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Abstract—Benchmarking robot manipulation in simulation
presents unique challenges. We emphasize physically realistic
benchmarks that can be used to measure the progress of robot
manipulation. We provide an open-source recipe for building
simulated robot manipulation benchmarks, through the case
study of ManiSkill2, a new benchmark suite for generalizable
robot manipulation. Besides, we share our experience of sim-
to-real experiments on the tasks of ManiSkill2. The goal of this
paper is to promote open discussion and collaboration on building
high-quality benchmarks for Embodied AI research.

I. INTRODUCTION

Recent impressive progress in large language models (LLM)
trained on internet-scale data like OpenAI GPT series [1]
is considered a milestone for AI. In robotics, Google has
proposed SayCan [2], RT-1 [3] and PaLM-E [4], which
empower large language models with embodiment to tackle
daily chores. However, many recent advancements tend to
be “closed-source”, as demanding computation resources and
high-quality data are not accessible to the open-source com-
munity. For instance, SayCan [2] uses “68000 teleoperated
demonstrations that were collected over the course of 11
months using a fleet of 10 robots” for behavior cloning.
Collecting data and evaluating algorithms in the real world
for robotics, especially robot manipulation, can be costly and
hard to reproduce. Thus, simulation is an alternative. It is more
affordable, with no cost to maintain and reset robots; it is also
more accessible, as people can run simulations on devices
like consumer-level laptops or cloud clusters. Moreover, it
facilitates standardized evaluation protocols, as it is easier to
ensure the same hardware and environment setups, as well as
to compute metrics in simulation. Therefore, prototyping in
simulation before deployment in the real world has become a
common practice in robotics.

Nevertheless, benchmarking robot manipulation in simula-
tion poses unique challenges. First, a consensus on standard-
ized tasks to measure the progress of robot manipulation has
yet to be reached. In contrast, standardized tasks like image
classification and machine translation have catalyzed computer
vision and natural language processing. Rearrangement [5]
has been recently proposed as a canonical task for Embodied
AI. The goal is to bring a given physical environment into a
specified state. However, the instantiation of rearrangement in
simulation can vary widely and have an impact on the quality
of a benchmark. For example, quite a few benchmarks [6],
[7] adopt abstracted grasping, and consequently, grasping is
almost irrelevant to the physical properties of an object, which

obviously results in sim-to-real gaps. Besides, building simu-
lated environments with a reasonable abstraction of the real
world is non-trivial. Creating physically realistic benchmarks
like [8], [9] demands a systematic effort and interdisciplinary
expertise. The devil is in the details. Unfortunately, there is
a lack of open-source solutions to reveal the design choices,
criteria and workflows during development. Furthermore, a
holistic understanding of sim-to-real gaps is underexplored,
whereas many efforts such as [10] have been made to study
specific aspects. A high-quality simulated benchmark, which
is intended to serve as a proxy of the real world, should ensure
that sim-to-real gaps can be narrowed with minimal effort, so
that the progress made in simulated benchmarks is substantial.

In this paper, we disclose the workflow and design choices
during the development of our recent work ManiSkill2 [11],
as a case study of building robot manipulation benchmarks
in simulation. In addition, we share our hands-on experience
of sim-to-real experiments on some tasks [12] of ManiSkill2,
to provide insight into possible sources of and solutions to
sim-to-real gaps. We hope this paper can serve as an open-
source recipe for future works on building simulated robot
manipulation benchmarks with minimal sim-to-real gaps.

II. A CASE STUDY OF BUILDING ROBOT MANIPULATION
BENCHMARKS IN SIMULATION: MANISKILL2

In this section, we use our recent work ManiSkill2 [11] to
present a case study of building robot manipulation bench-
marks in simulation. ManiSkill2 is a unified benchmark for
learning generalizable robot manipulation skills powered by
SAPIEN [13]. It features 20 out-of-box task families with
2000+ diverse object models and 4M+ demonstration frames.
Moreover, it empowers fast visual input learning algorithms
so that a CNN-based policy can collect samples at about 2000
FPS with 1 GPU and 16 processes on a workstation. The
benchmark can be used to study a wide range of algorithms:
2D & 3D vision-based reinforcement learning, imitation learn-
ing, sense-plan-act, etc.

Our workflow to build ManiSkill2 highlights a verification-
driven iterative development process. It consists of 3 stages
to create a task: task creation, reward design, and observation
design. We verify the task via different approaches at each
stage and may return to the previous stage if the verification
fails. Additionally, the verification process also results in the
acquisition of demonstrations. Fig 1 illustrates the workflow.
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Fig. 1. The workflow to build ManiSkill2 [11].

A. Task Creation

The first stage (task creation) focuses on building task
essentials, including creating assets, configuring robots, gen-
erating initial states, and defining success metrics.

To ensure task feasibility, we initially attempt to solve the
task by manually controlling the robot end-effector through
keyboards. However, this approach is only viable for a limited
number of tasks, and mainly serves to locate trivial errors (such
as objects that are too heavy to pick up). Teleoperation through
more advanced devices like SpaceMouse or VR might help.
Subsequently, we try to program task and motion planning
(TAMP) solutions given full knowledge of the simulated
environments. TAMP is free of crafting reward, and is suitable
for many stationary manipulation tasks like pick-and-place,
but shows difficulty when tackling underactuated systems (e.g.
pushing chairs and moving buckets in [9]).

a) Assets: There are multiple public datasets of rigid
objects [14]–[16], articulated objects [13], [17], and static
scenes [18], [19]. Moreover, realistic layouts [6], [7], [20] of
objects in scenes are also a type of asset. In general, objects
used in simulation need to support two formats: collision (for
simulation) and visual (for rendering). Note that collision and
visual meshes can be quite different. For most rigid-body
simulators, a convex shape is required for collision detection.
Thus, convex decomposition (e.g., [21] used in ManiSkill2)
is applied to approximate a given shape by a set of convex
shapes. The hyper-parameters need to be tuned to adjust the
number of convex shapes, which is a trade-off between higher
fidelity and faster simulation. In addition, it is more tricky
for articulated objects, as links may need to be processed
separately with different hyper-parameters. For example, for
a task like opening cabinet doors, handles should include
more details while other parts can be modeled coarsely. For
rendering, a visual shape is required, and not necessary to be
convex. But mesh simplification is sometimes needed to speed
up rendering. In order to enhance photorealism, it is important
to tune the materials of objects and the lighting. Note that
static scenes (e.g., [18], [19]) reconstructed from scans can
look unrealistic when CAD objects are placed in them.

Furthermore, physical properties (e.g., scale, mass, inertia,
friction) are also important but rarely provided in public
datasets. Especially, grasping is affected by both the scale
of the object and the width of the gripper. We tune those

properties through trial and error. For example, if the object
can not be grasped, we might adjust its scale. If it can be
grasped but not lifted, we will adjust the density.

b) Robot configuration: The robot configuration involves
configuring controllers and physical properties. The controller
maps actions from the policy to motor signals that drive the
robot. Thus, the controller decides the action space. Controllers
mainly differ in input actions. For instance, the end-effector-
space (task-space) controller takes the target end-effector pose
as input. It is suitable for pick-and-place tasks [22], but can
be insufficient to avoid obstacles. In contrast, the joint-space
controller, which takes the target joint positions as input,
has full control of the robot, while can be more challenging
for learning algorithms [11]. Motion planning requires a
joint-space controller. ManiSkill2 provides a wide range of
controllers, and scripts to convert the action sequence for
one controller to a sequence for the desired one. It enables
us to make full use of demonstrations collected by different
controllers.

A basic fact, but sometimes overlooked by who are not
familiar with robotics, is that it always takes time for a
controller to achieve the target. In ManiSkill2 and many other
benchmarks like [6], [7], the action is first converted to the
target joint positions, which are input to the underlying PD
controller, which actually outputs motor signals (torque or
force). The PD controller has two parameters: stiffness (P ) and
damping (D). In short, the larger the stiffness (or damping),
the larger the force or torque is generated to reduce the error
between the current and target positions (or velocities). These
parameters need to be tuned to ensure natural and realistic
movement of the robot. For example, if stiffness is too large,
the robot can reach its target fast but may vibrate around the
target.

c) Initial states: A task is characterized by its initial
states, such as the initial joint positions of the robot and
object poses. The difficulty to learn a policy is significantly
affected by the diversity of its initial states. Generating initial
states for some tasks, such as pick-and-place, can be done
using simple heuristics, such as randomly sampling object
poses within the workspace. However, for other tasks, such
as the AvoidObstacles task in ManiSkill2, we adopt rejection
sampling. In this case, we randomly sample the poses of
obstacles and use motion planning to check if there exists
a feasible solution.

d) Success metric: The success metric defines the ter-
minal states of a task and its difficulty. In ManiSkill2, we
have designed the success metric to not only consider the
achievement of the task objective but also to demand the robot
to keep stationary when the task is successfully completed.
Note that there are also hyperparameters in success metrics,
such as the distance threshold between the object and the goal
to determine the success of a pick-and-place task.

B. Reward Design

The second stage aims at prototyping shaped reward func-
tions. The reward function is a requisite for many methods like



Model Predictive Control (MPC) and Reinforcement Learning
(RL). MPC is able to search solutions to difficult tasks given
well-designed shaped rewards without training or observations.
However, it is relatively slow since each episode is handled in-
dividually without knowledge sharing. RL requires additional
training and hyperparameter tuning, but is more scalable than
MPC during inference.

C. Observation Design

The third stage addresses observation spaces. For state
observations, we in general includes the poses of all task-
relevant objects and proprioception information (joint posi-
tions and velocities). Besides, the end-effector pose is also
included to ease learning. For visual observations, camera
parameters and placements need to be tailored for tasks so that
visual observations contain adequate information. To verify
this stage, we train state-based or visual-based RL policies
and adjust the observations based on the performance of the
trained policies.

D. Cloud Based Evaluation System

We build a cloud-based evaluation system based on Kuber-
netes, to benchmark different algorithms. Users can register
accounts and submit their solutions. The solutions are in
the form of docker images. The user needs to implement a
function that accepts observations and returns actions. When a
solution is submitted, the system will pull the its docker image
and evaluate the included solution. The results are uploaded
to a database and displayed on a public leaderboard.

III. SIM-TO-REAL EXPERIMENTS ON MANISKILL2

In this section, we share our hands-on experience of sim-to-
real experiments for the recently proposed CoTPC [12]. We fo-
cus on two ManiSkill2 tasks, PickCube and PegInsertionSide.
In PickCube, the policy needs to control the robot arm to pick
up a cube and move it to the goal position. In PegInsertionSide,
the policy needs to insert a peg into the horizontal hole in a
box. We use a 7-DoF xArm robotic arm with a two-finger
gripper in the experiments. In the simulation setup, we train
a state-based policy by behavior cloning on demonstrations
collected by scripted motion planning solutions. In the real-
world setup, a fixed RealSense D435 camera is used to
acquire observations for state estimation. Fig 2 illustrates our
simulated and real-world setups. Videos can be found on the
project website (https://zjia.eng.ucsd.edu/cotpc).

We list the sources of sim-to-real gaps in our experiments.
Surprisingly, we manage to sidestep difficulties through mul-
tiple workarounds. We hope our results can motivate new
tasks that can better examine the sim-to-real transferability
of algorithms.

A. State Estimation

It is common to train a policy that takes states as inputs
rather than raw visual observations since state-based policies
are easier and faster to acquire. [23] even shows that a
transferable policy for in-hand manipulation can be learned
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Fig. 2. Simulation and real-world experiments setups. (a) and (b) are the
setups in simulation, and (c) and (d) are the setups in real-world experiments.

using only proprioception history. However, if privileged states
(e.g., object poses) are included in the input to the policy,
they need to be estimated during real-world deployment. State
estimation introduces noise (estimation error) and can not
guarantee temporal consistency. In addition, its accuracy can
be affected by multiple factors such as lighting and occlusion.
A common solution is to introduce extensive data augmenta-
tion [24] during training in simulation. But data augmentation
tends to smooth out the policy, which can be fatal to precise
manipulation like PegInsertionSide. We argue that it can be
critical to include observation history, which enables the robot
to adapt to noisy input states on the fly.

In the simulation setup, our policy, based on CoTPC [12],
takes (state) observation and proprioception history as inputs.
The states are obtained from the simulator, and no data
augmentation is applied. In the real-world setup, we first
estimate the 6-DoF object poses in the camera space by PVNet
[25] and then transform the object poses to the robot base
using the relative pose between the camera and the base of
the robot arm obtained by hand-eye-calibration. To reduce
the estimation errors, we only estimate the object poses at
certain key-frames. Concretely, we estimate the object poses
at the initial step and when the object is first grasped. For the
succeeding steps, we can compute the relative pose between
the object and the end-effector and then update the object pose
according to both the acquired relative pose and the current
end-effector pose. Note that such a workaround shares the
same quasi-static assumption as motion planning: the grasped
object is relatively fixed to the end-effector and there is no
disturbance to the object poses.



B. Controller

The controller is the interface between the policy and the
robot hardware. It converts the output action of a policy to
motor signals that drive the robot. Without loss of generality,
we take the position-based PD controller as an example. Its
input is the target joint positions (and the target joint velocity
is always zero). The action of our policy is the difference
between the desired target joint positions and the current
ones. The sim-to-real gap in the controller mainly results
from the underlying implementation of the PD controller. Such
implementation varies across different robots and is usually
closed-source. The common practice is to tune the parameters
or modify the algorithm of controllers in simulation, to align
the real-world behaviors of robots.

In both simulation and real-world setups, the controller
receives actions at a frequency of 5Hz. Note that it is different
from the frequency (20Hz) used in the original version in
ManiSkill2. The reason to use a lower frequency is that it is
much easier to align kinematic behaviors than dynamic ones.
When the control frequency is low, the controller can achieve
the target position at each step without much parameter tuning,
in both the simulation and real world. It is sufficient to align
kinematic behaviors only for quasi-static manipulation.

C. Latency

The simulated environment usually follows the OpenAI
Gym interface [26], which is synchronous. Specifically, at
each timestep, there is no latency between events: the ob-
servations are perceived, the policy outputs the action given
the observations at the same timestep, and the action is input
to the controller and executed. However, latency is inevitable
in the real world. It takes time to transfer observations and
control signals between the robot and the host computer.
Besides, latency can also result from state estimation and pol-
icy inference, especially when neural networks are included.
Therefore, most robotic applications follow the asynchronous
framework ROS. One existing solution is to train the policy
with lagging observations in simulation, while at the cost of
degraded performance [7]. Nonetheless, since the states are
only estimated at key frames and the tasks are quasi-static,
we sidestep this gap.

D. Physical Properties

It is difficult to measure all physical properties (e.g., inertia,
friction coefficient) of an object precisely. Even if the mea-
surement is precise enough, modeling physical properties in
simulation to exactly match the real world is still troublesome.
Thus, the gap in physics is almost inevitable. There are two
common solutions: system identification and domain random-
ization [10]. System identification builds a model of the target
but unknown dynamic system using measurements of the input
and output signals of the system. The estimated model is
able to support model-based approaches (e.g., model predictive
control). Domain randomization randomizes the dynamics of
the environment during policy training, which enables success-
ful sim-to-real transfer [27]. However, most pick-and-place

tasks might not need special attention to physical properties,
since the force-closure grasp is quite robust to mild noise
of physical properties. We do not handle this gap in our
experiments.

IV. CONCLUSION

In this paper, we present the development of ManiSkill2,
a new simulated robot manipulation benchmark. Besides, we
discuss our sim-to-real experiments for CoTPC on two tasks
of ManiSkill2. We hope our results of sim-to-real experiments
can encourage the community to rethink whether existing
works can only address quasi-static manipulation, and to ex-
plore approaches to narrow sim-to-real gaps related to dynam-
ics. We hope that this paper will serve as a useful resource for
researchers interested in building simulated robot manipulation
benchmarks that are useful for real-world robotic applications.
By continuing to investigate and address sim-to-real gaps, we
can enable more efficient and effective deployment of robotic
systems in the real world.
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