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Abstract

Deep Neural Networks (DNNs) typically require massive
amount of computation resource in inference tasks for computer
vision applications. Quantization can significantly reduce DNN
computation and storage by decreasing the bitwidth of network
encodings. Recent research affirms that carefully selecting the
quantization levels for each layer can preserve the accuracy
while pushing the bitwidth below eight bits. However, without
arduous manual effort, this deep quantization can lead to signifi-
cant accuracy loss, leaving it in a position of questionable utility.
As such, deep quantization opens a large hyper-parameter space
(bitwidth of the layers), the exploration of which is a major chal-
lenge. We propose a systematic approach to tackle this problem,
by automating the process of discovering the quantization levels
through an end-to-end deep reinforcement learning framework
(ReLeQ). We adapt policy optimization methods to the problem
of quantization, and focus on finding the best design decisions
in choosing the state and action spaces, network architecture
and training framework, as well as the tuning of various hyper-
paramters. We show how ReLeQ can balance speed and quality,
and provide an asymmetric general solution for quantization
of a large variety of deep networks (AlexNet, CIFAR-10, LeNet,
MobileNet-V1, ResNet-20, SVHN, and VGG-11) that virtually
preserves the accuracy (≤ 0.3% loss) while minimizing the com-
putation and storage cost. With these DNNs, ReLeQ enables
conventional hardware to achieve 2.2× speedup over 8-bit ex-
ecution. Similarly, a custom DNN accelerator achieves 2.0×
speedup and energy reduction compared to 8-bit runs. These
encouraging results mark ReLeQ as the initial step towards
automating the deep quantization of neural networks.

1. Introduction
Deep Neural Networks (DNNs) have made waves across a

variety of domains, from image recognition [16] and synthesis,
object detection [25, 28], natural language processing [7],
medical imaging, self-driving cars, video surveillance, and
personal assistance [9, 17, 11, 18]. DNN compute efficiency
has become a major constraint in unlocking further applications

and capabilities, as these models require rather massive amounts
of computation even for a single inquiry. One approach to
reduce the intensity of the DNN computation is to reduce the
complexity of each operation. To this end, quantization of neural
networks provides a path forward as it reduces the bitwidth of
the operations as well as the data footprint [13, 27, 14]. Albeit
alluring, quantization can lead to significant accuracy loss if not
employed with diligence. Years of research and development
has yielded current levels of accuracy, which is the driving force
behind the wide applicability of DNNs nowadays. To prudently
preserve this valuable feature of DNNs, accuracy, while
benefiting from quantization the following two fundamental
problems need to be addressed. (1) learning techniques need
to be developed that can train or tune quantized neural networks
given a level of quantization for each layer. (2) Algorithms need
to be designed that can discover the appropriate level of quanti-
zation for each layer while considering the accuracy. This paper
takes on the second challenge as there are inspiring efforts that
have developed techniques for quantized training [32, 33, 22].

This paper builds on the algorithmic insight that the bitwidth
of operations in DNNs can be reduced below eight bits without
compromising their classification accuracy. However, this
possibility is manually laborious [20, 21, 30] as to preserve
accuracy, the bitwidth varies across individual layers and
different DNNs [32, 33, 19, 22]. Each layer has a different
role and unique properties in terms of weight distribution.
Thus, intuitively, different layers display different sensitivity
towards quantization. Over-quantizing a more sensitive layer
can result in stringent restrictions on subsequent layers to
compensate and maintain accuracy. Nonetheless, considering
layer-wise quantization opens a rather exponentially large
hyper-parameter space, specially when quantization below
eight bits is considered. For example, ResNet-20 exposes a
hyper-parameter space of size 8l =820>1018, where l=20 is
the number of layers and 8 is the possible quantization levels.
This exponentially large hyper-parameter space grows with
the number of the layers making it impractical to exhaustively
assess and determine the quantization level for each layer.

To that end, this paper sets out to automate effectively
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navigating this hyper-parameter space using Reinforcement
Learning (RL). We develop an end-to-end framework, dubbed
ReLeQ, that exploits the sample efficiency of the Proximal
Policy Optimization [26] to explore the quantization hyper-
parameter space. The RL agent starts from a full-precision
previously trained model and learns the sensitivity of final
classification accuracy with respect to the quantization level of
each layer, determining its bitwidth while keeping classification
accuracy virtually intact. Observing that the quantization
bitwidth for a given layer affects the accuracy of subsequent lay-
ers, our framework implements an LSTM-based RL framework
which enables selecting quantization levels with the context
of previous layers’ bitwidths. Rigorous evaluations with a
variety of networks (AlexNet, CIFAR, LeNet, SVHN, VGG-11,
ResNet-20, and MobileNet) shows that ReLeQ can effectively
find heterogenous deep quantization levels that virtually
preserve the accuracy (≤0.3% loss) while minimizing the
computation and storage cost. The results (Table 2) show that
there is a high variance in quantization levels across the layers of
these networks. For instance, ReLeQ finds quantization levels
that average to 6.43 bits for MobileNet, and to 2.81 bits for
ResNet-20. With the seven benchmark DNNs, ReLeQ enables
conventional hardware [5] to achieve 2.2× speedup over 8-bit
execution. Similarly, a custom DNN accelerator [15] achieves
2.0× speedup and 2.0× energy reduction compared to 8-bit runs.
These results suggest that ReLeQ takes an effective first step
towards automating the deep quantization of neural networks.

2. Related Work
ReLeQ is the initial step in utilizing reinforcement learning

to automatically find the level of quantization for the layers
DNNs such that their classification accuracy is preserved.
As such, it relates to the techniques that given a level of
quantization, train a neural network or develop binarized
DNNs. Furthermore, the line of research that utilizes RL
for hyper-parameter discovery and tuning inspires ReLeQ.
Nonetheless, ReLeQ, uniquely and exclusively, offers an
RL-based approach to determine the levels of quantization.
Training algorithms for quantized neural networks. There
have been several techniques [32, 33, 22] that train a neural
network in a quantized domain after the bitwidth of the layers
is determined manually. DoReFa-Net [32] trains quantized con-
volutional neural networks with parameter gradients which are
stochastically quantized to low bitwidth numbers before they are
propagated to the convolution layers. [22] introduces a scheme
to train networks from scratch using reduced-precision activa-
tions by decreasing the precision of both activations and weights
and increasing the number of filter maps in a layer. [33] per-
forms the training phase of the network in full precision, but for
inference uses ternary weight assignments. For this assignment,
the weights are quantized using two scaling factors which are
learned during training phase. PACT [6] introduces a quantiza-
tion scheme for activations, where the variable α is the clipping

level and is determined through a gradient descent based method.
ReLeQ is an orthogonal technique with a different objective:

automatically finding the level of quantization that preserves ac-
curacy and can potentially use any of these training algorithms.
Binarized neural networks. Extensive work, [13, 24, 19]
focuses on binarized neural networks, which impose accuracy
loss but reduce the bitwidth to lowest possible level. In
BinaryNet [12], an extreme case, a method is proposed for
training binarized neural networks which reduce memory size,
accesses and computation intensity at the cost of accuracy.
XNOR-Net [24] leverages binary operations (such as XNOR) to
approximate convolution in binarized neural networks. Another
work [19] introduces ternary-weight networks, in which the
weights are quantized to -1, 0, +1 values by minimizing the Eu-
clidian distance between full-precision weights and their ternary
assigned values. ReLeQ aims to utilize the levels between binary
and 8 bits to avoid loss of accuracy while offering automation.
Reinforcement learning for hyper-parameter tuning. Few
works leverage RL in the context of hyper-parameter search.
Two of these inspiring efforts [34, 3] use RL to determine the
architecture of the neural network and its kernels. Another re-
search [10] employs an RL policy gradient method to automati-
cally find the compression ratio for different layers of a network.
Techniques for selecting quantization levels. Recent work
ADMM [31] runs a binary search to minimize the total square
quantization error in order to decide the quantization levels for
the layers. Then, they use an iterative optimization technique
for fine-tuning. NVIDIA also released an automatic mixed
precision (AMP) [23] which employs mixed precision during
training by automatically selecting between two floating point
(FP) representations (FP16 or FP32).

There is a concurrent work HAQ [29] which also uses RL in
the context of quantization. The following highlights some of the
differences. ReLeQ uses a unique reward formulation and shap-
ing that enables simultaneously optimizing for two objectives
(accuracy and reduced computation with lower-bitwidth) within
a unified RL process. In contrast, HAQ utilizes accuracy in the
reward formulation and then adjusts the RL solution through
an approach that sequentially decreases the layer bitwidths to
stay within a predefined resource budget. This approach also
makes HAQ focused more towards a specific hardware platform
whereas we are after a strategy than can generalize. Addi-
tionally, we also provide a systemic study of different design
decisions, and have significant performance gain across diverse
well known benchmarks. The initial version of our work [2],
predates HAQ, and it is the first to use RL for quantization1.

3. RL for Deep Quantization of DNNs
Overview. ReLeQ trains a reinforcement learning agent that
determines the level of deep quantization (below 8 bits) for each

1We have disclosed our arXiv paper to the program committee chairs while
anonymizing it in the references.



Table 1. Layer and network parameters for state embedding.
Layer Specific Network Specific

Static 

Layer Index 

N/ALayer Dimensions  
Weight Statistics 

(standard deviation)

Dynamic 
Quantization Level
(Number of bits)

State of Quantization
State of Accuracy

layer of the network. ReLeQ agent explores the search space of
the quantization levels (bit width), layer by layer. To account for
the interplay between the layers with respect to quantization and
accuracy, the state space designed for ReLeQ comprises of both
static information about the layers and dynamic information
regarding the network state during the RL process (Section 3.1).
In order to consider the effects of previous layers’ quantization
levels, the agent steps sequentially through the layers and
chooses a bitwidth from a predefined set, e.g., {2,3,4,5,6,7,8},
one layer at a time (Section 3.2). The agent, consequently,
receives a reward signal that is proportional to its accuracy
after quantization and its benefits in term of computation
and memory cost. The underlying optimization problem is
multi-objective (higher accuracy, lower compute, and reduced
memory); however, preserving the accuracy is the primary
concern. To this end, we shape the reward asymmetrically to
incentivize accuracy over the benefits (Section 3.3). With this
formulation of the RL problem, ReLeQ employs the state-of-
the-art Proximal Policy Optimization (PPO) [26] to train its
policy and value networks. This section details the components
and the research path we have examined to design them.

3.1. State Space Embedding to Consider Interplay
between Layers

Interplay between layers. The final accuracy of a DNN is
the result of interplay between its layers and reducing the
bitwidth of one layer can impact how much another layer can be
quantized. Moreover, the sensitivity of accuracy varies across
layers. We design the state space and the actions to consider
these sensitivities and interplay by including the knowledge
about the bitwidth of previous layers, the index of the
layer-under-quantization, layer size, and statistics (e.g., standard
deviation) about the distribution of the weights. However,
this information is incomplete without knowing the accuracy
of the network given a set of quantization levels and state of
quantization for the entire network. Table 1 shows the param-
eters used to embed the state space of ReLeQ agent, which
are categorized across two different axes. (1) “Layer-Specific”
parameters which are unique to the layer vs. “Network-Specific”
parameters that characterize the entire network as the agent
steps forward during training process. (2) “Static” parameters
that do not change during the training process vs. “Dynamic”
parameters that change during training depending on the actions
taken by the agent while it explores the search space.
State of quantization and relative accuracy. The “Network-
Specific” parameters reflect some indication of the state of

No 
Change

Increment 

Decrement 

(a) (b)

7-bits

6-bits

5-bits

2-bits

8-bits

3-bits

4-bits

𝐁(𝐭) + 𝟏

𝐁(𝐭) − 𝟏

1-bit

Current 
Bitwidth𝐁(𝐭) =

Figure 1. (a) Flexible action space (used in ReLeQ). (b) Alternative
action space with restricted movement.

quantization and relative accuracy. State of Quantization is a
metric to evaluate the benefit of quantization for the network
and it is calculated using the compute cost and memory cost
of each layer. For a neural network with L layers, we define
compute cost of layer l as the number of Multiply-Accumulate
(MAcc) operations (nMAcc

l ), where (l = 0,...,L). Additionally,
since ReLeQ only quantizes weights, we define memory cost
of layer l as the number of weights (nw

l ) scaled by the ratio of
Memory Access Energy (EMemoryAccess) to MAcc Computation
Energy (EMAcc), which is estimated to be around 120× [8]. It is
intuitive to consider the that sum of memory and compute costs
linearly scales with the number of bits for each layer (nbits

l ). The
nbits

max term is the maximum bitwidth among the predefined set of
bitwidths that’s available for the RL agent to pick from. Lastly,
the State of Quantization (StateQuantization) is the sum over all
layers (L) that accounts for the total memory and compute cost
of the entire network.

StateQuantization=
∑

L
l=0[(n

w
l ×

EMemoryAccess
EMAcc

+nMAcc
l )×nbits

l ]

∑
L
l=0[n

w
l ×

EMemoryAccess
EMAcc

+nMAcc
l ]×nbits

max

Besides the potential benefits, captured by StateQuantization,
ReLeQ considers the State of Relative Accuracy to gauge
the effects of quantization on the classification performance.
To that end, the State of Relative Accuracy (StateAccuracy) is
defined as the ratio of the current accuracy (AccCurr) with the
current bitwidths for all layers during RL training, to accuracy
of the network when it runs with full precision (AccFullP).
StateAccuracy represents the degradation of accuracy as the result
of quantization. The closers this term is to 1.0, the lower the
accuracy loss and more desirable the quantization levels.

StateAccuracy=
AccCurr

AccFullP

Given these embedding of the observations from the
environment, the ReLeQ agent can take actions, described next.

3.2. Flexible Actions Space
Intuitively, as calculations propagate through the layers, the

effects of quantization will accumulate. As such, the ReLeQ
agents steps through each layer sequentially and chooses from
the bitwidth of a layer from a discrete set of quantization levels
which are provided as possible choices. Figure 1(a) shows the
representation of action space in which the set of bitwidths is
{1,2,3,4,5,6,7,8}. As depicted, the agent can flexibly choose to
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Figure 2. Reward shaping with three different formulations. The color
palette shows the intensity of the reward.

change the quantization level of a given layer from any bitwidth
to any other bitwidth. The set of possibilities can be changed
as desired. Nonetheless, the action space depicted in Figure 1(a)
is the possibilities considered for deep quantization in this work.
As illustrated in Figure 1(b), an alternative that we experimented
with was to only allow the ReLeQ agent to increment/decre-
ment/keep the current bitwidth of the layer (B(t)). The
experimentation showed that the convergence is much longer
than the aforementioned flexible action space, which is used.

3.3. Asymmetric Reward Formulation for Accuracy
While the state space embedding focused on interplay

between the layers and the action space provided flexibility,
reward formulation for ReLeQ aims to preserve accuracy
and minimize bitwidth of the layers simultaneously. This
requirement creates an asymmetry between the accuracy and
bitwidth reduction, which is a core objective of ReLeQ. The
following Reward Shaping formulation provides the asymmetry
and puts more emphasis on maintaining the accuracy as
illustrated with different color intensities in Figure 2(a).

Reward Shaping:
reward=1.0−(StateQuantization)

a

if (StateAccuracy<th) then
reward=−1.0

else
Accdiscount =max(StateAccuracy,th)(b/max(StateAccuracy,th))

reward=reward×Accdiscount
end if

This reward uses the same terms of State of Quantization
(StateQuantization) and State of Relative Accuracy (StateAccuracy)
from Section 3.1. One of the reasons that we chose this formu-
lation is that it produces a smooth reward gradient as the agent
approaches the optimum quantization combination. In addition,
the varying 2-dimensional gradient speeds up the agent’s con-
vergence time. In the reward formulation, a=0.2 and b=0.4
can also be tuned and th = 0.4 is threshold for relative accu-
racy below which the accuracy loss may not be recoverable and
those quantization levels are completely unacceptable. The use
of threshold also accelerates learning as it prevents unnecessary
or undesirable exploration in the search space by penalizing the
agent when it explores undesired low-accuracy states. While
Figure 2(a) shows the aforementioned formulation, Figures 2(b)
and (c) depict two other alternatives. Figure 2(b) is based

on StateAccuracy/StateQuantization while Figure 2(c) is based on
StateAccuracy−StateQuantization. Section 6 provides detailed ex-
perimental results with these three reward formulations. In sum-
mary, the formulation for Figure 2(a) offers faster convergence.

3.4. Policy and Value Networks
While state, action and reward are three essential components

of any RL problem, Policy and Value complete the puzzle and
encode learning in terms of a RL context. While there are both
policy-based and value-based learning techniques, ReLeQ uses a
state-of-the-art policy gradient based approach, Proximal Policy
Optimization (PPO) [26]. PPO is a actor critic style algorithm
so ReLeQ agent consists of both Policy and Value networks.
Network architecture of Policy and Value networks. Both
Policy and Value are functions of state, so the the state space
defined in Section 3.1 is encoded as a vector and fed as input
to a Long short-term memory(LSTM) layer and this acts as the
first hidden layer for both policy and value networks. Apart
from the LSTM, policy network has two fully connected hidden
layers of 128 neurons each and the number of neurons in the
final output layer is equal to the number of available bitwidths
the agent can choose from. Whereas the Value network has
two fully connected hidden layers of 128 and 64 neurons each.
Based on our evaluations, LSTM enables the ReLeQ agent to
converge almost×1.33 faster in comparison to a network with
only fully connected layers.

While this section focused on describing the components
of ReLeQ in isolation, the next section puts them together and
shows how ReLeQ automatically quantizes a pre-trained DNN.

4. Putting it All Together: ReLeQ in Action
As discussed in Section 3, state, action and reward enable the

ReLeQ agent to maneuver the search space with an objective
of quantizing the neural network with minimal loss in accuracy.
ReLeQ starts with a pretrained model of full precision weights
and proposes quantization levels of weights for all layers in a
DNN. Figure 3 depicts the entire workflow for ReLeQ and this
section gives an overview of how everything fits together.
Interacting with the environment. ReLeQ agent steps through
all layers one by one, determining the quantization level for the
layer at each step. For every step, the state embedding for the
current layer comprising of different elements described in Sec-
tion 3.1 is fed as an input to the Policy and Value Networks of the
ReLeQ agent and the output is the probability distribution over
the different possible bitwidths and value of the state respectively.
ReLeQ agent then takes a stochastic action based on this proba-
blity distribution and chooses a quantization level for the current
layer. Weights for this particular layer are quantized to the pre-
dicted bitwidth and with accuracy preservation being a primary
component of ReLeQ’s reward function, retraining of a quan-
tized neural network is required in order to properly evaluate
the effectiveness of deep quantization. Such retraining is a time-
intensive process and it undermines the search process efficiency.
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Figure 3. Overview of ReLeQ, which starts from a pre-trained network and delivers its corresponding deeply quantized network.
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Figure 4. Action (Bitwidths selection) probability evolution over
training episodes for LeNet.

To get around this issue, we reward the agent with an estimated
validation accuracy after retraining for a shortened amount of
epochs. For deeper networks, however, due to the longer re-
training time, we perform this phase after all the bitwidths are
selected for the layers and then we do a short retraining. Dy-
namic network specific parameters listed in Table 1 are updated
based on the validation accuracy and current quantization levels
of the entire network before stepping on to the next layer. In
this context, we define an epsiode as a single pass through the
entire neural network and the end of every episode, we use Prox-
imal Policy Optimization [26] to update the Policy and Value
networks of the ReLeQ agent. After the learning process is
complete and the agent has converged to a quantization level for
each layer of the network, for example 2 bits for second layer, 3
bits for fourth layer and so on, we perform a long retraining step
using the quantized bitwidths predicted by the agent and then ob-
tain the final accuracy for the quantized version of the network.
Learning the Policy. Policy in terms of neural network
quantization is to learn to choose the optimal bitwidth for each
layer in the network. Since ReLeQ uses a Policy Gradient

based approach, the objective is to optimize the policy directly,
it’s possible to visualize how policy for each layer evolves with
respect to time i.e the number of episodes. Figure 4 shows the
evolution of ReLeQ agent’s bitwidth selection probabilities for
all layers over time (number of episodes), which reveals how
the agent’s policy changes with respect to selecting a bitwidth
per layer. As indicated on the graph, the end results suggest the
following quantization patterns, 2,2,2,2 or 2,2,3,2 bits. For the
first two convolution layers (Convolution Layer 1, Convolution
Layer 2), the agent ends up assigning the highest probability for
two bits and its confidence increases with increasing number of
training episodes. For the third layer (Fully Connected Layer 1),
the probabilities of two bits and three bits are very close. Lastly,
for the fourth layer (Fully Connected Layer 2), the agent again
tends to select two bits, however, with relatively smaller confi-
dence compared to layers one and two. With these observations,
we can infer that bitwidth probability profiles are not uniform
across all layers and that the agent distinguishes between the
layers, understands the sensitivity of the objective function to the
different layers and accordingly chooses the bitwidths. Looking
at the agent’s selection for the third layer (Fully Connected
Layer 1) and recalling the initial problem formulation of quantiz-
ing all layers while preserving the initial full precision accuracy,
it is logical that the probabilities for two and three bits are very
close. Going further down to two bits was beneficial in terms
of quantization while staying at three bits was better for main-
taining good accuracy which implies that third layer precision
affects accuracy the most for this specific network architecture.
This points out the importance of tailoring the reward function
and the role it plays in controlling optimization tradeoffs.

5. Experimental Setup
Table 2. Benchmark DNNs and their deep quantization with ReLeQ.

Network Dataset Bitwidths Accuracy 
Loss

AlexNet ImageNet {8,4,4,4,4,4,4,8} 0.08%
CIFAR-10 CIFAR-10 {5,5,5,5,5} 0.30%

LeNet MNIST {2,2,3,2} 0.00%

MobileNet ImageNet {8, 5, 6, 6,4, 4, 7, 8, 4, 6, 8, 5, 5, 8, 6, 7, 7, 
7, 6, 8, 6, 8, 8, 6, 7, 5, 5, 7, 8, 8} 0.26%

ResNet-20 CIFAR-10 {8,2,2,3,2,2,2,3,2,3,3,3,2,2,2,3,2,2,2,2,2,8} 0.12%
SVHN SVHN {8,4,4,4,4,4,4,4,4,8} 0.00%

VGG-11 CIFAR-10 {8,5,8,5,6,6,6,6,8} 0.17%



Table 3. Hyper-Parameters of PPO used in ReLeQ.
Hyperparameter Value 
Adam Step Size 1 x 10-4

Generalized Advantage Estimation
Parameter 0.99 

Number of Epochs 3 
Clipping Parameter 0.1 

Benchmarks. To assess the effectiveness of ReLeQ across a
variety of DNNs, we use the following seven diverse networks
that have been used in different real-world vision tasks:
AlexNet, CIFAR-10 (simplenet), LeNet, MobileNet (Version
1), ResNet-20, SVHN and VGG-11. Of these seven networks,
AlexNet and MobileNet were evaluated on the ImageNet
(ILSVRC’12) dataset, ResNet-20, VGG-11 and CIFAR-10 on
CIFAR-10, SVHN on SVHN and LeNet on the MNIST dataset.

Quantization technique. We use the technique proposed in
WRPN [22] where weights are first scaled and clipped to the
(−1.0,1.0) range and quantized as per the following equation.
The term k is the bitwidth used for quantization out of which
k−1 bits are used for quantization and one bit is used for sign.

xq=
round((2k−1−1)x f )

2k−1−1

Deep quantization with conventional hardware. ReLeQ’s
solution can be deployed on conventional hardware, such as
general purpose CPUs to provide benefits and improvements.
To manifest this, we have evaluated ReLeQ using TVM [5] on
an Intel Core i7-4790 CPU. We use TVM since its compiler
supports deeply quantized operations with bit-serial vector
operations on conventional hardware. We compare our solution
in terms of the inference execution time (since the TVM
framework does not offer energy measurements) against 8-bit
quantized network. The results can be seen in Figure 7 and will
be further elaborated in the next section.
Deep quantization with custom hardware accelerators.
To further demonstrate the energy and performance benefits of
the solution found by ReLeQ, we evaluate it on Stripes [15], a
custom accelerator designed for DNNs, which exploits bit-serial
computation to support flexible bitwidths for DNN operations
Stripes does not support or benefit from deep quantization of
activations and it only leverages the quantization of weights.
We compare our solution in terms of energy consumed and
inference execution time against the 8-bit quantized network.
Comparison with prior work. We also compare against
prior work [31], which proposes an iterative optimization pro-
cedure (dubbed ADMM) through which they find quantization
bitwidths only for AlexNet and LeNet. Using Stripes [15]
and TVM [5], we show that ReLeQ’s solution provides higher
performance and energy benefits compared to ADMM [31].
Implementation and hyper-parameters of the Proximal
Policy Optimization (PPO). As discussed, ReLeQ use
PPO [26] as its RL engine, which we implemented in python
where its policy and value networks use TensorFlow’s Adam

Figure 5. Quantization space and its Pareto frontier for (a) CIFAR-10,
(b) LeNet, (c) SVHN, and (d) VGG-11.

Optimizer with an initial learning rate of 10−4. The setting of
the other hyper-parameters of PPO is listed in Table 3.

6. Experimental Results
Quantization levels with ReLeQ. Table 2 provides a sum-
mary of the evaluated networks, datasets and shows the re-
sults with respect to layer-wise quantization levels (bitwidths)
achieved by ReLeQ. Regarding the layer-wise quantization
bitwidths, at the onset of the agent’s exploration, all layers
are initialized to 8-bits. As the agent learns the optimal pol-
icy, each layer converges with a high probability to a particular
quantization bitwidth. As shown in the “Bitwidths” column of Ta-
ble 2, ReLeQ quantization policies show a spectrum of varying
bitwidth assignments to the layers. The bitwidth for MobileNet
varies from 4 bits to 8 bits with an irregular pattern, which aver-
ages to 6.43. ResNet-20 achieves mostly 2 and 3 bits, again with
an irregular interleaving that averages to 2.81. In many cases,
there is significant heterogeneity and irregularity in the bitwidths
and a uniform assignment of the bits is not always the desired
choice to preserve accuracy. These results demonstrate that
ReLeQ automatically distinguishes different layers and their
varying importance with respect to accuracy while choosing
their respective bitwidths. As shown in the “Accuracy Loss” col-
umn of Table 2, the deeply quantized networks with ReLeQ have
less than 0.30% loss in classification accuracy. To assess the
quality of these bitwidth assignments, we conduct a Pareto anal-
ysis on the DNNs for which we could populate the search space.
Validation: Pareto analysis. Figure 5 depicts the solutions
space for four benchmarks (CIFAR10, LeNet, SVHN, and
VGG11). Each point on these charts is a unique combination
of bitwidths that are assigned to the layers of the network. The
boundary of the solutions denotes the Pareto frontier and is
highlighted by a dashed line. The solution found by ReLeQ is
marked out using an arrow and lays on the desired section of the
Pareto frontier where the accuracy loss can be recovered through
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Figure 6. The evolution of reward and its basic elements, (a), (b) State of Relative Accuracy and (c), (d) State of Quantization) as the agent learns
through the episodes. The last plot (e) shows an alternative view by depicting the evolution of reward for MobileNet. The trends are similar for
the other networks.

fine-tuning. It is worth noting that as a result of the moderate
size of the four networks presented in this subsection, it was
possible to enumerate the design space, obtain Pareto frontier
and assess ReLeQ quantization policy for each of the four
networks. However, it is infeasible to do so for state-of-the-art
deep networks (e.g., MobileNet and AlexNet) which further
stresses the importance of automation and efficacy of ReLeQ.
Learning and convergence analysis. We further study the de-
sired behavior of ReLeQ in the context of convergence. An
appropriate evidence for the correctness of a formulated rein-
forcement learning problem is the ability of the agent to consis-
tently yield improved solutions. The expectation is that the agent
learns the correct underlying policy over the episodes and grad-
ually transitions from the exploration to the exploitation phase.
Figures 6(a) and (b) first show the State of Relative Accuracy
for CIFAR10 and SVHN, respectively. We overlay the moving
average of State of Relative Accuracy as episodes evolve, which
is denoted by a black line in Figures 6(a) and (b). Similarly,
Figures 6(c) and (d) depict the evolution of State of Quantiza-
tion. As another indicative parameter of learning, Figure 6 plots
the evolution of the reward, which combines the two States
of Accuracy and Quantization (Section 3.3). As all the graphs
show, the agent consistently yields solutions that increasingly
preserve the accuracy (maximize rewards), while seeking to
minimize the number of bits assigned to each layer (minimizing
the state of quantization) and eventually converges to a rather
stable solution. The trends are similar for the other networks.
Execution time and energy benefits with ReLeQ. Figure 7
shows the speedup for each benchmark network conventional
hardware using TVM compiler. The baseline is the 8-bit run-

Figure 7. Speedup with ReLeQ for conventional hardware using TVM
over the baseline run using 8 bits.

Figure 8. Energy reduction and speedup with ReLeQ for Stripes over
the baseline execution when the accelerator is running 8-bit DNNs.

time for inference. ReLeQ’s solution offers, on average, 2.2×
speedup over the baseline as the result of merely quantizing the
weights that reduces the amount of computation and data trans-
fer during inference. Figure 8 shows the speedup and energy
reduction benefits of ReLeQ’s solution on Stripes custom ac-
celerator. The baseline here is the time and energy consumption
of 8-bit inference execution on the same accelerator.

ReLeQ’s solutions yield, on average, 2.0× speedup and an
additional 2.0× energy reduction. MobileNet achieves 1.2×
speedup which is coupled with a similar degree of energy
reduction. On the other end of the spectrum ResNet-20 and
LeNet achieve 3.0× and 4.0× the benefits, respectively. As



Table 4. Speedup and energy reduction with ReLeQ over the benefits with ADMM [31] over the two networks that ADMM reports. The
improvements with ReLeQ is reported with both TVM and Stripes.

Network Dataset Technique Bitwidths ReLeQ speedup 
on TVM

ReLeQ speedup on 
Stripes

Energy improvement of 
ReLeQ on Stripes

AlexNet ImageNet 
ReLeQ {8,4,4,4,4,4,4,8} 1.20X 1.25X 1.25XADMM {8,5,5,5,5,3,3,8}

LeNet MNIST
ReLeQ {2,2,3,2} 1.42X 1.86X 1.87XADMM {5,3,2,3}
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Figure 9. Three different reward functions and their impact on the state of relative accuracy over the training episodes for three different networks.
(a) CIFAR10, (b) LeNet, and (c) SVHN.

shown in Table 2, MobileNet needs to be quantized to higher
bitwidths to maintain accuracy, compared with other networks
and that is why the benefits are smaller.
Speedup and energy reduction over ADMM. As mentioned
in Section 5, we compare ReLeQ’s solution in terms of speedup
and energy reduction against ADMM [31], another procedure
for finding quantization bitwidths. As shown in Table 4,
ReLeQ’s solution provides 1.25× energy reduction and 1.22×
average speedup over ADMM with Stripes for AlexNet and
the benefits are higher for LeNet. The benefits are similar for
the conventional hardware using TVM as shown in Table 4.
ADMM does not report other networks.
Sensitivity analysis: influence of reward function. The
design of reward function is a crucial component of reinforce-
ment learning as indicated in Section 3.3. There are many
possible reward functions one could define for a particular
application setting. However, different designs could lead to
either different policies or different convergence behavior. In
this paper, we incorporate reward engineering by proposing
a special parametric reward formulation. To evaluate the
effectiveness of the proposed reward formulation, we have
compared three different reward formulations in Figure 9: (a)
proposed in Section 3.3, (b) R=StateAccuracy/StateQuantization,
(c) R= StateAccuracy−StateQuantization. As the blue line in all
the charts shows, the proposed reward formulation consistently
achieves higher State of Relative Accuracy during the training
episodes. That is, our proposed reward formulation enables
ReLeQ finds better solutions in shorter time.
Tuning: PPO objective clipping parameter. One of the
unique features about PPO algorithm is its novel objective func-
tion with clipped probability ratios, which forms a lower-bound
estimate of the change in policy. Such modification controls the
variance of the new policy from the old one, hence improves the
stability of the learning process. PPO uses a Clipped Surrogate

Table 5. Sensitivity of reward to different clipping parameters.
PPO Clipping 

Parameter 
Avg. Normalized Reward (Performance)

LeNet CIFAR10-Net SVHN-Net

𝛜 = 𝟎. 𝟏 0.209 0.407 0.499
𝛜 = 𝟎. 𝟐 0.165 0.411 0.477
𝛜 = 𝟎. 𝟑 0.160 0.399 0.455

Objective function, which uses the minimum of two probability
ratios, one non-clipped and one clipped in a range between
[1−ε, 1+ε], where ε is a hyper-parameter that helps to define
this clipping range. Table 5 provides a summary of tuning
epsilon (commonly in the range of 0.1, 0.2, 0.3). Based on
our performed experiments, ε = 0.1 often reports the highest
average reward across different benchmarks.

7. Conclusion
Quantization of neural networks offers significant promise

in reducing their compute and storage cost. However, the
utility of quantization hinges upon automating its process
while preserving accuracy. This paper set out to define the
automated discovery of quantization levels for the layers while
complying to the constraint of maintaining the accuracy. As
such, this work offered the RL framework that was able to
effectively navigate the huge search space of quantization
and automatically quantize a variety of networks leading
to significant performance and energy benefits. The results
suggests that a diligent design of our RL framework, which
considers multiple concurrent objectives can automatically yield
high-accuracy, yet deeply quantized, networks.
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