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Abstract—Accurate analysis of power delivery network is
indispensable to assess VLSI package and interconnection
network. Given the S-parameters that characterize the linear
packaging system, we derive the transient response of power
delivery networks. We utilize the compressed sensing technique
to generate the impulse response that fits the S-parameters with
sparsity. Our method shows accurate, concise, and stable results.

I. INTRODUCTION

Package-level simulation for power delivery network (PDN)
is an important procedure to assess microelectronic design
quality. As high-speed data processing becomes contemporary
trends, massive signal traffic may induce undesired impact
on power integrity. Usually, the characterization of the PDN
network relies on the specification in frequency domain, e.g.,
S-parameters, while the simulation of the system is performed
in time domain. Therefore, the conversion from frequency
domain description to time domain information is essential
for the PDN network analysis.

Previous efforts to translate the frequency domain
description are categorized into two groups by computational
procedure; (1) the direct generation of impulse responses
[1], [2], [12] and (2) the extraction of macromodels which
are compatible to SPICE netlist [13]. The first approach
performs a direct conversion from frequency domain to time
domain and thus has the potential to minimize the conversion
error. However, the usage of the impulse response requires
convolution in time for transient simulation which causes
a complexity of O(n2) where n is the number of sample
points in time. In [11], Peng and Cheng dropped the
complexity of convolution method to O(nlog2n) utilizing a
hierarchical approach and demonstrated the efficiency of the
direct approach.

For the direct impulse response generation, one key issue
of the S-parameter is that the specification may contain
much fewer samples than the amount required by the
Shannon-Nyquist sampling theorem [10]. Suppose that the S-
parameter file covers samples at all frequency range, then an
inverse Fourier transform will derive the corresponding time
domain information. However, in practice, the S-parameter file
includes very limited amount of samples only at frequencies
of main interests. In [12], Rao optimized the spectrum beyond
the specified samples to reduce the error from the samples with
the causality constraint. The passivity is enforces by scaling
the eigenvalues of the scattering matrix at where the passivity
constraint is violated.

Fig. 1: A multi-port network with incident and reflected power waves.

In this paper, we adopt a compressed sensing method for the
impulse response generation. The compressed sensing method
is a signal processing technique which has been used to
recover solutions from undetermined linear system, e.g., image
processing. We select a set of wavelets to construct the impulse
response. Our goal is to find a sparse list of the wavelets that
fits the S-parameters.

Our main contributions can be summarized as follows.
• We adopt a compressed sensing method to convert the

S-parameters into impulse responses.
• We select the set of wavelets to fit the impulse responses

of PDN networks.
• We show that the proposed method derive accurate,

concise, and stable results although the given dataset is
sparse and deficient.

In the remainder of this paper, section II introduces
preliminaries and constraints to obtain physically consistent
models. Section III describes the problem formulation in
detail, and section IV shows experimental results that verify
the proposed method with compressed sensing technique.
Finally, Section V presents the ongoing work and concludes
the paper.

II. S-PARAMETERS AND CONSTRAINTS

A. S-parameters

Figure 1 illustrates a multi-port system, where scattering
coefficients ai and bi denote respectively the incident and
reflected power waves at port i for 1 ≤ i ≤ N. The scattering
matrix has its element determined as Si j = bi/a j when ak = 0
for all k 6= j. Thus, we have

b =

 b1
...

bN

=

 S11 · · · S1N
...

. . .
...

SN1 · · · SNN

 ·
 a1

...
aN

= S ·a. (1)
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B. Causality and Passivity Constraints

A PDN network in package is supposed to observe the
causality and passivity constraints.

Causality: A linear time-invariant (LTI) system with a
known delay τ is causal if the transfer function f (t) = 0
for t < τ. To guarantee causality, the real part and imaginary
part of a frequency response should satisfy Kramers-Kronig
relations [8]. To simplify the following discussion, let us
assume that τ = 0. A causal function can be decomposed into
an even and odd functions, i.e., f (t) = fe(t) + fo(t), where
fe(t) and fo(t) are even and odd parts of f (t), respectively
and fo(t) = sgn(t) · fe(t). Thus, we can write f (t) = fe(t)+
sgn(t) · fe(t). By converting f (t) to the frequency domain, we
have

F(s) = Fe(s)−
j

πs
∗Fe(s) = Fe(s)− jF̂e(s). (2)

where F̂(s) = F(s) ∗ 1
πs = 1

π

∫
∞

−∞

F(s′)
s−s′ ds′ is the Hilbert

transform of Fe(s) [8]. In other words, the real and imaginary
parts of scattering matrix have to observe the Hilbert transform
relation to ensure the causality [8].

Passivity: The PDN network in package is passive and thus
for every frequency its scattering matrix observes the following
inequality [8].

a∗a≥ b∗b (3)

where the superscript ∗ denotes the conjugate transpose of the
vector. Substituting Equation (1) into Equation (3), we have

a∗a−S∗a∗Sa = a∗(I−S∗S)a≥ 0. (4)

Therefore, the necessary and sufficient condition of passivity
is that 0≤ λi ≤ 1 for all eigenvalues λi of square matrix S∗S
[13].

We derive the passivity constraint in time-domain using
discrete time points. We express the input x(t) and output
y(t) with vectors x = [x(0), x(∆), · · · , x(N∆)]T and y =
[y(0), y(∆), · · · , y(N∆)]T , respectively, where ∆ is the length
of time step and the total time is T = N ·∆. The convolution
of the impulse response h(t) is written as matrix and vector
multiplication.

y = H ·x (5)

where

H =


h(0) 0 · · · 0
h(∆) h(0) · · · 0

...
...

. . .
...

h(N∆) h((N−1)∆) · · · h(0)

 . (6)

The system is passive if and only if the following inequality
holds for every possible input vector x.

xT ·x≥ yT ·y (7)

Substituting Equation (5) into Equation (7), we have

xT ·x−xT ·HT ·H ·x≥ 0

xT · [I−HT ·H] ·x≥ 0. (8)

Therefore, we can summarize the condition of the passivity
with the following theorem.

Theorem of passivity in time domain: A linear system is
passive if and only if all eigenvalues of HT H locate in the
interval [0,1], i.e.,

I−HT ·H≥ 0. (9)

III. COMPRESSED SENSING APPROACH

We now describe our approach using compressed sensing
technique. In this section, we describe our formulation,
algorithm and property of the approach.

A. Background

In order to obtain the accurate time-domain impulse
response from the band-limited frequency-domain infor-
mation, signal structure demands careful characterization.
The S-parameters allow us to derive the frequency-domain
counterpart of the time-domain impulse response. In principle,
the sample points on frequency domain can reproduce
the impulse response through applying the inverse Fourier
transform. However, the characterization based on the inverse
Fourier transform is not preferred by the intrinsic feature of
the signal. For example, if a transmission line is concerned, the
time delay and the sharp rising impulse response are important
in the time domain features, which imply the existence of
low frequency components as well as intensive information
in relatively high frequency band. Therefore, the inverse
Fourier transformation method based on insufficient frequency
bandwidth would be insufficient to recover precise impulse
response in the time domain.

B. Compressed Sensing Method

Compressed sensing is a signal processing technique that
recovers a broad band signal from relatively less number
of measurement. The approach relies on an assumption that
the signal can be expressed with very sparse nonzero terms
according to the basis of the representation [3]–[5].

C. Problem Formulation

Given a set of the scattering matrices at n sample (angular)
frequencies ω1, · · · , ωn, we have {S(ω1), · · · ,S(ωn)}. We
recover the impulse response in the time domain by the linear
combination of the wavelets ψ1(t), · · · , ψm(t).

h(t) = ∑
i

ci ·ψi(t), (1≤ i≤ m), (10)

where ci are the coefficients, 1≤ i≤ m.
We use two classes of wavelets.

(1) Morlet wavelets [9]:

ψ(t) = exp
[
−1

2
(at)2

]
· (cosσt−Kσ) (11)
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where a and σ are adjustable parameters, and Kσ =

e−
1
2 σ2

. The Morlet wavelets have a trade-off between
the exponential decay and infinite oscillation, both of
which could be reproduced with extreme parameters of
a and σ.

(2) Inverse Quadratic Polynomial (IQP) [7]:

ψ(t) =
{ 1

B2+t2 if t ≥ 0,
0 otherwise,

(12)

where B is a time derived from transmission line
telegrapher’s equation [7]. The IQP has a sharp rise
at the beginning which is consistent with the impulse
response of microelectronic packages.

Table I lists the parameters of the wavelets, which take
values uniformly in its corresponding value interval. For
example, parameter σ is taken in the interval 1−10 with step
length 1, and parameter a has multiple segments of intervals
with different step lengths. We normalize the time interval
to [0, L] where L = 10. Furthermore, each wavelet is shifted
along the time axis by the offset ∆t to constitute the set of
wavelets for our method.

TABLE I: Parameters for the wavelets bases.

Variable Range Interval
σ 1 - 10 1
∆t 0 - 5 0.05

a

0 - 20 2−3

20 - 24 20

24 - 27 24

27 - 210 27

B2
0 - 2−7 2−10

2−7 - 2−3 2−7

2−3 - 20 2−3

Each wavelet ψi(t) is mapped via numerical Fourier
transform to frequency domain to generate the template ψi(ω j)
at frequency ω j. In order to fit the given S-parameters, i.e., to
determine the coefficients ci in Equation (10), we have the
Equation (13).

A2n×m · cm×1 = S2n×1 (13)

where A2n×m is the template matrix

Ψ1(ω1)R Ψ2(ω1)R · · · Ψm(ω1)R
Ψ1(ω2)R Ψ2(ω2)R · · · Ψm(ω2)R

...
...

. . .
...

Ψ1(ωn)R Ψ2(ωn)R · · · Ψm(ωn)R
Ψ1(ω1)I Ψ2(ω1)I · · · Ψm(ω1)I
Ψ1(ω2)I Ψ2(ω2)I · · · Ψm(ω2)I

...
...

. . .
...

Ψ1(ωn)I Ψ2(ωn)I · · · Ψm(ωn)I


, (14)

the subscripts (∗)R and (∗)I represent the real part
and the imaginary part of the input complex number,
vector cm×1 = [c1, · · · , cm]

T , lists the coefficients
in Equation (10) to be solved, and vector S2n×1 =
[S(ω1)R, · · · , S(ωn)R, S(ω1)I , · · · , S(ωn)I ]

T .

The objective function is

minimize ‖ Ac−S ‖2
L2

subject to ‖ c ‖L1 ≤ N

where N is a threshold to control the sparsity of our solution
c [6]. We use L1 norm to produce sparse results, since L0
norm problem is NP-complete.

D. Algorithm

We adopt LARS method [6] to derive the optimal solution of
cm×1 in Equation (13). Different methods have been proposed:
the matching pursuit algorithm, the Lasso method, and the
least angle regression (LARS) method. The matching pursuit
algorithm is a greedy approach that approximates the target
on each step by using the orthogonal projection onto the most
correlated basis. The Lasso method adds the L1-norm of the
parameter vector as a constraint on the regression problem,
and is expected to yield a more precise description in cost of
computation. The least angle regression (LARS) method in [6]
introduces a geometric insight in the selection process, which
selects the most related basis one by one. Thereby, the number
of bases can be directly controlled during the execution. It is
less greedy than the matching pursuit algorithm. The LARS
method generates the similar results with the Lasso method
since the Lasso method that can be treated as a revised version
of the LARS method; however, the LARS method is more
efficient than the Lasso method up to orders of computation
time.

Algorithm 1 presents the flow to generate impulse response
h(t) from frequency information. Lines 1-8 develop A2n×m and
S2n×1 for LARS() function at Line 9, then we obtain cm×1. The
wavelet approximation procedure is performed in Line 10.

Algorithm 1 The Flow to Generate Impulse Response

Procedure GenImpResp()
1: S2n×1 = [(sampleFreq.data)R, (sampleFreq.data)I ]

T ;
2: for all wavelet ψi (1≤ i≤ m) do
3: for all sampling frequency ω j (1≤ j ≤ n) do
4: FTi, j = FourierTrans f orm[ψi(t)] at ω j;
5: end for
6: Ai = [(FTi,1)R, · · · , (FTi,n)R, (FTi,1)I , · · · , (FTi,n)I ]

T ;
7: end for
8: A2n×m = [A1, · · · , Am];
9: cm×1 = LARS(A2n×m, S2n×1); // [15]

10: h(t) =
m

∑
i=1

(ci ·ψi(t)); // h(t):Wavelet Approx. at t

E. Properties of Compressed Sensing Method

In this subsection, we describe the properties of compressed
sensing in terms of causality, stability, and passivity.

Causality: For compressed sensing, the causality can be
enforced by the selection of the wavelets. For a given
propagation delay τ, we choose only the wavelet that is only
nonzero after time t ≥ τ. However, the enforcement works only
if the delay is known.
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TABLE II: Commonly applied metrics to develop test cases.

Metal

Width See Figure 2
Length 15.000 inch
Height 6.850E-4 inch

Conductivity 5.8E+7

Substrate
Dielectric constant 4.2

Thickness 0.010 inch
Loss tangent 0.02

Fig. 2: Two-port transmission line test case; two microstrip lines
cascaded (TL = Transmission Line).

Stability: The concept of stability is related to the
boundedness of the system response. Mathematically, a system
is stable if the output y(t) is bounded for all bounded inputs
x(t) (BIBO) [8] [13]. In linear package, the stability is
guaranteed if all the elements in the impulse response matrix
F satisfy ∫ +∞

−∞

∣∣ fi j(t)
∣∣dt <+∞. (15)

For compressed sensing, the absolute integral of each
wavelet is finite. Therefore, the absolute integral of the
approximation as the combinations of the wavelets functions
is also finite, which guarantees that the method is stable.

Passivity: The passivity can be observed by inequality (9).
However, the incorporation of the constraint complicates the
compressed sensing method. In this paper, we rely on the
minimization of the L1 norm to reduce the power of the results.

IV. EXPERIMENTAL RESULTS

We use the MATLAB code [15] to implement LARS
method [6].

A. Test Case

1) Mismatched Transmission Lines: As shown in Figure 2,
a transmission line with mismatched ends is designed for
the verification of our compressed sensing based method. We
extract the S-parameters as well as impulse responses of the
test case with Keysight Advanced Design System [14] EDA
tool. Table II presents the typical industrial metrics adopted
to generate the test case. In Figure 2, the system has two-
cascaded microstrip lines which have different metal widths
to cover a multi-reflection due to the impedance mismatch.

In our test case, we assume that (1) the impedances of
TL1 and TL2 are 50Ω and 25Ω, respectively, and (2) the
substrate is FR4, which is the typical material for printed
circuit board (PCB), and one inch equals to 1000mil. There
are two mismatched interfaces; (1) the junction between the
two segments and (2) the output port at port 2. We expect
that the mismatched interfaces induce multi-reflections in the
impulse response.

Fig. 3: A simple power distribution network.

2) Simple Power Distribution Network: The second test
case is a simple power distribution network as shown in Figure
3. There are four kinds of decoupling capacitors for noise
suppression. The capacitors from right to left and surrounding
the die are 100uF in MLCC1206 (i.e., multilayer ceramic
capacitor) package, 47uF in 0603, 4.7uF in 0402 and 1uF in
0201. The spacing between different capacitors is 0.1inch. The
interested port is defined on the power pins of the die since the
power integrity of the die is concerned. We expect the impulse
response of this PDN to be small to suppress noise.

B. Experimental Results

1) Mismatched Transmission Lines: We verify our pro-
posed method for generating the impulse responses by using
the mismatched transmission line (i.e., shown in Figure 2). For
the test case, we adopt 200 linearly spaced frequency sampling
points ranging from 100MHz to 20GHz.

Fig. 4: Result of the mismatched test case in Figure 2. We can
observe the multi-reflection on the impulse response. Our recovery
based on wavelets shows significantly better performance than the
inverse Fourier transform method in respect of preserving the delay
and passivity.
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(a) Zoom-in of the first wave.

(b) Zoom-in of the second wave.

Fig. 5: Impulse response of the mismatched test case.

The result of our test case is presented in Figure 4. We
illustrate the original impulse response signal in blue line,
our reconstructed impulse response in green line, and impulse
response by the inverse Fourier transform (IFT) in red dotted
line. The original signal shows two sequential peaks, which are
recovered by both the IFT and the our wavelets approximation
method.

Our wavelets approximation method captures the delay of
the first peak, and the causality constraints is satisfied within
the error of the original signal, which is poorly captured
by the IFT. The second peak is recovered with a shorter
delay compared to the original signal. In the meanwhile, the
magnitudes ratio for the two peaks are properly preserved,
compared to the IFT method. The recovery error based on our
method is much smaller than the recovery error based on the

Fig. 6: Impulse response of the PDN.

IFT. Due to the bandwidth-limited spectrum, the IFT cannot
precisely generate the original impulse response, especially in
respect of the magnitude of peak values and the causal issue.
The impulse response including reflection effects is usually
non-trivial to be recovered by the conventional approximation
approaches such as the rational functions. In summary, our
proposed method simulates time-domain multi-reflections of
impulse response accurately. Our simulation result reasonably
meets causality because the time delay and captures the delay
properly.

2) Simple Power Distribution Network: Figure 6 shows the
result of our proposed compressed sensing method compared
with the inverse Fourier transform of S11.

Our method takes use of compressed sensing technique,
thus relies on less frequency data. In contrast, although the
invert Fourier transform produces the result as accurate as
our method, IFT relies on the complete set of the frequency
data which is usually unavailable for practical application.
Furthermore, we observe that there exists a singular point
at the time 0 because the frequency domain data, S11 of
the PDN, are almost −1, of which the corresponding time
domain result is an negative impulse at t = 0. In this test case,
our method simply utilizes a small fraction of the frequency
domain information, 300 points out of ten thousand frequency
points.

V. CONCLUSION

In this paper, we have proposed a compressed sensing based
method for incorporating the S-parameters to generate the
impulse response in the time domain. We select two sets of
the wavelet as the bases. We demonstrate that the combination
of the sets produces better results in test cases. The method is
intrinsically causal and stable by the problem formulation. The
minimization of L1 norm mitigates the passivity issues. We
also demonstrate that the method finds the internal reflection
wave with proper delay. Further research is needed to enforce
the passivity, and ensure the causality when the propagation
delay is not known.
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