a specific security policy such as non-interference [1].
While non-interference is a strong and useful security policy,
it requires tight information flow control (IFC) to prevent
unintended interactions between different system components
resulting from harmful flows of information.

Information flow tracking (IFT) is a frequently used tech-
nique for enforcing IFC. IFT associates a label with data, and
monitors the propagation of this label through the system to
check if sensitive data leaks to an unclassified domain or if
integrity-critical components are affected by untrusted data.
With more functional units, such as security primitives, being
built into hardware to meet performance and power constraints,
it is required that embedded security be enforced from the
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underlying hardware up. In this process, hardware assisted
IFT methods have been deployed to capture harmful flows of
information including those through hardware specific timing
channels. Implicit flows resulting from these timing channels
have been shown to leak secret keys in stateful elements
such as caches [2] and branch predictors [3]. In addition,
such timing flows can cause violations in real-time constraints,
hindering real-time operations of a system or even rendering
the critical system useless. Further, these channels are so hard
to detect that they are usually identified only after operational
critical security policies have been violated.

To allow full account for information flow security in critical
systems, researchers have proposed Gate Level Information
Flow Tracking (GLIFT) [4]. GLIFT monitors all digital in-
formation flows by tracking individual bits through Boolean
gates. At such a low level of abstraction, GLIFT is able to
capture all transition activities including register to register
timing. As a result, all digital information flows are made
explicit, including timing channels that are inherent in the
underlying hardware but invisible to programmers. Previous
work has illustrated the application of GLIFT for building
verifiably information flow secure high-assurance systems.
GLIFT has been shown to be effective in detecting timing
channels in bus protocols such as I2C and USB [5]. In [6],
an execution lease architecture was developed to strictly
bound the effects of untrusted programs, employing GLIFT to
show provable information flow isolation between execution
contexts. Further, GLIFT has been used to build a provably
information flow secure system from the ground level up [7].

Although GLIFT provides an effective approach for enforc-
ing information flow security, the existing GLIFT method tar-
gets a two-level linear security lattice [8] and thus only consid-
ers two-level security labels, e.g., trusted � untrusted
or, the dual, unclassified � confidential. However,
most systems benefit from or require multi-level security
(MLS). For example, data objects are usually classified into
at least four security levels, namely Top secret, secret,
confidential and unclassified in military systems.
A two-level linear security lattice simply cannot be used for
modeling such a policy. In addition, many systems tend to be
interested in non-linear lattices for modeling security policies.
For example, it is often desirable to have a policy which
requires isolation of the highest security level (Top Secret)
from several incomparable entities (e.g., Secret US and
Secret UK). That is, the model specifies that Secret US
and Secret UK are at the same level but represent two
different objects. More specifically, Top Secret might be
the label for a data encryption process which requires that
Secret US and Secret UK learn nothing other than the
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cipher-text while it is perfectly secure for processes Secret
US and Secret UK to learn information about one another.
Thus, we need to expand GLIFT to more general security
lattices in order to adapt to a wider range of systems.

This letter focuses on how GLIFT can be expanded to multi-
level security lattices. It discusses this expansion by defining
label propagation rules, deriving tracking logic and performing
overhead analyses for several frequently used lattices. Such an
expansion is intended to provide insight into how GLIFT can
be expanded in this general way and what sort of area and
performance overheads should be expected.

II. PRELIMINARIES

Denning first proposed the lattice model for describing
information flows policies [8]. An information flow policy can
be modeled as a finite security lattice {SC,�}, where SC is
the set of security classes indicating different security levels of
data objects and � defines the partial order on these security
classes. Let L : O → SC be a function which returns the
security class of object O. For example, L(x) denotes the
security class of an object x ∈ O. The security class of A is
no higher (or more restrictive) than that of B if L(A) � L(B).
In this case, information flowing from A to B will not violate
the policy specified by the lattice and thus is secure.

Figure 1 shows several frequently used security lattices.
Take the square lattice in Fig. 1 (d) as an example. The
symbols in the lattice represent security classes, i.e., SC =
{Unclassified, Secret1, Secret2, Top Secret}.
Here, Secret1 and Secret2 are two incomparable
security classes that reside between Top Secret and
Unclassified. The arrows show the permissible informa-
tion flows that do not lead to a security policy violation and
reflect the partial order defined by the security lattice.
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Fig. 1. Sample security lattices. (a) Two-level linear lattice. (b) Three-level
linear lattice. (c) Four-level linear lattice. (d) A square lattice.

Let ⊕ denote the least upper bound operator on security
classes. Given two security classes S1 and S2, S1 ⊕ S2
calculates the most restrictive security class S, satisfying that
S1 � S and S2 � S. Consider the square lattice, we have
Unclassified ⊕ Secret1 = Secret1 and Secret1 ⊕
Secret2 = Top Secret. Previous IFC methods tend to be
conservative in calculating the security class for the output of
an operation since they do not consider the value with which
the objects can take but solely its security level. It is often
the case that a higher security level object will not actually
affect a lower one even if it is involved in a computation.
Specifically, consider n data objects A1, A2, · · · , An belong-
ing to security classes S1, S2, · · · , Sn respectively. When
an operation is performed on these data objects, the security
class of the output will be determined using (1). This is
doubtlessly secure since we have L(Ai) � S, i = 1, 2, · · · , n.

However, it can be conservative because information contained
in A1, A2, · · · , An may not necessarily affect the output.

S = S1⊕ S2⊕ · · · ⊕ Sn (1)

GLIFT provides a more precise approach to IFC in that
the output is bounded to the most restrictive security class
whose data actually affects the output. The existing GLIFT
method targets the two-level linear lattice. Table I defines the
label propagation rules for calculating the security class of the
output on the two-input AND gate (AND-2). In the table, the
symbol (S0, 0) represents a class S0 logic ‘0’ input; (S1, 1)
denotes a class S1 logic ‘1’ input, and so forth.

TABLE I
GLIFT LABEL PROPAGATION RULE SET FOR AND-2 ON THE TWO-LEVEL

LINEAR SECURITY LATTICE.

AND (S0, 0) (S0, 1) (S1, 0) (S1, 1)
(S0, 0) (S0, 0) (S0, 0) (S0, 0) (S0, 0)
(S0, 1) (S0, 0) (S0, 1) (S1, 0) (S1, 1)
(S1, 0) (S0, 0) (S1, 0) (S1, 0) (S1, 0)
(S1, 1) (S0, 0) (S1, 1) (S1, 0) (S1, 1)

For a better understanding, consider S0 and S1 as the
trusted and untrusted security classes respectively
From row 4, column 1 of Table I, whenever one of the inputs of
AND-2 is trusted ‘0’, the output will be dominated to (S0, 0).
In this case, information contained in the other input will not
be able to flow to the output since its output will be a constant
‘0’. This is opposed to the conventional operator which would
have conservatively computed S0 ⊕ S1 = S1 as the output
label even though (S1, 1) has no effect on the output.

Upon the basic ideas behind GLIFT, previous work [9] has
formalized the theoretical aspects of GLIFT on the two-level
linear lattice (LOW � HIGH). However, real systems usually
employ MLS policies, which need to be modeled with multi-
level security lattices. In the following sections, we expand
the basic GLIFT technique to more general security lattices.

III. GLIFT FOR SECURITY LATTICES

When m is the level of lattice and n is the number of inputs,
the complexity of the label propagation rule set enumeration
method would be (2m)n. In the following subsections, we first
restrict our discussion to two-input gates, whose GLIFT logic
has to be create through naive enumeration. Then, we show
how the general GLIFT logic generation problem actually can
be reduced to solving just two-input gates in Section III-D.

A. Three-level Linear Security Lattice

We focus on AND-2. Let S0, S1 and S2 denote
unclassified, confidential and secret respec-
tively in the three-level linear lattice as shown in Fig. 1 (b).
One can expand two rows and columns upon Table I to include
label propagation rules defined for S2 as shown in Table II.

Let A, B and O denote the objects representing the inputs
and output of AND-2 while their security labels are denoted
by at, bt and ot respectively. The GLIFT logic for AND-2 can
be derived from Table II, which are shown in (2) and (3).

ot[1] = Bat[1]at[0] bt[1] + Aat[1]bt[1]bt[0]

+ at[1]at[0]bt[1]bt[0]
(2)
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TABLE II
GLIFT LABEL PROPAGATION RULES FOR AND-2 ON THE THREE-LEVEL

LINEAR SECURITY LATTICE.

AND (S0, 0) (S0, 1) (S1, 0) (S1, 1) (S2, 0) (S2, 1)
(S0, 0) (S0, 0) (S0, 0) (S0, 0) (S0, 0) (S0, 0) (S0, 0)
(S0, 1) (S0, 0) (S0, 1) (S1, 0) (S1, 1) (S2, 0) (S2, 1)
(S1, 0) (S0, 0) (S1, 0) (S1, 0) (S1, 0) (S1, 0) (S1, 0)
(S1, 1) (S0, 0) (S1, 1) (S1, 0) (S1, 1) (S2, 0) (S2, 1)
(S2, 0) (S0, 0) (S2, 0) (S1, 0) (S2, 0) (S2, 0) (S2, 0)
(S2, 1) (S0, 0) (S2, 1) (S1, 0) (S2, 1) (S2, 0) (S2, 1)

ot[0] = Bat[1]at[0]bt[1] +Bat[1]at[0] bt[1]bt[0]

+A at[1]at[0]bt[1]bt[0] +Aat[1] bt[1]bt[0]

+ at[1]at[0]bt[1]bt[0]

(3)

For the three-level linear lattice, two-bit labels are used to
denote three security classes. This leads to a don’t-care input
set since two binary bits can encode a total of four security
classes. For a better understanding, assume S0, S1 and S2
are assigned binary codes “00”, “01” and “10” respectively.
Then, the input pattern “11” will be don’t-care condition.
Such don’t-care input combinations will not lead to a security
policy violation since the fourth security class never appears
at the inputs of GLIFT logic. However, denoting such don’t-
care conditions to the logic synthesis tools will lead to better
implementation results. Equations (4) and (5) give the GLIFT
logic with consideration of the don’t-care input set. These are
less complex as compared to (2) and (3) respectively.

ot[1] = Bat[1] +Abt[1] + at[1]bt[1] (4)

ot[0] = Bat[0]bt[1] +Bat[1]bt[0]

+Aat[1]bt[0] +Aat[0]bt[1] + at[0]bt[0]
(5)

For an n-level linear lattice, there are (2n)2 elements in the
label propagation rule set of AND-2. Thus, label propagation
rule set enumeration soon becomes a complicated and error-
prone process as n grows. Instead, we use a more efficient
way to derive GLIFT logic for AND-2 under arbitrary level
of linear lattices in the next subsection.

B. N -level Linear Security Lattice

Figure 2 provides a unified approach to deriving GLIFT
logic under arbitrary level of linear lattices. Since each two
of the security classes within an n-level linear lattice are
comparable, we can use a comparator to convert the input
labels, i.e., security classes, to two-level and use the GLIFT
logic under the two-level linear lattice formalized in [9] for
label propagation. At the output stage, a multiplexer is used to
select the correct security class according to the output from
the label propagation logic. This will enable the expanding of
GLIFT to arbitrary linear security lattices.

As a sanity check, we generate the GLIFT logic for AND-2
under the four-level linear lattice both by expanding the rule
propagation rule set upon Table II and using the method as
shown in Fig. 2. These two methods lead to identical resulting
circuits as given in (6) and (7).

ot[1] = Bat[1] +Abt[1] + at[1]bt[1] (6)

Two-level
Label 

Propagation
Comparator

A
B

at[n]
bt[n]

ot[n]

inv

xorbg

gt

Multiplexer

Fig. 2. Constructing GLIFT logic under n-level linear security lattice.

ot[0] = Bat[1]at[0] +Bat[1]bt[1]bt[0] +Bat[0]bt[1]

+Aat[1]bt[0] +A at[1]at[0]bt[1] +Abt[1]bt[0]

+ at[0]bt[0]

(7)

C. The Square Security Lattice

As shown in Fig. 1, the major difference between the
square lattice and other linear ones lies in that it contains
incomparable security classes, i.e., S1 and S2. This results
in more subtle cases in label propagation. As an example,
consider AND-2 with inputs (S1, 0) and (S2, 0). The output
is doubtless logic ‘0’. In this case, both inputs have an
influence at the output. Which label to choose at the output
is not obvious since neither S1 nor S2 is more restrictive
than the other. Fortunately, S1, S2 and even S3 are all safe
security classes for the output since they will not lead to an
information security policy violation. However, S1 and S2 are
more restrictive than S3. Thus, either S1 or S2 can be selected
as the security class for the output.

To make it different from the four-level linear lattice, we
choose S1 for the AND-2 gate while S2 for the two-input
OR gate (OR-2) when both S1 and S2 are safe. Under such
convention, the GLIFT logic for AND-2 under the square
lattice can be formalized as follows:

ot[1] = Bat[1]bt[0] +Bat[1]at[0] +ABbt[1]

+ ABat[1] +Aat[0]bt[1] +Abt[1]bt[0]

+ at[1]bt[1]

(8)

ot[0] = Bat[1]bt[1]bt[0] + Bat[0]

+A at[1]at[0]bt[1] +Abt[0] + at[0]bt[0]
(9)

The problem with tracking information flows on a non-
linear security lattices lies in that the security class of the
output can be chosen too conservatively (although safe). A
possible solution is to construct a candidate set of security
classes that will not lead to an information flow policy
violation and then choose the most restrictive one(s) from the
candidate as the output label.

D. A Constructive Approach

To generate GLIFT logic in linear time, we instantiate track-
ing logic for components in digital circuits discretely from a
functionally complete GLIFT library. Usually, a minimized
GLIFT library consisting of the tracking logic for the AND-2,
OR-2 and the inverter is derived using the label propagation
rule set enumeration method. More complex GLIFT libraries
and circuits consisting of multiple-input gates can be created
in a constructive manner. Figure 3 shows such a constructive
method, which reduces the general GLIFT logic generation
problem to solving just two-input gates.
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TABLE III
AREA, DELAY AND POWER RESULTS OF GLIFT LOGIC CIRCUITS UNDER THE TWO TO FOUR LEVEL LINEAR AND SQUARE LATTICES.

Benchmark Area (um2) Delay (ns) Power (mW)
2-lev 3-lev 4-lev Square 2-lev 3-lev 4-lev Square 2-lev 3-lev 4-lev Square

alu2 9833 25787 30410 35571 2.10 2.71 2.66 5.02 1.69 4.99 6.45 6.95
alu4 21242 54860 64457 75869 2.85 3.41 3.54 6.25 3.73 10.9 13.8 15.1
pair 44261 113885 133797 159606 1.63 2.03 1.99 3.63 7.29 19.9 26.9 28.8
i10 60371 153896 183421 216059 3.48 4.61 4.24 8.32 9.00 28.3 34.6 37.7

C1355 16854 42910 50449 59677 1.46 1.75 1.80 3.35 2.98 7.42 10.4 10.1
C1908 13682 33978 40279 47558 2.26 2.66 2.73 4.92 2.75 4.75 9.22 9.55
C2670 19670 50100 59216 69478 1.90 2.41 3.42 4.65 2.37 8.57 12.8 13.1
C3540 32255 83947 98314 115755 2.66 3.20 3.10 5.62 5.26 14.3 19.8 21.0
C5315 47318 122897 144400 171901 2.32 2.96 2.84 5.07 8.55 19.4 31.4 32.7
C6288 83678 215020 250832 293322 8.73 9.84 10.2 17.1 15.7 23.8 53.8 52.8
C7552 53603 135958 162224 190607 3.31 3.71 3.74 6.73 10.2 19.6 36.8 37.5
DES 102563 269418 314533 379610 1.30 1.64 1.62 3.19 18.6 48.1 71.6 83.8

N. Average 1.00 2.57 3.03 3.58 1.00 1.22 1.26 2.24 1.00 2.55 3.80 4.00
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Fig. 3. The constructive method for GLIFT logic generation.

IV. EXPERIMENTAL RESULTS

We generate GLIFT logic for several IWLS benchmarks
under the two to four level linear and square security lattices.
Tracking logic is augmented discretely in a constructive man-
ner from a functionally complete GLIFT library. The resulting
circuits are synthesized using Synopsis Design Compiler and
targeted to its 90nm standard cell library for area, delay and
power reports, as shown in Table III.

From Table III, GLIFT logic typically reports larger area
and delay and consumes more power as the security lattices
grow more complex. Row N. Average shows the average area,
delay and power normalized to those under the two-level linear
lattice, reflecting design overheads. It should be noticed that
GLIFT logic under the three-level linear lattice is relatively
less complex than that for the four-level linear lattice. This
is because we took the don’t-care input set into consideration
and denoted these don’t-cares to the logic synthesis tools.

From the experimental results, expanding GLIFT to multi-
level security lattices will result in considerable area and
performance overheads. However, most systems require MLS
policies modeled using more complex security lattices. The
existing GLIFT technique should be expanded to meet such
requirement. Security is a pressing problem in safety-critical
embedded systems. Such overheads should definitely be toler-
ated since a single failure resulting from security issues will
render critical embedded systems useless and cause tremen-
dous losses. In real applications, there are usually partitions
among security domains within a design. Only security critical
portions of the design need to be augmented with GLIFT logic

for dynamic IFT. In addition, GLIFT can also be used for static
information flow security verification. The additional GLIFT
logic can be removed when verification is complete. These
will reduce the area and performance overheads and enable
GLIFT to be employed for proving MLS.

V. CONCLUSION

GLIFT provides an effective approach for enforcing tight
information flow controls to prevent harmful flows of informa-
tion, including those through hardware-specific timing chan-
nels. This letter expands the theoretical aspects of the basic
GLIFT technique to more general security lattices, formalizing
tracking logic and performing complexity analysis, which
provides a possibility for proving MLS in critical embedded
systems from the gates up. It also shows that significant area
and performance overheads should be expected if MLS is
required at this level of abstraction.
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