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ABSTRACT
Whenreceivingmachine learningservices fromthecloud, theprovider

does not need to receive all features; in fact, only a subset of the fea-

tures are necessary for the target prediction task. Discerning this

subset is the key problem of this work.We formulate this problem as

a gradient-based perturbation maximization method that discovers

this subset in the input feature spacewith respect to the functionality

of the prediction model used by the provider. After identifying the

subset, our framework, Cloak, suppresses the rest of the features

using utility-preserving constant values that are discovered through

a separate gradient-based optimization process.We show that Cloak

does not necessarily require collaboration from the service provider

beyond its normal service, and can be applied in scenarios where

we only have black-box access to the service provider’s model. We

theoretically guarantee that Cloak’s optimizations reduce the upper

bound of the Mutual Information (MI) between the data and the

sifted representations that are sent out. Experimental results show

that Cloak reduces the mutual information between the input and

the sifted representations by 85.01% with only negligible reduction

in utility (1.42%). In addition, we show that Cloak greatly diminishes

adversaries’ ability to learn and infer non-conducive features.

CCS CONCEPTS
• Security and privacy→ Privacy protections;Usability in se-
curity and privacy; •Computingmethodologies→Neural net-
works; Computer vision tasks; • Mathematics of computing →
Information theory.
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1 INTRODUCTION
The computational complexity of Machine Learning (ML) models

has pushed their execution to the cloud. The edge devices on the

user side capture and send their data to the cloud for prediction
services. On the one hand, this exchange of data for services has

become pervasive since the provider can enhance the user expe-

rience by potentially using the data for the betterment of its ser-

vices [68], which inmany cases is offered for free. On the other hand,

as soon as the data is sent to the cloud, it can be misused by the

cloud provider, or leaked through security vulnerabilities even if

the cloud provider is trusted [35, 43, 59, 80, 81]. The insight in this

paper is that a large fraction of the data is not relevant to the pre-

diction service and can be sifted prior to sending the data out, thus

enabling access to the services with much greater privacy. As such,

weproposeCloak, anorthogonal approach to the existing techniques

that mostly rely on cryptographic solutions and impose prohibitive

delays and computational cost. Table 1 summarizes most state-of-

the-art encryption-based methods and their runtime compared to

unencrypted execution on GPUs. As shown, these techniques im-

pose between 318× to 14,000× slowdown. An image classification

inference is performed in multiple seconds, an order of magnitude

away from the service-level agreement between users and cloud

providers, which is between 10 to 100 milliseconds according to

MLPerf industry measures [55, 69]. Such slowdowns will lead to

unacceptable interaction with services that require near real-time

response (e.g., home automation cameras). Cloak provides a middle

ground, where there is a provable degree of privacywhile the predic-

tion latency is essentially unaffected. To that end, Cloak only sends

out the features that the provider essentially requires to carry out

the requested service. Existing privacy techniques are applicable to

scenarios that can tolerate longer delays, but are not currently suit-

able for consumer applications, which rely on interactive prediction

services. However, having no privacy protection is also not desirable.

To that end, this paper presents Cloak, a framework that sifts the

features of the data based on their relevance to the target prediction

task.Tosolve thisproblem,wereformulate theobjectiveasagradient-
based optimization problem, that generates a sifted representation of
the input. The intuition is that if a feature can consistently tolerate
the addition of noisewithout degrading the utility, that feature is not

conducive to the classification task. As such, we augment each fea-

ture 𝑖 with a scaled addition of a noise distribution (𝜎𝑖 .N(0,1)) and
learn the scales (𝜎𝑖s). To learn the scales, we start with a pre-trained

classifier with known parameters and drive a loss function with

respect to the scales while the formulation comprises the model as a

https://doi.org/10.1145/3442381.3449965
https://doi.org/10.1145/3442381.3449965
https://doi.org/10.1145/3442381.3449965
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Table 1: Slowdown of cryptographic techniques vs. conventional GPU execution on Titan Xp and Cloak.

Cryptographic Release

DNN Dataset

Prediction Time (sec)

Slowdown

Technique Year Encrypted Conventional Cloak

FALCON [85] 2020 VGG-16 ImageNet 12.96 0.0145 0.0148 906×
DELPHI [54] 2020 ResNet-32 CIFAR-100 3.5 0.0112 0.0113 318×
CrypTen [22] 2019 ResNet-18 ImageNet 8.30 0.0121 0.0123 691×
GAZELLE [30] 2018 ResNet-32 CIFAR-100 82.00 0.0112 0.0113 7,454×
MiniONN [45] 2017 LeNet-5 MNIST 9.32 0.0007 0.0007 14,121×
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Figure 1: Cloak’s discovered features for target DNN classi-
fiers (VGG-16) for black-hair color, eyeglasses, gender, and
smile detection. The colored features are conducive to the
task. The 3 sets of features depicted for each task correspond
to different suppression ratios (SR). AL denotes the range of
accuracy loss imposed by the suppression.

known analytical function. The larger the scales, the larger the noise

that can be added to a corresponding feature, and the less conducive

the feature is. As such, the learned scales are thresholded to sup-

press the non-conducive features to a constant value, which yields

the sifted representation of the input. By removing such features,

Cloak guarantees that no information about them can be learned

or inferred from the sifted representation that the consumer sends.

Figure 1 shows examples of conducive features formultiple tasks dis-

covered by Cloak and the corresponding sifted representation for an

example image. Our differentiable formulation of finding the scales

minimizes the upper bound of theMutual Information (MI) between

the irrelevant features and the sifted representation (maximizing pri-

vacy) while maximizing the lower bound of MI between the relevant

features and the generated representation (preserving utility).

Experimentalevaluationwithreal-worlddatasetsofUTKFace[87],

CIFAR-100 [37], andMNIST [40] shows that Cloak can reduce the

mutual information between input images and the publicized repre-

sentationby85.01%withanaccuracy lossofonly1.42%. Inaddition,

we evaluate the protection offered by Cloak against adversaries that

try to infer data properties from sifted representations on CelebA

dataset [47].Weshowthat sifted representationsgenerated for “smile

detection” as the target task effectively prevent adversaries from

inferring information about hair color and/or eyeglasses. We show

that Cloak can provide these protections even in a black-box setting

where we do not have access to the service provider’s model param-

eters or architecture. Additionally, we show that Cloak outperforms

Shredder [52], a recent work in prediction privacy that heuristically

samples and reorders additive noise at run time to imitate the pre-

viously collected patterns. We further show that Cloak can improve

the classifier’s fairness. The code for the proposed method is avail-

able at https://github.com/mireshghallah/cloak-www-21, and the

details of the experimental setup and the hyperparameters used for

the evaluations are provided in the appendix.

2 PRELIMINARIES
In this section, we discuss the notation and fundamental concepts

used in the rest of the paper, starting with our threat model.

Threat Model. We assume a remote prediction service setup,

where a specific target prediction task is executed on input data. Our

goal is to create a representation xs of the input data x that has only

the features that are essential to the target task, and suppresses exces-

sive features in the input.We then send thisxs to the service provider.
For our theoretical and empirical evaluations, we adopt supervised

classification tasks as our target.We assume two accessmodes to the

target classifier 𝑓𝜃 : white-box and black-box. In the white-box setup,

we assume access to the architecture and parameters 𝜃 of the target

classifier. In the black-box setup, we have no access to the target clas-

sifier, nor the data it was trained on. In both cases, we need labeled

training data from the data distributionD, that the target classifier

was trained on. We do not, however, need access to the exact same

trainingdata, nordoweneedanyextra collaboration fromthe service

provider, such as a change in infrastructure or model parameters.

Feature Space.We assume each given input x to be a collection
of features, and group these features based on their importance for

the decision making of the target classifier, 𝑓𝜃 . We define the two

disjoint feature groups of conducive features, c, which are those

relevant to the target task and important to 𝑓𝜃 and non-conducive

features, u, which are less relevant. Our goal is to find the conducive
features and only keep them.

Mutual Information. The amount of mutual information be-

tween the raw data x, and the representation that is to be publicized,
xs is ameasure of privacy that is widely used in literature [16, 33, 42],

https://github.com/mireshghallah/cloak-www-21
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and is denoted by 𝐼 (x; xs). Cloak aims at learning representations

xs that decrease this mutual information while maintaining the

accuracy of the target classification task. Formally, Cloak tries to

minimize 𝐼 (xs; u) while maximizing 𝐼 (xs; c).

3 CLOAK’S OPTIMIZATION PROBLEM
Thissection formallydescribes theoptimizationproblemandpresents

a computationally tractable method towards solving it. Let x∈R𝑛
be an input, and c⊆x and u⊆x be two disjoint sets of conducive and
non-conducive features with respect to our target classifier (𝑓𝜃 ). We

construct a noisy representation xc=x+rwhere r∼N(𝝁,𝚺) and 𝚺
is a diagonal covariancematrix, aswe set the elements of the noise to

be independent. This noisy representation helps find the conducive

features and is used to create a final suppressed representation xs
that is sent to the service provider. The goal is to construct xc such
that the mutual information between xc and u is minimized (for

privacy), while the mutual information between xc and c is maxi-

mized (for utility). The is written as the following soft-constrained

optimization problem:

min
xc

𝐼 (xc; u)−𝜆𝐼 (xc; c) (1)

The intuitive solution is to set xc = c. But, directly finding c is, in
most cases, not tractable due to the high complexity of classifiers. To

solve this problem, we bound the terms of our optimization problem

of Equation 1, and then take an iterative approach [8]. To this end,

we find an upper bound for 𝐼 (xc; u) and a lower bound for 𝐼 (xc; c).

3.1 Upper bound on 𝐼 (xc;u)
Since u is a subset of x, the following holds:

𝐼 (xc; u) ≤ 𝐼 (xc; x)=H(xc)−H (xc |x)=H(xc)−
1

2
log((2𝜋𝑒)𝑛 |𝚺|)

(2)

WhereH(xc |x) is the entropy of the added Gaussian noise. Here
|𝚺| denotes the determinant of the covariancematrix. Then by apply-

ing Theorem A.1 (from the appendix) which gives an upper bound

for the entropy, to xc, we can write:

𝐼 (xc; u) ≤
1

2
log((2𝜋𝑒)𝑛 |𝐶𝑜𝑣 (xc) ||𝚺| ) (3)

Since x and r are independent variables and xc =x+r, we have
|𝐶𝑜𝑣 (xc) |= |𝐶𝑜𝑣 (x)+𝚺|. In addition, since covariance matrices are

positive semi-definite, we can get the eigen decomposition of𝐶𝑜𝑣 (x)
as𝑄Λ𝑄𝑇 where the diagonal matrix Λ has the eigenvalues. Since

𝚺 is already a diagonal matrix, |𝐶𝑜𝑣 (x) + 𝚺| = |𝑄 (Λ + 𝝈2)𝑄𝑇 | =∏𝑛
𝑖=1 (𝜆𝑖 +𝜎2𝑖 ). By substituting this in Equation 3, and simplifying

we get the upper bound for 𝐼 (xc; u) as the following:

𝐼 (xc; u) ≤
1

2
log((2𝜋𝑒)𝑛

𝑛∏
𝑖=1

(1+ 𝜆𝑖
𝜎2
𝑖

)) (4)

3.2 Lower bound on 𝐼 (xc;c)
Theorem 3.1. The lower bound on 𝐼 (xc;c) is:

H(c)+max
𝑞
Exc,c [log𝑞(c|xc)] (5)

Where 𝑞 denotes all members of a possible family of distributions for
this conditional probability.

Proof. The lemma and accompanying proof for this theorem are

in the appendix. □

3.3 Loss Function
Now that we have the upper and lower bounds, we can reduce our

problem to the following optimizationwhereweminimize the upper

bound (Equation 4) and maximize the lower bound (Equation 5):

min
𝝈 ,𝑞

1

2
log((2𝜋𝑒)𝑛

𝑛∏
𝑖=1

(1+ 𝜆𝑖
𝜎2
𝑖

))+𝜆
∑
ci,xci

(−log𝑞(ci |xci )) (6)

We omit theH(c) from the lower bound in Equation 5, since it is a

constant.Wealsowrite theexpectedvalue in the sameequation in the

formof a summation over all possible representations and conducive

features. To make this summation tractable, in our loss function we

replace this part of the formulation with the empirical cross-entropy

loss of the target classifier over all training examples. In other words,

the lossofpreserving theconducive features is substitutedby theclas-

sification loss for those features. We also relax the optimization fur-

ther by rewriting the first term. Since minimizing this term is equiv-

alent to maximizing the standard deviation of the noise, we change

the fraction into a subtraction. Our final loss function becomes:

L=−log 1
𝑛

𝑛∑
𝑖=0

𝜎2𝑖 +𝜆Er∼N(𝝁,𝜎2),x∼D
[
−
𝐾∑
𝑘=1

𝑦𝑘 log(𝑓𝜃 (x+r))𝑘
]

(7)

The second term is the expected cross-entropy loss, over the ran-

domness of the noise and the data instances. The variable 𝝁 is the

mean of the noise distributions. The variable 𝐾 is the number of

classes for the target task, and𝑦𝑘 is the indicator variable that deter-

mines if a given example belongs to class𝑘 . More intuitively, the first

term increases thenoiseof each featureandprovidesprivacy.The sec-

ond term decreases the classification error and maintains accuracy.

Theparameter𝜆 is a knob thatprovides a trade-offbetween these two.

3.4 Suppressed Representation
After finding the noisy representation xc, we use it to generate the
final suppressed representation xs. By applying a cutoff threshold

𝑇 on 𝝈 , we generate binary mask b such that 𝑏𝑖 = 1 if 𝜎𝑖 ≥𝑇 , and
𝑏𝑖 =0 otherwise. We create representation xs= (x+r)◦b+𝜇s, where
r∼N(0,𝝈) and 𝜇s are constant values that are set to replace non-
conducive features. According to the data processing inequality [7],

the upper bound on 𝐼 (xc;u) holds for xs as well, since 𝐼 (xs;u) ≤
𝐼 (xc; u). The same inequality also implies that the lower bound

achieved for 𝐼 (xc;c) does not necessarily hold for xs. To address this,
wewrite another optimization problem, to find 𝜇s such that cross en-

tropy loss, i.e,min𝜇s
∑𝐾
𝑘=1

𝑦𝑘 log(𝑓𝜃 (xs))𝑘 isminimized. Solving this

guarantees that the lower bound of Equation 5 also holds for 𝐼 (xs; c).

4 CLOAK FRAMEWORK
This section describes Cloak’s framework in more detail. Cloak

comprises of two phases: first, an offline phase where we solve the

optimization problems to find the conduciveness of the features and

the suppression constant values. Second, an online prediction phase

where the non-conducive features in a given input are suppressed

and a sifted and a suppressed representation of the data is sent to

the remote target service provider for prediction. In this section we
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discuss details of these two phases, starting from the details of the

offline phase.

4.1 Noise Re-parameterization and Constraints
To solve the optimization problem of Section 3, Cloak’s approach is

to cast the noise distribution parameters as trainable tensors,making

it possible to solve the problem using conventional gradient-based

methods. To be able to define gradients over the means and vari-

ances, we rewrite the noise sampling to be r=𝝈 ◦e+𝝁, instead of
r∼N(𝝁,𝝈2), where e∼N(0,1). The symbol ◦ denotes the element-

wise multiplication of elements of 𝝈 and e. This redefinition enables
us to formulate the problem as an analytical function for which we

can calculate the gradients.We also need to reparameterize𝝈 to limit

the range of standard deviation of each feature (𝜎). If it is learned

through a gradient-based optimization, it can take on any value,

while we know that variance can not be negative. In addition, we

also do not want the 𝜎s to grow over a given maximum,𝑀 . We put

this extra constraint on the distributions, to limit the 𝜎s from grow-

ing infinitely (to decrease the loss), taking the growth opportunity

from the standard deviation of the other features. Finally, we define a

trainable parameter 𝝆 and write 𝝈 =
1.0+tanh(𝝆)

2 𝑀 , where the tanh
function is used to constraint the range of the 𝜎s, and the addition

of 1 is to guarantee the positivity of the variance.

4.2 Cloak’s Perturbation TrainingWorkflow
Algorithm 1 shows the steps of Cloak’s optimization process. This

algorithm takes the training data (D), labels (𝑦), a pre-trained model

(𝑓𝜃 ), and the privacy-utility knob (𝜆) as input, and computes the

optimized tensor for noise distribution parameters. During the ini-

tialization step, the algorithm sets the trainable tensor for the means

(𝝁) to 0 and initializes the substitute trainable tensor (𝝆) with a large
negative number. This generates the initial value of zero for the

standard deviations.

In each step of the optimization, the algorithm calculates the loss

function on a batch of training data and computes the gradient of

the loss with respect to the 𝝁 and 𝝆 by applying backpropagation.

Since the loss (Equation 7) incorporates expected value over noise

samples, Cloak uses Monte Carlo sampling [34] with a sufficiently

large number of noise samples to calculate the loss. This means that

to apply a single update to the trainable parameters, Cloak runs

multiple forward passes on the entire classifier, at each pass draws

new samples for the noise tensor (the elements ofwhich are indepen-

dently drawn), and averages over the losses and applies the update

using the average. However, in practice, if mini-batch training is

used, only a single noise sample for each update can yield desirable

results, since anewnoise tensor is sampled for eachmini-batch.Once

the training is finished, the optimized mean and standard deviation

tensors are collected and passed to the next phase.

4.3 Feature Sifting and Suppression
For sifting the features we use the trained standard deviation tensor

(𝝈 ), which we call “noise map". A high value in the noise map for a

feature indicates that the feature is less important. Different noise

maps are created by changing the privacy-utility knob (𝜆). We use

a cutoff threshold𝑇 , to map the continuous spectrum of values of a

noise map, to binary values (b). While choosing the cutoff threshold

Algorithm 1 Perturbation Training

1: Input:D,𝑦, 𝑓𝜃 ,𝑚, 𝜆

2: Initialize 𝝁=0, 𝝆=−10 and𝑀 ≥0
3: repeat
4: Select training batch x fromD
5: Sample e∼N(0,1)
6: Let 𝝈 =

1.0+tanh(𝝆)
2 (𝑀)

7: Let r=𝝈 ◦e+𝝁
8: Take gradient step on 𝝁, 𝝆 from Eq. (7)

9: untilAlgorithm converges

10: Return: 𝝁, 𝝈

Algorithm 2 Suppression-Value Training

1: Input:D,𝑦, 𝑓𝜃 , 𝝈 , 𝝁, b
2: Initialize 𝝁𝒔 =𝝁
3: repeat
4: Select training batch x fromD
5: Sample r∼N(0,𝝈2)
6: Let xs= (x+r)◦𝑏+𝝁𝒔
7: Take gradient step on 𝝁𝑠 from E𝑟 [L𝐶𝐸 (𝑓𝜃 (xs), 𝑦)]
8: untilAlgorithm converges

9: Return: 𝝁𝑠

(𝑇 ) depends on the privacy-utility trade-offs, in practice, finding the

optimal value for𝑇 is not challenging. That is because the trained 𝜎s

are easy to be sifted as they are pushed to either side of the spectrum,

i.e., they either have a very large (near𝑀) or a very small value (near

0). See Section 5.6 for more details.

To suppress the non-conducive features, one simpleway is to send

the noisy representations, i.e, adding noise from the (𝝁,𝝈2) to the
input to get the 𝑥𝑐 representations that are sent out for prediction.

This method, however, suffers from two shortcomings: first, it does

not directly suppress and remove the features, which could leave the

possibility of data leakage. Second, because of the high standard devi-

ations of noise, in some cases, the generated representationmight be

out of the domain of the target classifier, which could have negative

effects on the utility. Anotherway of suppressing the non-conducive

features is to replace them with zeros (black pixels in images for

example). This scheme also, suffers from potential accuracy degrada-

tion, as the values we are using for suppression (i.e. the zeros) might

not match the distribution of the data that the classifier expects.

To address this, we find a suppressed representation (Section 3.4),

i.e., we train the constant suppression values that need to replace

the non-conducive features. Intuitively, these learned values reveal

what the target classifier perceives as common among all the inputs

from the training set, and what it expects to see. Algorithm 2 shows

the steps of this training process. The algorithm finds 𝝁𝑠 , the values
by which we replace the non-conducive features. The only objective

of this training process is to increase the accuracy, therefore we use

the cross-entropy loss as our loss function.
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4.4 Online Prediction
The prediction (inference) phase is when unseen test inputs that we

protect are sent to the remote service provider for classification. This

process is computationally efficient; it only adds noise sampling,

masking, and addition to the normal conventional prediction pro-

cess. First, a noise tensor sampled from the optimized distribution

N(0,𝝈2) is added to the input, then the binary mask 𝑏 is applied

to the noisy input image. Finally, 𝝁𝑠 is added to x and the resulting
sifted representation is sent to the service provider. As an example,

the last row of Figure 1 shows representations generated by Cloak,

for different tasks, using the noise maps from the third row. As the

images show, the non-conducive features are removed and replaced

with 𝝁𝑠 . The conducive features, however, are visible.

5 EXPERIMENTALRESULTS
To evaluate Cloak, we use four real-world datasets on four Deep

Neural Networks (DNNs). Namely, we use VGG-16 [76] and ResNet-

18 [26] on CelebA [47], AlexNet [38] on CIFAR-100 [37], a modified

version of VGG-16 model on UTKFace [87], and LeNet-5 [39] on

MNIST [40]. The mutual information numbers reported in this sec-

tion are estimated over the test set using the ShannonMutual Infor-

mation estimator provided by the Python ITE toolbox [79]. For the

experiments that are devised to compare Cloak with previous work,

Shredder [52], in order to create a similar setup, we apply Cloak to

the last convolution layer of the DNN and create sifted intermediate
representations which are then sent to the target classifier. In the

other experiments, Cloak is applied directly to the input images.

Code and information about hyper-parameters used in each of the

experiments is provided in the appendix.

5.1 Detailed Experimental Setup
In this section, we elaborate on the details of our experimental setup.

This includes dataset specifications, hardware and OS specifications,

neural network architectures, and finally, mutual information esti-

mation.

5.1.1 Dataset Specifications. There are four datasets used in our

evaluations:CelebA[47],CIFAR-100[37],UTKFace[87]andMNIST[40].

We have used these datasets with VGG-16 [76], ResNet-18 [26],

AlexNet [38], VGG-16 (modified), and LeNet-5 [39] neural networks,

respectively. We define a set of target prediction tasks over these

datasets. Specifically, we use smile detection, black-hair color classi-

fication, and eyeglass detection onCelebA, the 20 super-class classifi-

cation on CIFAR-100, and gender detection on UTKFace. For MNIST,

we use a classifier that detects if the input is greater than five and

another one that classifies what the input digit actually is. The ac-

curacy numbers reported in this section are all on a held-out test set,

which has not been seen during training by the neural networks. For

Cloak results, since the output is not deterministic, we repeatedly

run the prediction ten times on the test set with the batch size of one

and report themean accuracy. Since the standard deviation of the ac-

curacy numbers is small (consistently less than 1.0%) the confidence

bars are not visible on the graphs. The input image sizes for CelebA,

CIFAR-100, UTKFace and MNIST are 224 × 224 × 3, 32 × 32 × 3,
32×32×3, and 32×32, respectively. In addition, in our experiments,

the inputs are all normalized to 1. The experiments are all carried

out using Python 3.6 and PyTorch 1.3.1. We use Adam optimizer for

perturbation training.

5.1.2 Experimentation Hardware and OS. We have run the experi-

ments for CelebA dataset on an Nvidia RTX 2080 Ti GPU, with 11GB

VRAM, paired with 10 Intel Core i9-9820X processors with 64GBs

of memory. The rest of the experiments were run on the CPU. The

system runs an Ubuntu 18.04 OS, with CUDA version V10.2.89.

5.1.3 Neural Network Architectures. The code for all the models is

available in the supplementary materials. The VGG-16 for UTKFace

is different from the conventional one in the size of the last 3 fully

connected layers. They are (512,256), (256,256) and (256,2). The pre-

trained accuracy of the networks for smile detection, super-class

classification, gender detection, and greater than five detection are

91.8%, 55.7%, 87.87%, and 99.29%.

5.1.4 Mutual Information Estimation. The mutual information be-

tween the input images and their noisy representations are estimated

over the test set images using ITE [79] toolbox’s Shannonmutual in-

formationestimator. ForMNIST images, ourdatasethas inputsof size

32×32 pixels, which we flatten to 1024 element vectors, for estimat-

ing the mutual information. For other datasets, since the images are

larger (32×32×3), there are more dimensions and mutual informa-

tion estimation is not accurate. So, we calculate mutual information

channel by channel (i.e.we estimate themutual informationbetween

the red channel of the image and its noisy representation, then the

green channel and then blue), and we average over all channels.

The numbers reported in 5.2 are mutual information loss percent-

ages,whichmeans the lostmutual information among the publicized

image and the original one is divided by the information content in

the original images. This information content was estimated using

self-information (Shannon information), using the same toolbox.

5.2 Privacy-Accuracy Trade-Off
Figure 2 shows accuracy loss of the DNN classifiers using sifted

representations vs. the loss in mutual information. This is the loss

in mutual information between the original image and its noisy

representation, divided by the amount of information in bits in the

original image. The target tasks are 20 superclass classification for

CIFAR-100,>5 classification forMNIST and gender classification for

UTKFace. In this experiment, we compare Cloak to adding Gaussian

perturbation of mean zero and different standard deviations to all

pixels of the images. For fair comparison,we chooseCloak’s suppres-

sion with noisy representations. For MNIST and UTKFace, Cloak

reduces the information in the input significantly (93% and 85%
respectively) with little loss in accuracy (0.5% and 2.7%). In CIFAR-

100, the accuracy is slightlymore sensitive to themutual information

loss. This is due to the difference in the classification tasks. The tasks

forMNIST andUTKFace have only two classes, while for CIFAR-100,

the classifier needs to distinguish between 20 classes.

For all three datasets, we see that Cloak achieves a significantly

higher accuracy for same loss in mutual information compared to

Gaussian perturbation. This is because Cloak adds more noise to

the irrelevant features, and less to the relevant ones, whereas Gauss-

ian perturbations are added uniformly across the input. We do not

presentmutual information results for theCelebAdataset here, since

the input images have an extremely large number of features and



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Mireshghallah et al.

10 20 30 40 50
Mutual Information Loss (%)

0

10

20

30

40
Ac

cu
ra

cy
 L

os
s (

%
) Method

Cloak
Gaussian Perturbation

(a) CIFAR-100

85.0 87.5 90.0 92.5 95.0 97.5
Mutual Information Loss (%)

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

) Method
Cloak
Gaussian Perturbation

(b) MNIST

80 85 90 95
Mutual Information Loss (%)

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

) Method
Cloak
Gaussian Perturbation

(c) UTKFace

Figure 2: Privacy-accuracy trade-off for CIFAR-100, MNIST and UTKFace dataset.

the mutual information estimator tool is not capable of estimating

the mutual information accurately.

5.3 Adversary to Infer Information
Tofurtherevaluate theeffectivenessof the representations thatCloak

generates, we devise an experiment inwhich an adversary tries to in-

fer properties of the sifted representations using aDNNclassifier.We

assume two adversarymodels here. First, the adversary has access to

a unlimited number of samples from the sifted representations, there-

fore she can re-train her classifier to regain accuracy on the sifted

representations. Second, a model in which the adversary’s access to

the sifted representation is limited and therefore she cannot retrain

her classifier on the sifted representations. In this experiment, we

choose smile detection as the target prediction task for which Cloak

generates representations. Then, we model adversaries who try to

discover two properties from the sifted representations: whether

people in images wear glasses or not and whether their hair is black

or not. The adversaries have pre-trained classifiers for both these

tasks. The classifiers are VGG-16 DNNs, with accuracy of 96.4% and

88.2% for glasses and hair color classification, respectively.

Figure 3 shows the results of this experiment. Each point in this

figure is generated using a noise mapwith a Suppression Ration (SR)

noted in the figure. Higher SR means more features are suppressed.

When adversaries do not retrain their models, using sifted repre-

sentations with 95.6% suppression ratio causes the adversaries to

almost completely lose their ability to infer eyeglasses or hair color

and reach to the random classifier accuracy (50%). This is achieved

while the target smile detection task only loses 5.16% accuracy.

When adversaries retrain their models, using representations with

slightly higher suppression ratio (98.3%) achieves the same goal.

But this time, the accuracy of the target task drops to 78.9%. With

the same suppression ratio, the adversary who tries to infer hair

color loses more accuracy than the adversary who tries to infer eye-

glasses. This is because, as shown in Figure 1, the conducive features

of smile overlap less with the conducive features of hair than with

the conducive features of eyeglasses.

5.4 Black-Box AccessMode
To show the applicability of Cloak, we show that it is possible for

Cloak to protect users’ privacy even when we have limited access to

the targetmodel.Weconsiderablack-boxsetting inwhichweassume

Cloak does not have any knowledge of the target model architecture
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Figure 3: Cloak’s protection for target task of smile detection
(CelebA dataset) against adversaries that try to infer black-
hair color or wearing of eyeglasses from the sifted represen-
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or its parameters and is only allowed to send requests and get back

responses. In this setting, we first train a substitute model that helps

us to train Cloak’s representations. Note that training a substitute

model for black-box setting is a well-established practice in the con-

text of adversarial examples [49, 63] and inference attacks [28, 75].

The main challenge is generating the training data needed for train-

ing the substitute model. However, that has been already addressed

inpreviousworkandwe followa similarmethodology to themethod-

ology described in Shokri et al. [75]. We divide the original dataset

(CelebA) into two equal-size disjoint training sets, one for the target

and the other for the substitute model. We assume a target service

provider that has twoResNet18 [26]DNNs deployed, one for the task

ofblackhair color classification, andone for smiledetection. Sincewe

assume no knowledge of the model architecture, Cloak substitutes

the target classifiers with another architecture, i.e, with two VGG-16

DNNs. Cloak substitute models for the hair and smile tasks have ac-

curacies of 84.9% and 90.9% and the target models have accuracies

of 87.3% and 91.8%. After training the substitute model, we apply

Cloak to them to find noise maps and suppressed representations.

Figure 6c and 6d show the results for these experiments. Cloak

performs similarly effective in both white-box and black-box set-

tings and for both hair color classification and smile detection tasks.

The reason is that the DNN classifiers of the same task are known to

learn similar patterns and decision boundaries [3, 63]. For the smile

detection, we can see that with suppression ratio of 33%, The Cloak

black-box generated representations can get prediction accuracy

of 91.3%, even higher than the baseline prediction accuracy of the

classifier it is produced from. That is because the generated repre-

sentations are fed to the target classifier, which has a higher baseline

accuracy than the substitute model.

5.5 Post-hoc Effects of Cloak on Fairness
Cloak, by removing extra features, not only benefits privacy but can

also remove unintended biases of the classifier, resulting in a more

fair classification. In many cases the features that bias the classifiers

highly overlapwith the non-conducive features that Cloak discovers.

Therefore, applying Cloak can result in predictions that are more

fair, without the need to change the classifier. This subsection eval-

uates this positive side-effect of Cloak by adopting a setup similar to

that of Kairouz et al. [31]. We measure the fairness of the black-hair

color classifier using the sifted representations, while considering

gender to be a sensitive variable that can cause bias. We use two

metrics for our experiments, the difference in Demographic Par-

ity (Δ𝐷𝑒𝑚𝑃 ), and the difference in Equal Opportunity (Δ𝐸𝑂 ). More

details on themetrics and themeasurements can be found in the sup-

plementary material. Figure 4 shows that as Cloak suppresses more

non-conducive features, the fairness metrics improve significantly.

We see 0.05 reduction in both metrics due to the removal of gender

related non-conducive features. It is noteworthy that the biasing

features in the hair color classifier are not necessarily the gender fea-

tures shown in Figure 1. Those features showwhat a gender classifier

uses to make its decision.

5.6 Thresholds, Suppression
Mechanisms, and Comparison to Shredder

Sensitivity to threshold values. Figure 6a shows the effect of dif-
ferent thresholds (𝑇 ) values on suppression ratio of features on smile

detection (on CelebA/ VGG-16). Different series show different noise

maps attained with different values of 𝜆. 𝜎 denotes the average

standard deviation of a noise map, and the parameter𝑀 (maximum

standard deviation) of Section 4.1 is set to 5. Thefigure shows that the

choiceof𝑇 isnotcritical and in fact is a simple task, since ithas little ef-

fect on the subset of features that get suppressed. This is because dur-

ing the training of perturbation parameters, the standard deviations

arepushed to the either sidesof the spectrum(close to0or close to𝑀).

Different suppression schemes. Figure 6b shows the accuracy
of three suppression schemes described in Section 4.3 on the smile

detection task (on CelebA/ VGG-16). Among different schemes, sup-

pression using the trained values yields better accuracy for the same

suppression ratio, since it captures what the classifier expects to

receives. Suppression with noise (sending noisy representations)

performs slightly worse than training, and that is mainly due to the

uncertainty brought by the noise.

Comparision to Shredder. Figure 5 compares Cloak and Shred-

der [52] on theMNIST dataset using LeNet for the target task of digit

classification. To create a fair setup, we deploy Cloak to the output

of the last convolution layer of LeNet, similar to Shredder. Cloak

achieves a significantly higher accuracy for same levels of MI loss,

which shows the effectiveness of Cloak, in the intermediate repre-

sentation space. For the initial point where there is almost no loss in

accuracy, Cloak achieves 18.4%more information loss. This better

performance is partly due to directly learning the importance of each

feature, as opposed to generating patterns similar to a collection that

yields high accuracy. It is also partly due to the extra step that Cloak

takes at learning the constant suppression values, which ensures the

generated representations are in the domain of the classifier.

6 RELATEDWORK
This section reviews related work on the privacy of web services.

The section first briefly discusses the privacy of web applications in

general, and then more thoroughly discusses privacy in the context

of machine learning.

6.1 Web-application Privacy
Despite the privacy issues, sharing personal content on the web

unfortunately is still common. Therefore, researchers lavished at-

tention on the research that makes such sharing safe, secure, and

private [4, 17]. Mannan et al. [51] proposed amethod that focuses on

privacy-enhanced web content sharing in any user-chosen web

server. There is also a body of work that conducts longitudinal

studies on deleted web content and their subsequent information

leakage [6, 57]. The research in this area focuses on data leakage

through socialmedia [73, 88], blogging services that publish informa-

tion [83], or aggregation of web data [66]. Cloak, however, focuses

on an inference-as-a-service setup where private queries that poten-

tially contain sensitive information are sent to a web-service to run

machine learning inference.
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Figure 6: (a) shows the effect of different thresholds on suppression rate. (b) compares different suppressionmethods. (c) and (d)
show performance of Cloak in a black-box setting.

6.2 Machine Learning Privacy
Privacy-preserving machine learning research can be broadly cat-

egorized based on the phase on which they focus, i.e., training vs

prediction. The majority of these studies fall under the training cat-

egory [53] where they try to protect contributors’ private data from

getting embedded in the trained MLmodel [1, 13, 14, 29, 62, 74, 78]

or from being published in public datasets [19–21]. However, the im-

pending importance of prediction (inference) privacy has led to the

emergence of recent research efforts in this direction [18, 27, 41, 60,

61, 86]. There is also a smaller body of work focused on the privacy

of model architecture and parameters [11, 36], which is out of the

scope of this paper. Below, the more related works are discussed in

more detail.

Trainingphase. For training, the literature aboundswith studies
that use noise addition as a randomizationmechanism to protect pri-

vacy [1, 13, 14, 21, 62, 64, 74]. Most notably, differential privacy [20],

a mathematical framework that quantifies privacy, has spawned a

vast body of research in noise-adding mechanisms. For instance,

it has been applied to many machine learning algorithms, such as

logistic regression [12], statistical risk minimization [13], principal

component analysis [14, 29], and deep learning [1, 62, 64, 72, 74], to

name a few. Many of these studies have applied differential privacy

to a training setting where they are concerned with leaking private

information in training set through the machine learning model.

There is also a body of work focused on secure training of machine

learning models using cryptographic protocols [2, 2, 25, 56, 70, 71].

Finally, there are also several privacy-enhancing mechanisms,

such as Federated learning [32, 46] and Split learning [65, 77], which

use gradients or abstract representations of data in lieu of raw inputs,

to train MLmodels and enhance privacy. These methods have been

coupled with differential privacy [5, 10, 67] or information-theoretic

notions [84] to provide meaningful privacy guarantees.

Prediction/Inference privacy.Only a handful of studies have
addressed privacy of prediction by adding noise to the data. Osia

et al. [60] employed dimensionality reduction techniques to reduce

the amount of information before sending it to an untrusted cloud

service. Wang et al. [86] propose a noise injection framework that

randomly nullifies input elements for private inference, but their

method requires retraining of the entire network. Leroux et al. [41]

propose an autoencoder to randomize the data, but the intensity of

their obfuscation is too small to be irreversible, as they state.

Liu et al. [44] propose DEEProtect, an information-theoretic

method which offers two usage modes for protecting privacy. One

where it assumes no access to the privacy-sensitive inference la-

bels and one where it assumes access to the privacy-sensitive labels.

Deeprotect incorporates the sensitive inference into its formulation

for the latter usage mode. Amore recent work, Shredder [52], pro-

poses to heuristically sample and reorder additive noise at run time

based on the previously collected additive tensors that the DNN can

tolerate (anti-adversarial patterns). In contrast, Cloak’s approach is

to directly reduce information by learning conducive features and

suppressing non-conducive ones with learned constant values. We

also experimentally show that Cloak outperforms this prior work.

More importantly, this prior work relies on executing parts of the

network on the edge side and sending the results to the cloud. How-

ever, this separation is not always possible, as the service providers

might not be willing to share the model parameters or change their

infrastructure to accommodate for this method. Also, in some cases,

the edge device might be incapable of running the first convolu-

tion layers of the neural network. In contrast, we show that Cloak

can perform equally efficiently in black-box settings without the

collaboration of the service provider.

Privacy on offloaded computation can also be provided by the

means of cryptographic tools such as homomorphic encryption

and/or Secure Multiparty Computation (SMC) [9, 18, 23, 30, 45, 48,

54, 85]. However, these approaches suffer from a prohibitive compu-

tational cost (Table 1), on both the cloud and user side, exacerbating

the complexity and compute-intensity of neural networks especially

on resource-constrained edge devices. Cloak, in contrast, avoids the

significant cost of encryption and homomorphic data processing.

Several other research [24, 58, 82] rely on trusted execution en-

vironments to remotely run ML algorithms. However, this model

requires the users to send their data to an enclave running on remote

servers and is vulnerable to the new breaches in hardware [35, 43].

7 CONCLUSION
The surge in the use of machine learning is driven by the growth in

data and compute power. The data mostly comes from people [81]

and includes anabundanceofprivate information.WeproposeCloak,

a mechanism that finds features in the data that are unimportant

and non-conducive for a cloudML prediction model. This enables

Cloak to suppress those features before sending them to the cloud,

providing only the minimum information exposure necessary to

receive the particular service. In doing so, Cloak not only minimizes

the impact on the utility of the service, but it also imposes minimal

overhead on the response time of the prediction service.
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A APPENDIX
A.1 Theorem for Upper bound on 𝐼 (xc;u)
TheoremA.1. Given a random vector x∈𝑅𝑛 with covariancematrix
K, then:

H(x) ≤ 1

2
log((2𝜋𝑒)𝑛 |K|) (8)

Proof. This theoremisprovedusing the fact that theKL-divergence

of two distributions is always positive. The complete proof is in [15],

Theorem 8.6.5. □

A.2 Lower bound on 𝐼 (xc;c)
First, we introduce a lemma [60] that we use for finding the lower

bound of 𝐼 (xc;c).

LemmaA.2. For any arbitrary conditional distribution𝑞(c|xc), we
have:

Exc,c [log
𝑞(c|xc)
𝑝 (c) ] ≤ 𝐼 (xc;c) (9)

Proof. SinceweknowthatKL-divergence isalwaysnon-negative,

we can write:

𝐷𝐾𝐿 (𝑝 (c|xc) | |𝑞(c|xc))=
∫
𝑝 (c|xc) log

𝑝 (c|xc)
𝑞(c|xc)

𝑑c≥0

From this, we can come to:∫
𝑝 (c,xc) log

𝑝 (c|xc)𝑝 (c)
𝑞(c|xc)𝑝 (c)

𝑑c𝑑xc ≥0

By negation, we get:

−
∫
𝑝 (c,xc) log

𝑝 (c|xc)𝑝 (c)
𝑞(c|xc)𝑝 (c)

𝑑c𝑑xc ≤0 (10)

On the other hand, from the definition of mutual information, we

can write:

𝐼 (xc;c)=
∫
𝑝 (c,xc) log

𝑝 (c,xc)
𝑝 (c)𝑝 (xc)

𝑑xc𝑑c (11)

If we add 𝐼 (xc;c) from Equation 11 to 10, we get:∫
𝑝 (xc,c) log

𝑞(c|xc)
𝑝 (c) ≤ 𝐼 (xc;c)

Which yields:

Exc,c [log
𝑞(c|xc)
𝑝 (c) ] ≤ 𝐼 (xc;c) (12)

□

Now, we review the theorem and prove it.

Theorem 3.2. The lower bound on 𝐼 (xc;c) is:
H(c)+max

𝑞
Exc,c [log𝑞(c|xc)] (13)

By𝑞, we mean all members of a possible family of distributions for this
conditional probability.

Proof. For all 𝑞, the left hand side of equation 9 offers a lower

bound.Theequalityhappenswhen𝑞(c|xc) is equal to𝑝 (c|xc). Given
this, if we estimate a close enough distribution 𝑞 that maximizes the

left hand side of the inequality 9, we can find a tight lower bound for

the mutual information. We can re-write inequality 9 as:

−Ec [log 𝑝 (c)]+Exc,c [log 𝑞(c|xc)] ≤ 𝐼 (xc;c)

Based on the definition of Entropy and the discussion above about

tightening the bound, the lower bound on the mutual information is:

H(c)+max
𝑞
Exc,c [log𝑞(c|xc)] (14)

□

A.3 Hyperparameters for Training
Tables 2, 3 and 4 show the hyperparameters used for training in the

experiments of Sections 5.2, 5.3 and 5.4. For the first one, the 𝑃𝑜𝑖𝑛𝑡#
indicates the experiment that produced the given point in the graph,

if the points were numbered from left to right. The hyperparameters

of the rest of the experiments are the same as the ones brought. In

our implementation, for ease of use and without loss of generality,

we have introduced a variable𝛾 to the loss function in Equation 7, in

a way that𝛾 = 1
𝜆
. With this introduction, we do not directly assign a

𝜆 (as if 𝜆were removed and replaced by𝛾 as a coefficient of the other

term). In the tables, we have used lambda to be consistent, and in the

cells where the value for 𝜆 is not given, it means that the loss is only

cross-entropy. But in theCode, the coefficient is set on the other term

and is 1/𝜆s reported here. The batch sizes used for training are 128
for CIFAR-100, MNIST, and UTKFace and 40 and 30 for CelebA. For

testing the batch size is 1, so as to sample a new noise tensor for each

image and capture the stochasticity. Also, the number of samples

taken for each update in optimization is 1 since we do mini-batch

training and for each mini-batch we take a new sample. Finally,𝑀 is

set to 1.5 for all benchmarks, except for CelebAwhere it is set to be 5.

A.4 Code Directory Structure
The code and model checkpoints used to produce the results are

provided at https://github.com/mireshghallah/cloak-www-21. The

code is in the directory code and the models and NumPy files are

named saved_nps.zip and they both have the same directory struc-

ture.Theyeachcontain5Foldersnamedexp1-trade-off, exp2-adversary,
exp3-black-box, exp4-fairness and exp5-shredder which are related
to the results in the experiments section in the same order. The

pre-trained parameters needed are provided in the saved_nps.zip,
in the corresponding directory. So, all that is needed to be done is

to copy all files from the saved_nps.zip directory to their corre-

sponding positions in the code folders, and then run the provided

Jupyter notebooks. The notebooks that were used to generate rep-

resentations are provided, in case someone wants to reproduce the

results, and the saved Cloak models and pre-trained models are

given as well. For acquiring the datasets, you can have a look at the

acquire_datasets.ipynb notebook, included in the code.zip.
In short, each notebook has Cloak in its namewill start by loading

the required datasets and then creating a model. Then, the model is

trained based on the experiments and using the hyperparameters

provided in section A.3. Finally, you can run a test function that is

provided to evaluate the model. For seeing how the mutual informa-

tion is estimated, you can run the notebooks that have mutual_info
in their names. You need not have run the training beforehand if

you place the provided .npy files in the correct directories. For the
mutual information estimation, you will need to download the ITE

toolbox [79]. The link is provided in the code.

https://github.com/mireshghallah/cloak-www-21
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Table 2: hyper parameters for Section 5.2

Model Point#

Training Phase 1 Training Phase 2

epoch LR 𝜆 epoch LR 𝜆

CIFAR-100

1 17 0.001 1 3 0.001 10

2 24 0.001 1 2 0.001 10

3 30 0.001 1 2 0.001 10

4 40 0.001 0.2 2 0.001 10

5 140 0.001 0.2 2 0.001 10

MNIST

1 50 0.01 100 90 0.001 200

2 50 0.01 100 160 0.001 200

3 50 0.01 100 180 0.001 200

4 50 0.01 100 260 0.001 100

5 50 0.01 100 290 0.001 100

UTKFace

1 6 0.01 0.1 6 0.0001 100

2 4 0.01 0.1 2 0.0001 100

3 8 0.01 0.1 2 0.0001 100

4 10 0.01 0.1 2 0.0001 100

5 12 0.01 0.1 2 0.0001 100

Table 3: hyper parameters for Section 5.4

Model Point#

Training Phase 1 Training Phase 2 Training Phase 3

epoch LR 𝜆 epoch LR 𝜆 epoch LR 𝜆

VGG16

1 0.5 0.01 1 0.5 0.001 1 - - -

2 0.5 0.01 1 0.7 0.001 1 - - -

3 0.5 0.01 1 0.8 0.001 1 - - -

4 0.8 0.01 1 0.8 0.001 1 0.2 0.001 5

5 1 0.01 1 0.8 0.001 1 0.2 0.001 100

ResNet18

1 1 0.01 10 0.5 0.001 1 - - -

2 1 0.01 5 0.5 0.001 1 - - -

3 1 0.01 5 0.7 0.001 1 - - -

4 1.2 0.01 3 0.5 0.001 1 0.2 0.001 5

5 2 0.01 5 0.5 0.001 1 0.2 0.001 5

Table 4: hyper parameters for Section 5.3

Model SR(%)

Training Phase 1 Training Phase 2 Training Phase 3

epoch LR epoch LR epoch LR

Adversary-hair

00.00 1 0.01 - - - -

33.60 1 0.01 2 0.0001 1 0.00001

53.70 1 0.01 2 0.0001 1 0.00001

71.00 1 0.01 2 0.0001 1 0.00001

89.70 1 0.01 2 0.0001 3 0.00001

95.60 1 0.01 2 0.0001 2 0.00001

98.30 1 0.01 2 0.0001 3 0.00001

Adversary-glasses

00.00 1 0.01 - - - -

33.60 1 0.01 2 0.0001 1 0.00001

53.70 1 0.01 2 0.0001 1 0.00001

71.00 1 0.01 2 0.0001 1 0.00001

89.70 1 0.01 2 0.0001 3 0.00001

95.60 1 0.01 2 0.0001 2 0.00001

98.30 1 0.01 2 0.0001 3 0.00001

A.5 FairnessMetrics
In a classification task, demographic parity requires the conditional

probability of the classifier predicting output class𝑌 =𝑦 given sen-

sitive variable 𝑆 = 0 to be the same as predicting class 𝑌 =𝑦 given

𝑆 =1. In other words, 𝑃 (𝑌 =𝑦 |𝑆 =0) =𝑃 (𝑌 =𝑦 |𝑆 =1). Since in most

real cases these values are not the same, the maximum pair-wise dif-

ference between these values is considered as a measure of fairness,

Δ𝐷𝑒𝑚𝑃 , and the lower this difference, the more fair the classifier.

Here 𝑆 would be the gender, which due to the data provided in the

dataset, is binary. We have only two target classes of black hair and

non-black hair, so the Δ𝐷𝑒𝑚𝑃 (𝑦=0) is the same as Δ𝐷𝑒𝑚𝑃 (𝑦=1).

Equalized odds is another fairness measure, which requires the

conditional probability of the classifier predicting class𝑌 =𝑦 given

sensitive variable 𝑆 = 0 and ground truth class 𝑌 = 𝑦 be equal to

the same conditional probability but with 𝑆 = 1. In other words,

𝑃 (𝑌 = 𝑦 |𝑆 = 0,𝑌 = 𝑦) = 𝑃 (𝑌 = 𝑦 |𝑆 = 1,𝑌 = 𝑦). Similar to the demo-

graphic parity case, we also measure the difference in these condi-

tional probabilities for both𝑦 =1 (black hair) and𝑦 =0 (non-black
hair) and report their summation as Δ𝐸𝑂 , commensurate with [50].
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