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Abstract

A wide variety of DNN applications increasingly rely on the cloud to perform
their huge computation. This heavy trend toward cloud-hosted inference services
raises serious privacy concerns. This model requires the sending of private and
privileged data over the network to remote servers, exposing it to the service
provider. Even if the provider is trusted, the data can still be vulnerable over
communication channels or via side-channel attacks [1, 2] at the provider. To that
end, this paper aims to reduce the information content of the communicated data
without compromising the cloud service’s ability to provide a DNN inference with
acceptably high accuracy. This paper presents an end-to-end framework, called
Shredder, that, without altering the topology or the weights of a pre-trained network,
learns an additive noise distribution that significantly reduces the information
content of communicated data while maintaining the inference accuracy. Shredder
learns the additive noise by casting it as a tensor of trainable parameters enabling us
to devise a loss functions that strikes a balance between accuracy and information
degradation. The loss function exposes a knob for a disciplined and controlled
asymmetric trade-off between privacy and accuracy. While keeping the DNN intact,
Shredder enables inference on noisy data without the need to update the model or
the cloud. Experimentation with real-world DNNs shows that Shredder reduces
the mutual information between the input and the communicated data to the cloud
by 70.2% compared to the original execution while only sacrificing 1.46% loss in
accuracy.

1 Introduction
Online services that utilize the cloud infrastructure are now ubiquitous and dominate the IT industry [3,
4, 5]. The limited computation capability of edge devices [6] and the increasing processing demand
of learning models [7, 8] has naturally pushed most of the computation to the cloud [9]. Coupled
with the advances in learning and deep learning, this shift has also enabled online services to offer a
more personalized and more natural interface to the users [10]. These services continuously receive
raw, and in many cases, personal data that needs to be stored, parsed, and turned into insights and
actions. In many cases, such as home automation or personal assistant, there is a rather continuous
flow of personal data to the service providers for real-time inference. While this model of cloud
computing has enabled unprecedented capabilities due to the sheer power of remote warehouse-scale
data processing, it can significantly compromise user privacy. When data is processed on the service
provider cloud, it can be compromised through side-channel hardware attacks (e.g., Spectre [1] or
Meltdown [2]) or deficiency in the software stack [11]. But even in the absence of such attacks,
the service provider can share the data with business partners [12] or government agencies [13].
Although the industry has adopted privacy techniques for data collection and model training [14, 15],
scant attention has been given to the privacy of users who increasingly rely on online services for
inference.
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Figure 1: The landscape of research in infer-
ence privacy and how Shredder fits in the pic-
ture.

As Figure 1 illustrates, researchers have at-
tempted to grapple with this problem by employ-
ing cryptographic techniques such as multiparty
execution [16, 17] and homomorphic encryp-
tion [18, 19, 20, 21] in the context of DNNs.
However, these approaches suffer from a pro-
hibitive computational and communication cost,
exacerbating the already complex and compute-
intensive neural network models. Worse still,
this burdens additional encryption and decryp-
tion layers to the already constrained edge de-
vices despite the computational limit being the
main incentive of offloading the inference to the
cloud.

This paper, as depicted in Figure 1, takes an
orthogonal approach, dubbed Shredder, and
aims to reduce the information content of the re-
motely communicated data through noise injec-
tion without imposing significant computational
cost. However, as shown, noise injection can lead to a significant loss in accuracy if not administered
with care and discipline. To address this challenge, Shredder learns a noise tensor with respect to
a loss function that incorporates both accuracy and a measure of privacy. Learning noise does not
require retraining the network weight parameters or changing its topological architectures. This rather
non-intrusive approach is particularly interesting as most enterprise DNN models are proprietary, and
retraining hundred of millions of parameters is resource and time consuming. Shredder, in contrast,
learns a much smaller noise tensor through a gradient-driven optimization process.

The main insight is that the noise can be seen as an added trainable set of parameters that can be
discovered through an end-to-end training algorithm. We have devised the noise training loss such
that it exposes an asymmetric tradeoff between accuracy and privacy as depicted in Figure 1. As
such the same model can be run on the same cloud on intentionally noisy data without the need for
retraining or the added cost of supporting cryptographic computation. The objective is to minimize
the accuracy loss while maximally reducing the information content of the data that a user sends to
cloud for an inference service. This problem of offloaded inference is different than the classical
differential privacy [22] setting where the main concern is the amount of indistinguishability of an
algorithm, i.e., how the output of the algorithm changes if a single user opts out of the input set.
In inference privacy, however, the issue is the amount of raw information that is sent out. As such,
Shanon’s Mutual Information (MI) [23] between the user’s raw input and the communicated data to
the cloud is used as a measure to quantitively discuss privacy.

Empirical analysis shows Shredder reduces the mutual information between the input and the
communicated data by 70.2% compared to the original execution with only 1.46% accuracy loss.
With these encouraging results the paper marks an initial step in casting noise-injection to protect
privacy as finding a tensor of trainable parameters through an optimization process, doing so without
retraining the network weights, and incorporating both privacy and accuracy in the optimization loss.
You can find Shredder’s code at https://github.com/shreddercode/Shredder.git.

2 Shredder: Noise Learning Framework
This section delves deeper into the details of Shredder, starting from describing the problem formu-
lation and how the trainable noise tensor fits into the context. In addition this section describes the
loss function and training process that Shredder uses for finding the desired noise tensor. We also
describe our privacy model and the notions of privacy that we use.

2.1 Trainable Noise Tensor
Given a pre-trained network f(x, θ) with K layers and pretrained parameters θ, we choose a cutting
point, layerc, where the computation of all the layers [0..layerc] are made on the edge. We call this
the local network, L(x, θ1), where θ1 is a subset of θ from the original model.

The remaining layers, i.e., [(layerc + 1)..layerK−1], are deployed on the
cloud. We call this remote network, R(x, θ2). This is shown in Figure 2.
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Figure 2: Noise injection in Shredder.

The user provides input x to the local network, and
an intermediate activation tensor a = L(x, θ1) is pro-
duced. Then, a noise tensor n is added to the output
of the first part, a′ = a + n. This a′ is then com-
municated to the cloud where R(a′, θ2) is computed
on noisy data and produces the result y = f ′(x, n, θ)
that is sent back to the user.

The objective is to find the noise tensor n that min-
imizes our loss function (Section 2.4). To be able to do this through a gradient based method of
optimization, we must find the ∂y/∂n:

∂y

∂n
=
∂f ′(x, θ, n)

∂n
=
∂R((a+ n), θ2)

∂n
=

∂layerK−1
∂LayerK−2

× ...× ∂Layerc+1

∂(a+ n)
× ∂(a+ n)

∂n︸ ︷︷ ︸
= ∂n

∂n=1

Since L(x, θ1) is not a function of n, it is not involved in the backpropagation. Gradient of R is also
computed through chain rule as shown above. Therefore, the output is differentiable with respect to
the noise tensor.

2.2 Ex Vivo Notion of Privacy
To measure the privacy, we look at how much information is leaked from input of the network to the
data sent across to the cloud. We define information leakage as the mutual information between x
and a, i.e., I(x, a), where

I(x; a) =

∫
x

∫
a

px,alog2
px,a
pxpa

dxda. (1)

Mutual information has been widely used in the literature for both understanding the behaviour of
neural networks [24, 25, 24, 26, 27, 28], and also to quantify information leakage in anonymity
systems in the context of databases [29, 30, 31]. We also use the reverse of mutual information
(1/MI) as our main and final notion of privacy and call it ex vivo privacy. In our setting, we quantify
the information between the user-provided input and the intermediate state that is sent to the cloud.
Note that the mutual information is considered an information theoretic notion, therefore it quantifies
the average amount of information about the input (x) that is contained in the intermediate state (a).
For example, if x and a become independent, I(x, a) = 0, and if a = x, then the mutual information
becomes the maximum value of I(x, a) = H(x), where H(x) is Shanon’s entropy of the random
variable x.

2.3 In Vivo Notion of Privacy
As the final goal, Shredder reduces the mutual information between x and a′; however, calculating
the mutual information at every step of the training is too computationally intensive. Therefore,
instead we introduce an in vivo notion of privacy whose whole purpose is to guide our noise training
process towards better privacy, i.e, higher 1/MI . To this end, we use the reverse of signal to noise
ratio (1/SNR) as proxy for our ex vivo notion of privacy. Mutual information is shown to be a
function of SNR in noisy channels [32, 33]. In addition, in this paper, we empirically investigate the
relation between the two and show that SNR is a reasonable choice.

2.4 Loss Function
The objective of the optimization is to find the additive noise distribution in such a way that it
minimizes I(x, a′) and at the same time maintains the accuracy. In other words, it minimizes
‖R(a, θ) − R(a′, θ)‖. Although these two objectives seem to be conflicting, it is still a viable
optimization, as the results suggest. The high dimensionality of the activations, their sparsity, and the
tolerance of the network to perturbations [34, 35] yields such behavior.

The noise tensor that is added is the same size as the activation it is being added to. The number
of elements in this tensor would be the number of trainable parameters in our method. Shredder
initializes the noise tensor to a Laplace distribution with location parameter µ and scale parameter
b. Similar to the initialization in the traditional networks, our initialization parameters, i.e., b and µ
are considered hyperparameters in the training and need to be tuned. This initialization affects the
accuracy and amount of noise (privacy) of our model.
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We evaluate the privacy of our technique during inference through ex vivo (1/MI) notion of privacy.
However, during training, calculating MI for each batch update would be extremely compute-intensive.
For this reason, Shredder uses an in vivo notion of privacy which uses (SNR) as a proxy to MI [33].
In other words, Shredder incorporates SNR in the loss function to guide the optimization towards
increasing privacy. We use the formulation SNR = E[a2]/σ2(n), where E[a2] is the expected value
of the square of activation tensor, and σ2(n) is the variance of the noise we add. Given the in vivo
notion of privacy above, our loss function would be:

−
M∑
c=1

yo,clog(po,c) + λ
1

σ2(n)
(2)

Where the first term is cross entropy loss for a classification problem consisting M classes (yo,c
indicates whether the observation o belongs to class c and po,c is the probability given by the network
for the observation to belong to class c), and the second term is the inverse of variance of the noise
tensor to help it get bigger and thereby, increase in vivo privacy (decrease SNR). λ is a coefficient
that controls the impact of in vivo privacy in training. Since the numerator in our SNR formulation
is constant, we do not involve it in the calculations. The standard deviation of a group of finite
numbers with the range R = max − min is maximized if they are equally divided between the
minimum, min, and the maximum, max. This is inline with our observations that show as we push
the magnitude of the noise to be bigger, the in vivo privacy would also get bigger. The intuition is that
we initialize the noise tensor in a way that some elements are negative and some are positive. The
positive ones get bigger, and the negative ones get smaller, therefore, the standard deviation of the
noise tensor becomes bigger after each update. That’s why we employ a formulation opposite to L2
regularization [36], in order to make the magnitude of noise elements greater. So our loss becomes:

−
M∑
c=1

yo,clog(po,c)− λ
N∑
i=1

|ni| (3)

This applies updates opposite to L2 regularization term (weight decay, and λ is similar to the decay
factor), instead of making the noise smaller, it makes its magnitude bigger. The λ exposes a knob
here, balancing the accuracy/privacy trade-off. That’s why it should be tuned carefully for each
network. If it is very big, at each update the noise would get much bigger, impeding the accuracy
from improving. And if it is too small, its effect on the noise would be minimal. We use −0.01,
−0.001 and −0.0001. In general, as the networks and the number of training parameters get bigger,
it is better to make λ smaller to prevent the optimizer from making huge updates and overshooting
the accuracy.

When initializing noise with a Laplace distribution, the scale factor of the distribution determines the
initial in vivo privacy. Depending on the initial in vivo privacy, initial accuracy and the λ, different
scenarios could occur. One scenario is where we tune λ so that the in vivo privacy remains constant,
the same as its initial value (within a small fluctuation range) and only the accuracy increases. Another
scenario occurs if the initial in vivo privacy is a lot bigger than what is desired (this usually occurs if
the initialized noise tensor has a high scale factor) – it is easier (faster in terms of training) to set λ
very small or equal to zero and train until accuracy is regained. In this case the in vivo privacy will
decrease as the accuracy is increasing, but since it was extremely high before, even after decreasing it
is still desirable. One other possibility is that the initial in vivo privacy is lower than what we want
and when training starts, it will increase as accuracy increases (or if it is not perturbed much by the
initial noise, it stays constant).

2.5 Noise Sampling

We choose Laplace distribution for initialization, and perform training until we reach the desired
noise level for the given in vivo privacy (1/SNR) and accuracy. At this point we save the noise
tensor, and repeat the same process multiple times. This is like sampling from a distribution of noise
tensors, all of which yield similar accuracy and noise levels. After enough samples are collected,
we have the distribution for the noise tensor. At this point, for each inference, we sample from the
distribution, and inject this noise to the activation and send it to the cloud. In this phase we just
sample from pre-trained noises and no training takes place here.
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3 Empirical Evaluation
This section elaborates our observations in details and brings empirical evidences for the efficacy
of Shredder. We discuss the accuracy-privacy trade-off, the noise training process with our loss
function, a comparison of the in vivo and ex vivo notions of privacy and finally, a network cutting
point trade-off analysis.

Mutual Information (MI) is calculated using the Information Theoretical Estimators Toolbox’s [37]
Shannon Mutual Information with KL Divergence. In the results reported in upcoming sub-sections,
MI is calculated over the shuffled test sets on MNIST [38] dataset for LeNet [39], CIFAR-10 dataset
for CIFAR-10 [40], SVHN dataset for SVHN [41], and ImageNet [42] dataset for AlexNet [43].
These photos were shuffled through and chosen at random. Using mutual information as a notion of
privacy means that Shredder targets the average case privacy, but does not guarantee the amount of
privacy that is offered to each individual user.

Table 1 summarizes our experimental results. It is shown that on the networks, Shredder can achieve
on average 70.2% loss in information while inducing 1.46% loss in accuracy. The table also shows
that it takes Shredder a short time to train the noise tensor, for instance on AlexNet it is 0.1 epoch.

3.1 Accuracy-Privacy Trade-Off
There is a trade-off between the amount of noise that we incur to the network, and its accuracy. As
shown in Figure 1, Shredder attempts to increase privacy while keeping the accuracy intact. Figure 3
shows the level of privacy that can be obtained by losing a given amount of accuracy for LeNet,
CIFAR-10, SVHN, and AlexNet. In this Figure, the number of mutual information bits that are
lost from the original activation using our method is shown on the Y axis. The cutting point of the
networks is their last convolution layer. This can be perceived as the output of the features section of
the network, if we divide the network into features and classifier sections.

The Zero Leakage line depicts the amount of information that needs to be lost in order to leak no
information at all. In other words, this line points to the original number of mutual information bits in
the activation that is sent to the cloud, without applying noise. The black dots show the information
loss that Shredder provides, given a certain loss in accuracy. These trends are similar to that of
Figure 1, since Shredder tries to strip the activation from its excess information, thereby preserving
privacy and only keeping the information that is used for the classification task. This is the sharp
(high slope) rise in information loss, seen in sub-figures of Figure 3. Once the excess information is
gone, what remains is mostly what is needed for inference. That is why there is a point (the low slope
horizontal line in the figures) where adding more noise (losing more information bits) causes huge
loss in accuracy. The extreme to this case can be seen in 3a, where approaching the Zero Leakage
line causes about 20% loss in accuracy.

3.2 Loss Function and Noise Training Analysis
As Equation 3 shows, our loss function has an extra term, in comparison to the regular cross entropy
loss function. This extra term is intended to help decrease Signal to Noise ratio (SNR). Figure 4 shows
part of the training process on AlexNet, cut from its last convolution layer. The black lines show how
a regular noise training process would work, with cross entropy loss and Adam Optimizer [44]. As
Figure 4a shows in black, the in vivo notion of privacy (1/SNR) decreases for regular training as the
training moves forward. For Shredder however, the privacy increases and then stabilizes.

This is achieved through tuning of the λ in Equation 3. When the in vivo notion of privacy reaches
a certain desired level, λ is decayed to stabilize privacy and facilitate the learning process. If it is
not decayed, the privacy will keep increasing and the accuracy would increase more slowly, or even
start decreasing. The accuracy, however, increases at a higher pace for regular training, compared to
Shredder in Figure 4b. It is noteworthy that this experiment was carried out on the training set of

Table 1: Summary of the experimental results of Shredder for the benchmark networks.
Benchmark LeNet CIFAR SVHN Alexnet GMean

Original Mutual Information 301.84 236.34 19.2 12661.51 –
Shredded Mutual Information 18.9 90.2 7.1 4439 –
Mutual Information Loss 93.74% 61.83% 64.58% 64.94% 70.2%
Accuracy Loss 1.34% 1.42% 1.12% 1.95% 1.46%
Shredder’s Learnable Params over Model Size 0.19% 0.65% 0.04% 0.02% 0.10%
Number of Epochs of Training 6.3 1.7 1.2 0.1 1.06
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(c) SVHN
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(d) AlexNet

Figure 3: Accuracy-Privacy trade-off in 4 benchmark networks, cut from their last convolution
layer. The zero leakage line shows the original mutual information between input images and
activations at the cutting point.
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Figure 4: In vivo notion of privacy and accuracy per iteration of training on AlexNet, when the
last convolution layer is the cutting point. The black lines show regular training with cross
entropy loss function. The orange lines show Shredder’s learning, with loss function shown
in Equation 3.
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Figure 5: In vivo vs ex vivo notion of privacy in SVHN and LeNet, for different cutting points.
The similar slope of the lines show that different layers behave similarly in terms of losing
information (ex vivo privacy) when the same amount of noise is applied to them during training
(in vivo privacy).

ImageNet, and when the training is finished, there is negligible degradation in accuracy for Shredder
on the test set, in comparison to the regularly trained model.

3.3 In Vivo Vs. Ex Vivo Notion of Privacy Analysis

Due to the operations that take place along the execution of different layers of a neural network (e.g.
convolution, normalization, pooling, etc.), mutual information between the inputs to the network
and the activations keep decreasing as we move forward [27]. So, deeper layers have lower mutual
information than the more surface layers, and when noise is injected into them, it is similar to giving
the privacy level a head start, since it already has less information compared to a layer on the surface.
Figure 5a shows that incurring the same amount of noise (which induces ∼ 0.6 in vivo privacy,
∼ 1.67 SNR) to convolution layers 0, 2, 4, 6 of SVHN, causes information loss of ∼ 66% for all four
layers. This does not mean the same amountof ex vivo privacy, because each layer had a different
starting point for ex vivo privacy. What it means is that the the information loss is proportional to
incurred noise and the proportion is consistent over all the 4 layers shown.
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Figure 6: Computation/communication costs and privacy as we select deeper layers in the
networks for Shredder’s noise addition. Shredder maintains an accuracy loss of < 2% for all
of the cutting points.

3.4 Cutting Point Trade-offs
Layer selection for network cutting point depends on different factors and is mostly an interplay of
communication and computation of the edge device. It depends on how many layers of the network
the edge device can handle computationally, and how much data it can send through the connection
protocols it can support. If we choose deeper layers in the network, we would naturally have a lower
mutual information between the image and activation to begin with (Section 3.3), and we lose even
more information by maximizing the noise. So, as a general rule it is better to choose the deepest
layer that the edge device can support.

Figure 6 shows the communication and computation costs from the perspective of the edge device as
we select deeper cutting points in the networks. As we go deeper, we lose the unnecessary information,
therefore ex vivo privacy is monotonically increasing. Computation cost is also monotonically increas-
ing as it’s a cumulative function of computation costs of all the preceding layers. Communication cost,
on the other hand, is not typically monotonic as the size of the output of a layer can be smaller and
also larger than the size of its input. We model the total cost as Computation× Communication
for a specific cutting point. For SVHN, as figure 6a shows, Conv6 is the obvious cutting point choice
as it incurs less cost and exhibits more privacy compared to other layers. That is mainly because
Conv6 has significantly smaller output than its preceding layers and it substantially brings down the
communication cost. For LeNet (figure 6b), we choose Conv2 over Conv0 as we find incurring one
percent cost is likely worth the gained privacy level.

4 Related Work
The literature abounds with a variety of attempts to provide greater protection to users’ private
data in a neural processing system [45, 46, 21, 19]. These efforts span different levels of the sys-
tem, from training to inference. The majority of these studies [45, 46]; however, have focused
on preserving the privacy of contributing users to statistical databases or training models. These
techniques tackle the inherent conflict of extracting useful information from a database while pro-
tecting private or sensitive data of the individuals from being extracted or leaked [47]. As Table 2
illustrates, the landscape of research in privacy for neural networks can be categorized to the ef-
forts that focus on training or infernce. These categories can be further grouped according to
whether or not they require retraining the DNN weights or modifying the model itself (i.e., intrusive).
Shredder falls in the category of the techniques that are non-intrusive and target the inference phase.

Table 2: Privacy Protecting methods in DNNs.
Non-Intrusive Intrusive +

Inference Shredder
MiniONN[21]

CryptoNets[19], GAZELLE[48],
Arden[49], DPFE[50, 51]

Training/DB Rappor [15]
Apple [14]

Differential Privacy-Based [45, 46],
SecureML [52]

+ Intrusive: Model Modification or Retraining

The other technique in this same category, Min-
iONN [21], uses homomorphic encryption that
imposes non-trivial computation overheads mak-
ing it less suitable for inference on edge. Below,
we discuss the most related works, which typ-
ically require obtrusive changes to the model,
training, or add prohibitively large computation
overheads.

Adding noise for privacy. The idea of noise injection for privacy goes back at least to the very
first differential privacy papers [53, 22] where they randomize the result of a query to a database
by adding noise drawn from a Laplace distribution. More recently, Wang et al. [49] proposes data
nullification and noise injection for private inference.
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However, unlike Shredder, they retrain the network. Osia et al. [51, 50] design a private feature
extraction architecture that uses principal component analysis (PCA) to reduce the amount of infor-
mation. Leroux et al. [54] use an autoencoder to obfuscate the data before sending to the cloud, but
the obfuscation they use is readily reversible, as they state. We, on the other hand, cast finding the
noise as differentiable noise tensor while considering accuracy in the loss function of the optimization
that finds the noise.

Trusted execution environments. Several research propose running machine learning algorithms
in in trusted execution environments such as Intel SGX [55] and ARM TrustZone [56] to address
the same remote inference privacy [57, 58, 59, 60] as well as integrity [57]. However, the privacy
model in that research requires users to send their data to an enclave running on a remote servers. In
contrast to Shredder, this model still allows the remote server to have access to the raw data and as
the new breaches in hardware [1, 2, 61, 62, 63, 64] show, the access can lead to comprised privacy.

Differential privacy. As a mathematical framework, differential privacy [53, 22, 47] was initially
proposed to quantify privacy of users in the context of privacy preserving data-mining or statistical
databases. To this end, it measures the degree to which the algorithm behaves similarly if an individual
record is in or out of the database/training set. This definition gives a robust mathematical guarantee
to the question of – given a private training set (or, database entry) as input, how safe is the trained
model (or, aggregate database) to publish. Naturally, differential privacy has also been employed
in training of deep neural networks [45, 46] where the datasets may be crowdsourced and contain
sensitive information. The research on differential privacy is largely in centralized models, where
users trust a curator who has access to the whole pool of private data [47]. In a more practical
model, called local differential privacy, the system does not require users to even trust the curator to
inspect their data, even for the purpose of preserving privacy [65, 15, 66, 14]. In this setting, which
the system is just collecting data and not performing inference, the data is still scrambled on the
edge devices. This scrambled data is then remotely aggregated and just provides an average trend
across multiple sources. The existing differential privacy models are in fact solving a fundamentally
different problem than Shredder. They are concerned with data collection while Shredder aims to
improve privacy during a real-time cloud-enabled inference.

Encryption and cryptographic techniques. Secure multiparty computation (SMC) [16, 17] and
homomorphic encryption [21, 19, 48] have also been used as attempts to deal with the privacy on
offloaded computation on the cloud [19, 67, 68, 67, 48, 21, 52]. Secure multiparty computation
refers to a group of protocols which enable multiple parties to jointly compute a function while
each party solely has access to its own part of the input [52, 17]. To establish trust and isolation,
SMC relies on compute heavy encryption or obfuscation techniques. To adopt SMC to the privacy
problem, recent works [52] assume a two-party secure computation in which the cloud holds a neural
network and the client holds an input to the network, typically an image and the communication
happens in the encrypted domain. Homomorphic encryption, which can be used to implement SMC,
is also used for privacy protection in neural networks. This cryptographic technique allows (all
or a subset of) operations to be performed on the encrypted data without the need for decryption.
These works [21, 19] suggest the client/edge device encrypt the data (on top of the communication
encryption, e.g., ssl) before sending it to the cloud; which it then, performs operations on the encrypted
data and returns the output. Nevertheless, this approach suffers from a prohibitive computational
and communication cost, exacerbating the complexity and compute-intensivity of neural networks
especially on resource-constrained edge devices. Shredder in contrast avoids the significant cost of
encryption or homomorphoic data processing.

5 Conclusion

As cloud-based DNNs impact more and more aspects of users’ everyday life, it is timely and crucial
to consider their impact on privacy. As such, this paper examines the use of noise to reduce the
information content of the communicated data to the cloud while still maintaining high levels of
accuracy. By casting the noise injection as an optimization for finding a tensor of differentiable
elements, we demonstrate Shredder, which strikes an asymmetric balance between accuracy and
privacy. Experimentation with multiple DNNs showed that the Shredder can significantly reduce the
information content of the communicated data with only 1.46% accuracy loss.
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