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Abstract The Tatami project is building a system to support software engineering over the internet, exploiting
recent advances in web technology, interface design, and specification. Our effort to improve the usability of
such systems has led us into algebraic semiotics, while our effort to develop better formal methods for distributed
concurrent systems has led us into hidden algebra and fuzzy logic. This paper discusses the Tatami system design,
especially its software architecture, and its user interface principles. New work in the latter area includes an
extension of algebraic semiotics to dynamic multimedia interfaces, and integrating Gibsonian affordances with
algebraic semiotics.

1 Introduction

This paper describes certain aspects of the UCSD Tatami project, which has had the following main goals:

1. explore novel multimedia interface design principles, for easing the use of complex interactive systems;
2. build and use a generic distributed environment for cooperative work; and
3. verify distributed concurrent software.

We will discuss these goals in turn. The first is motivated by the difficulties that many practicing engineers have
with formal methods tools. We have taken theorem provers as a typically difficult case, and have focused on
finding ways to present proofs so that they are easier to understand and to construct.

The second goal is motivated by the observation that large projects have multiple workers, often at multiple sites
with different schedules. It is therefore difficult to share information, coordinate tasks, and maintain consistency.
We seek to ameliorate this with generic tools to support distributed cooperative work over the internet. An unusual
feature needed by our application is to maintain the consistency and truth values of proofs parts in the face of
constant change, distributed over both space and time, including insertion of new proof parts; truth values and
logical dependencies are not well supported by standard tools for version and configuration management. Our tool
uses fuzzy levels of credibility for components, rather than classical truth values. This tool is generic and has the
potential for use in applications other than formal verification.

The third goal was chosen to introduce a realistic level of complexity in our proof tasks. Since this paper is
mainly focussed on the first two goals, our discussion of the third is mainly limited to some generalities and some
references to work where details can be found. On the other hand, we do discuss some specific user interface
problems that arise in trying to provide better support for formal verification.

Formal methods have been used to prove the correctness of software systems, but this is known to be very
difficult. Web technologies such as multimedia applets, Java, XML, XSL, and JSP offer opportunities to reduce
this difficulty that have not yet been much explored. Since we wish to assist ordinary software engineers in using
formal methods to design and verify complex systems, an important task for our project is to find better ways to

1This research was supported in part by National Science Foundation grant CCR-9901002, and by the CafeOBJ project of the Informa-
tion Promotion Agency (IPA), Japan, as part of its Advanced Software Technology Program.



present and explain proofs. An examination of mathematics books and papers, even those in logic, shows that
mathematicians almost never write formal proofs in the strict sense of mathematical logic. The only proofs written
this way are very simple illustrations of formal proof methods, not proofs of genuine mathematical interest. This
is because all but the simplest fully formal proofs are practically impossible to comprehend. Unfortunately, fully
formal proofs are exactly what mechanical theorem provers produce.

To improve this sad situation, we suggest making explicit the motivation and structure of proofs, and integrating
this information with relevant background and tutorial material. These recommendations are motivated by ideas
from cognitive psychology, narratology and semiotics, as discussed further in Section 3. In particular, the structure
of our proof websites was designed usingalgebraic semiotics[18, 19], which combines algebraic specification
with social semiotics. Algebraic semiotics provides a way to formalize user interface designs and to compare them
for quality, based on how well they represent what is most important in the underlying functionality; although
it uses formal methods, algebraic semiotics does so in a way that remains sensitive to social context; see the
discussion in Section 3.2.

Although full formal verification is an option, it is probably more practical exploit the task structure of formal
methods without the burden of providing complete formal proofs for all steps; in this way, formality provides a
discipline both for designing and using tools. See Section 2.3.3.

The Tatami system differs from other systems with which we are familiar in at least the following ways:

1. It automatically generates web-based interactive documentation.

2. It is designed to support distributed cooperative work, and has a distributed multi-project database and a
specialized protocol to maintain database consistency, including the truth status of proof parts.

3. Many interface design decisions have been rigorously based on principles from cognitive psychology, nar-
ratology, semiotics, etc.

4. Specification is separated from validation, with a separate language for each.

5. A range of formality is supported, from full mechanical proof to informal arguments, using a fuzzy logic for
the confidence values of assertions.

6. It heavily uses recent web and internet technologies.

7. It supports the design and validation of concurrent object oriented systems through its facilities for behav-
ioral specification, based on hidden algebra.

8. The use of XML potentially supports to interchange of proofs with other theorem proving projects and
systems.

The next section discusses the system architecture, while user interface design issues are discussed in Section 3,
and conclusions and future research in Section 4. Two appendices give some sample code, and a third gives some
formal definitions. This paper extends, updates and amalgamates work reported in [19, 22] and other papers. The
latest information on the Tatami project can always be found at itsURL, www.cs.ucsd.edu/groups/tatami .

2 Tatami System Design

This section sketches the Tatami system design, including:

1. its central component, the Kumo2 proof assistant and website generator (see Section 2.2);

2. its databases (see Section 2.3);

3. its BOBJ specification language and underlying behavioral logic (briefly described in Section 2.4);

4. its Duck command language (see Section 2.5); and

5. its specialized communication protocol (see Section 2.6).

2This is a Japanese word for spider.
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2.1 Architectural Overview and Some Implementation Details
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Figure 1. Tatami Implementation Overview

Figure 1 is an overview of the Tatami system architecture. Its most important components are the Kumo website
generator and proof assistant, the tatami database, one or more proof engine (especially some version of OBJ),
the tatami protocol, and a standard web browser. The Tatami servlets mentioned in Figure 1 are Java servlets, i.e.,
programs built using Java, cgi, and theHTML protocol, that implement the services of the tatami protocol (see
Section 2.6.1). This architecture is modular, and in particular supports using a variety of logics. We do not want
to re-implement the many complex algorithms that are provided by existing publicly available theorem proving
systems. Instead, Kumo generates detailed proof scores that are sent to appropriate proof engines. Our current
prototype uses the BOBJ (for Behavioral OBJ) [21] proof engine, but our Barista3 proof server could also be
used to wrap other proof engines, such as CafeOBJ [9] and OBJ3 [30]. The tatami database, BOBJ and Duck are
implemented using Java technology, including JavaCC for parsing. XML files generated by Kumo are passed to a
processor that uses an XSL style file to generate theHTML pages actually seen by users; users can write their own
XSL style files for a different display style if they wish.

The following components are logic dependent and would have to be changed to support a different logic:

� a parser for the logic’s syntax;
� a “provlet” for each inference rule, which is some Java code implementing that rule;
� an XSL style file containing an XML display “template” for each rule; and
� possibly a new proof engine and server.

Of course, these changes will in general require some non-trivial programming.

2.2 Using Kumo

Kumo executes proof commands which generate a proof tree, from which the system generates a website that
documents that proof. This can be done in two modes, calledlocal and database; cooperative work is only
supported in database mode, since local mode places output in local files rather than the tatami database. Users

3This is an Italian word for a person who serves espresso.
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mainly interact with Kumo through two specialized languages, BOBJ for (behavioral) specification, and Duck,
which has commands for both proof execution and proof display. A typical session goes as follows (see also
Figure 2):

1. Choose a project; then load a specification, or introduce a new specification.
2. Select an existing proof task, or introduce a new proof task.
3. Enter or edit a Duck program, and then execute it in local output mode; this produces or updates the corre-

sponding proof website.
4. View the proof website on a browser.
5. Repeat from step 2.
6. When done, execute in database mode; then all subtasks of the selected task is entered into the tatami

database, where they can be viewed by all project members.

Proof
website

Duck code  

editing

Execute
Kumo

User

Figure 2. The Edit-Execute-Browse Cycle

While this kind of edit-execute-browse cycle (again see Figure 2) might seem old-fashioned to some, empirical
studies [39] and our own experience have found that the current fad for direct manipulation interfaces for theorem
proving is counter-productive for complex proofs, although it has value as a pedagogical aid for small proofs, e.g.,
for beginning students of formal logic. The main problem is that the data structures that underlie proofs of real
interest are too large to navigate easily by direct manipulation, in part due to the difficulty of knowing where you
are, because of the homogeneous structure of proofs. Another problem is that specifications evolve in real projects,
and this should be effectively supported. Although these points are simple, they are important for the practical use
of formal methods tools, and they are neglected by most current tools. This may be due to a Platonic bias on the
part of their implementors, as well as many of their users. Such a bias tends to exclude complex issues arising from
the social and cooperative nature of work, and to ignore the limited rationality and embodiment of real workers,
not excluding mathematicians. Of course, this is not an argument against more sophisticated proof environments,
e.g., parallel to the integrated proof environments (IDEs) used in programming, nor is it an argument against direct
manipulation as such.

2.2.1 Proof Dependencies in Local Mode

Kumo maintains a log file of all proofs that are created in local mode. Information in this file is indexed first by
project, and then by proof, where a project may contain several proofs, and each proof has the following:

1. The proof name and its goal;

2. A “digest4” of its specification;

3. Its truth value;

4. Its URL and a digest of its proof website; and

5. The names of all other proofs that use it.

4This is produced by a one-way fixed-length hash function.
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Any proof in the same project can be used directly by giving its name. Before allowing this, Kumo checks the
digest of its specification and of its proof website to ensure that the same specification is used, and that the proof
website has not been edited manually. If the check succeeds, the existing proof and its status are used in generating
the new proof, and the website of the existing proof is hyperlinked to the website of the new proof. If the check
fails, then Kumo provides an error message. There are two ways to refer to a proof from a different project:

1. Give its full name, of the formProjectName.ProofName ; or

2. First declare to the project to be used, then give a short name, just as with proofs from the same project.

The second method is more convenient when many proofs are used from a single project that is different from the
one in focus. Kumo does not allow a new proof to use the same name as an existing proof, unless the new proof
has the same goal as the old one, or the old proof is not used in any other proofs. In the first case, the old proof is
overwritten by the new proof, and the status of the new proof is propagated to all proofs that used the old proof.

2.3 Tatami Databases

Any practical implementation of formal methods must support bookkeeping for the complex dependencies among
proof tasks, subtasks, and specifications, in the face of their mutual evolution, and the difficulties of coordinating
work over a distributed group. The Tatami system uses a distributed database, consisting of a local database for
each worker, which is conceptually divided into three components, which are described in the three subsections
below. Coherence is maintained using a specialized protocol, which is described in Section 2.6.

2.3.1 The Project Database

The Project Database contains a list of projects, with their members and leaders. A project is started by placing it
in this database, and whoever does so becomes its leader. Project Database information can only be modified by
its leader.

2.3.2 The Specification Database

The Specification Database has two parts, one for data used for values, the other for abstract (software) machines.
A number of relations may be defined5 on these, including:

1. Importation of one specification by another.
2. Equivalence and enrichment of specifications.
3. Refinement for abstract machines.
4. Evolution from a previous version.

There are also some important relations that hold among these relations, for example that enrichment implies
refinement, and that equivalence implies enrichment. Implementing these meta-relations would allow some further
useful kinds of automation to be supported.

2.3.3 The Proof Database

The Proof Database keeps track of the support given for tasks and subtasks, which can range from fully formal
mechanical proofs to informal “back of envelope” arguments. Alternative validations of the same task are also
allowed. Instead of a precise description of how these capabilities are achieved (for which see [22]), we give an
overview that stresses their importance for a system intended to be used in a practical way in real projects.

5At the time of this writing, items 2 and 3 were not yet implemented.
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Recall that fully formal proofs are not found in real mathematics, for the very good reason that they would be
too difficult to comprehend, and too difficult to produce. The same reasons apply to formal proofs in computer
science. Commercial software projects usually cannot afford the overhead that would result, especially in view of
the burden of updating proofs in the face of evolving requirements and the consequently evolving specifications
and code. However,informal or semi-formalarguments for correctness are often developed, and it would surely
be a good thing if these could be preserved and integrated into the documentation of the system as it is produced
(see the discussion in [15]). Moreover, the overhead of formal proofs may be worthwhile for some key aspects
of systems, especially “safety critical” systems, where human life is at risk. As for multiple proof attempts, these
often arise when working on a difficult proof task, because it is unclear which attempt will succeed, if any.

It is interesting to notice that ordinary 2-valued logic is unsuitable for this situation, because the credibility
of informal arguments in general lies somewhere between true and false; this suggests using a fuzzy logic for
credibility. Because the usual fuzzy logic [53] does not capture the multiplicative effect of plausible argumentation,
in particular, the fact that a chain of plausible steps becomes increasingly implausible as it gets longer [14], we
use the fuzzy logic of [13], which represents conjunction with multiplication and disjunction with the maximum
operation6. This logic allows for the cumulative effect of uncertainty in chains of reasoning, while taking the most
promising choice when there is more than one alternative, that is,

[[P and Q]] = [[P ]] � [[Q]]

[[P or Q]] = maxf[[P ]]; [[Q]]g ;

where [[P ]] indicates the credibility of propositionP . For example, if we have two proof sketches for a goal
G, one of which relies on informal proof stepsP1; P2 having credibilities .7, .8, respectively, while the other
relies on informal stepsQ1; Q2; Q3 with credibilities .9, .8, .9, respectively, then the credibility we infer forG

is maxf:56; 648g = :648. Note that each chain may involve any number of correct applications of formal rules,
because these all contribute a multiplicative factor of 1. See [54] for a promising alternative approach that is based
on “computing with words.”

The proof database can be seen as organized by a data structure called a2-dimensional directed ordered
acyclic graph, or 2-doagfor short. Nodes in a 2-doag are labeled with validation tasks. Instead of edges, “fans”
come out of nodes, where each fan represents a validation step for the task at its source (see Figure 3, noting that
the leftmost and rightmost lines are just to make the picture look more like a fan; they do not lead to nodes). A fan
can have zero or more nodes as its targets; these represent subtasks generated by the validation step. Furthermore,
there can be any number of fans coming out of any given node, representing alternative ways to validate the task
on that node.

Navigation through 2-doags is described by2-occurrences, which are sequences of pairs of positive integers,
such as (1,2)(2,2)(1,1); given a node, such a sequence points to at most one other node, by taking the first number
in each pair to indicate a fan and the second a target node of that fan. Thus the above sequence says: take the
second target node of the first fan, from there take the second node of the second fan, and then take the first node
of the first fan; this is illustrated in the left part of Figure 3. A formal description of 2-doags is given in Appendix
C. These structures may be further specialized for our application as follows:

� A truthdoag is a 2-doag with a fuzzy truth valuet(n) at each noden. A boolean expression definingt(n)
is also associated with noden; it is the disjunction of the expressions for the fans going out fromn. We
use the fuzzy logic of [14] to evaluate the Boolean expressions; truth value 1 means there is a formal proof,
while 0 means there is a formal disproof.

� A proofdoag is a truthdoag such that each node has a validation task; for formal proofs, each fan corresponds
to some proof rule reducing the task at the root of the fan to the tasks on its leaves. The right part of Figure 3

6The usual fuzzy logic represents conjunction with minimum and disjunction with maximum [53]; the more general approach intro-
duced in [13] uses the notion of “complete lattice ordered semi-group” (or “closg” for short), a structure that has more recently become
popular under the name “quantile,” and of which the logic of Kumo is the special case of the unit interval with multiplication.
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(1,2)(2,2)(1,1) ∀(   x: Nat)
P(x) => P(s(x))

Peano induction

H HP(0)

H ∀(   x: Nat) P(x)
H ∀(   x: Nat) P(x)

Figure 3. 2-occurrences and Peano induction

shows a proofdoag update that applies Peano induction for the natural numbers, to prove(8x : Nat)P (x)

from some hypothesesH.

2.4 Hidden Algebra and BOBJ

The Tatami project uses an approach to specification and verification calledhidden algebra, which allows models
that only satisfy their specificationsbehaviorally, in that they appear to exhibit the required behavior under all
relevant experiments. This is important because many clever implementations used in practice only satisfy their
specifications in this sense. Hidden algebra extends standard many sorted algebra by distinguishing between
“visible” sorts used to model data, and “hidden” sorts used to model states. This framework provides simple
and natural ways to define behavioral versions of basic concepts including equivalence of states, satisfaction of
properties, and refinement of specifications. Standard equational deduction generalizes with some small changes,
but more powerful inference rules are needed for proving most behavioral properties. The most important of these
rules are versions ofcoinduction, and the project has been developing a series of increasingly powerful coinduction
rules, in order to obtain proofs that are conceptually simple and yet highly mechanizable [44, 46, 47]. The most
recent, calledcircular coinductive rewriting , is implemented in our BOBJ system in a fully automatic form
[21, 46]. Recent research has shown that proving behavioral satisfaction is undecidable, in the sense that there can
be no complete recursively enumerable set of inference rules [7]; therefore there can be no final resting point on
our quest for simple but ever more powerful rules and algorithms.

The language of the BOBJ system [21] extends the classical algebraic specification language OBJ [30] by
adding support for hidden algebra; in this it is similar to the CafeOBJ language [9]. The Tatami system and Kumo
further extend the logic by allowing first order sentences with behavioral equations as atoms, plus induction for
initially defined data types. Hidden algebra was originally proposed in [16], and has been elaborated in many sub-
sequent publications, including [25, 26, 27, 28, 46, 47, 45], which should be consulted for details. Hidden algebra
can handle all the main features of modern software systems, including states, classes, subclasses, attributes, meth-
ods, abstract data types, concurrency, distribution, nondeterminism, generic modules, and even logical variables
(in the sense of logic programming), for which see [27].

This approach regards code as secondary, because it can be (relatively!) quickly written or even automatically
generated from specifications that are sufficiently modular and detailed; moreover, empirical studies show that
little of software cost comes from errors in coding [4]. This implies that a focus on specification and verification at
the design level, avoiding the ugly complications of programming language semantics, will be the most productive.

Behavioral logic is a diverse research area containing many approaches, including the original hidden algebra
of [16] and subsequent improvements in [20, 26, 25], the coherent hidden algebra of Diaconescu [10, 9], the
observational logic of Bidoit and Hennicker [2, 3, 31], and a new generalization of hidden algebra that tries to
treat all these variants in a uniform way [47, 28]. These approaches fall into two broad categories, depending
on whether or not a fixed data algebra is assumed for all models. All proof rules in use are sound for all these
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logics, but all of them are also incomplete [7]. Padawitz’s “swinging types” are a powerful but less closely related
approach [42].

2.5 The Duck Language

The Duck language includes commands that implement proof rules for hidden first order logic. These rules concern
statements in the style of Gentzen’s “natural deduction,” which are “proof tasks”H ` G with hypothesesH to
the left of the “turnstile7 symbol” `, and with goalsG to its right, whereH andG are each sets8 of sentences
(represented as lists). Rules of inference are traditionally written as “fractions.” For example,

H ` P; H ` Q

H ` P ^Q

is a rule for conjunction. Rules in such a form can be applied either backward or forward, which means bottom-up
and top-down, respectively. For example, a backward application of the above rule reduces the task of proving a
conjunction to that of proving its two constituents, while a forward application says that the conjunction is proved
if its two antecedent proof tasks have been proved. When a logical operation appears as a result of a forward rule
application, it is called an “introduction rule” for that operation; so the above rule is a conjunction introduction
rule. Similarly, when a logical operation disappears when used in the forward direction, it is called an “elimination
rule” for that operation.

A different distinction is whether rules change things to the right or to the left of the turnstile; these are called
“right rules” and “left rules,” respectively. Mechanical theorem provers generally apply their rules in the backward
mode, and this is exactly what Kumo does. The right backward inferences are the most important, because they
generate new subgoals from open subgoals in a way that (we hope) will eventually complete the proof. Left
backward rules introduce new formulae into the set of hypotheses, in the hope that this will help with the proof.
Two rules that can close an open subgoal are reduction (if it succeeds with value “true ”) and direct checking of
whether the subgoal is in fact one of the hypotheses.

There is also a left version of the above conjunction elimination rule,

P;Q;H ` R

P ^Q; H ` R

and it also can be applied forward or backward. Right rules implemented in Kumo include the following:

� introduction rules for8, 9, ^, _, and);
� proof by contradiction;
� induction;
� (several kinds of) coinduction;
� reduction; and
� case analysis.

Kumo also implements some left rules, including lemma introduction,modus ponens, instantiation, congruence ap-
plication, and conjunction introduction and existential quantifier elimination; the latter is better known as “Skolem-
ization.” The instantiation and congruence rules are special cases of equational deduction.

Some rules are “automatic” in the sense that they are always applied, unless explicitly inhibited by the user,
while others must be explicitly invoked, because they require some user input; the automatic rules include reduc-
tion, and the right introduction rules for universal quantification, conjunction, disjunction and implication.

7Strictly speaking, the turnstile should have a subscript indicating the set of function and relation symbols currently in use.
8Actually, our implementation simplifies to the case whereG is a single sentence. This is sufficient because a taskH ` G1; :::; Gn can

always be replaced by then proof tasksH ` G1, . . . ,H ` Gn.
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Kumo generates a proof tree when it executes a proof described by some Duck code. For example, when the
right conjunction rule is applied (backwardly) to a taskH ` A ^ B, then two new tasks,H ` A andH ` B, are
added to the tree. Each node of this tree, and each goal among its proof tasks, is given a unique system generated
name, and may also have an optional user supplied name. The user-supplied names make it possible to apply proof
rules in orderings that differ from the default.

After finishing a proof, Kumo translates its proof tree into XML for display. Duck has a distinct sublanguage
for users to provide additional information for generating this XML, such as how to distribute proof steps over
webpages9. Then Kumo uses an XSL file to generateHTML text for the proof tree; at this stage, Kumo adds
explanations, links to tutorials, to machine proof scores, and to other proofs that are used (e.g. lemmas), etc.; this
is partially illustrated in Appendix B. Different XSL files will generate displays in different formats.

2.6 The Tatami Protocol

A problem with using a distributed database is that local consistency can be lost if submitted proofs are inserted
without being checked. For example, if a proofp1 depends on a proofp2, then the former should not be counted
as verified unlessp2 has already been verified and entered. Inconsistencies can also arise when items are deleted.
The tatami protocol maintains the consistency of the tatami databases, taking account of the following situations
(see [29] for a detailed description):

1. If there are some items depending on an itemA, then deletion of itemA is disallowed.
2. If there are no items depending on itemA, then the owner of itemA can delete it.
3. Before using an item, existence of this item in the owner’s database is checked.

Each message contains a 2-occurrence to specify the location of its update in the proofdoag. The occurrence of
its parents in the sender’s proofdoag are also sent, to enable detection of missing data. The message format is as
follows:

1. project name;
2. a 2-occurrence for the update;
3. 2-occurrences of parents of the update; and
4. a tag indicating the kind of update, which may be submission, deletion, copy, validation, status update, etc.

The atomic entities sent to proof databases are fans. Each message contains exactly one fan together with its
position in the proofdoag. Of course, workers sometimes want to submit more than one fan; this is accomplished
by dividing the desired sub-doag into fans that are sent separately. Each fanF is assumed to have the following
attributes:

1. a unique label which gives the position ofF in the doag (occurrences can be used as labels, noting that one
fan can have multiple occurrences); and

2. a message which encodes the fanF together with its label and all of its direct parents’ labels (note thatF

can have zero, one or more parents) and the other data items discussed above.

We have used Kumo to formally prove the correctness of a version of the tatami protocol with respect to a com-
munication medium that can lose or duplicate data [29], and we have also implemented it, as described below.

9If no information is supplied, then Kumo applies a set of default conventions which produce a reasonable output.
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2.6.1 The Tatami Protocol Implementation

Kumo refines the tatami protocol into several services for communicating with the local servers at each site; these
are implemented by servlets, built using Java, cgi and theHTTP protocol.

� Project start service This creates a new project with a given name; the user of this service becomes the
leader of the new project. The leader’s tatami database is updated, and other services as prepared, e.g., an
empty waiting list is setup for subscription.

� Subscription service This tries to subscribe a new user to a project. When this service is requested, the
user name is checked to ensure uniqueness in the project and its waiting list. If this succeeds, the requester
is inserted in the waiting list, and remains there until the leader makes a decision. If the requester is accepted
as a member, all project related information is copied from the leader’s database to the requester’s database,
and the new member is added to all local databases.

� Add service This inserts new items into the databases of all project members, with the service requester as
the owner of the new items. This service serializes the data dependence relation, so that the dependent data
of an item is installed before the item itself is installed.

� Deletion serviceThis tries to remove items from members’ databases, noting that items only can be deleted
by their owner. Also an item cannot be removed if there are other data that depend on it, or if someone else
wants to use it. When the deletion conditions are satisfied, the deletion service blocks this item for future
use, and then notifies all members’ databases to remove it.

� Unsubscription service This allows a non-leader to leave a project. The project leader takes over all data
owned by this member, and other users’ databases ownership and membership information is updated.

3 User Interface Design Principles

User interface issues are important, because we want to help ordinary software engineers, who tend to be averse
to formal methods, especially formal proofs. Cognitive science, semiotics (the theory of signs), narratology (the
theory of stories) and even cinema, have influenced our design. Our most novel technique is algebraic semiotics,
which provides systematic ways to evaluate the quality of user interfaces, including proof presentations. We hope
that this research will contribute to improving the currently rather shaky scientific basis of user interface design.

3.1 Narratology

Finding a non-trivial proof usually requires exploring many dead ends, errors and misconceptions, some of which
may be very subtle. Therefore the process of proving can be full of disappointed hopes, unexpected triumphs,
repeated failures, and even fear and interpersonal conflict. All this is typically left out when proofs are written
up, leaving only the map of a path that has been cleared through the jungle. We believe that proofs can be made
much more interesting and understandable if some of the conflicts that motivate their difficult steps are integrated
into their structure, instead of being ignored. As Aristotle said, “Drama is conflict.” What this means here is
that restoring conflictual information will add dramatic interest, making it more interesting to read the proof. Of
course, this must be done with care, and it should not be overdone, just as in a good novel or movie. We have used
these ideas to structure some of our proof websites, since proof obstacles are exactly what is needed for creating
drama.

An important resource for this is the theory of oral narratives developed by William Labov [33], who showed
that these have a precise structure, which includes the following:

1. an optionalorientation section, which provides basic orientation information, such as the time and place of
the story;

10



2. a sequence of so-callednarrative clauseswhich describe the events of the story;

3. thenarrative presupposition, which by default assumes that the ordering of the narrative clauses corresponds
to the temporal ordering of the events that they describe;

4. evaluative materialinterleaved with the narrative clauses, which “evaluates” the events, in the sense of
relating them to socially shared values; and finally

5. an optionalclosingsection, which may contains a “moral” or summary for the story.

The above follows [36, 37], which describe more recent developments than [33]. Aristotle [1] also gave some
useful guidelines, including unity of time and place, having a beginning, middle and end, and the skillful use of
language, especially metaphor, for which one can consult the work of Lakoff [35] and other cognitive linguists.

The work of Joseph Campbell and Christopher Vogler [52, 8] on the role of characters in stories, especially
the role of heroes, is also relevant; the dramatic importance of having the hero tested by obstacles is emphasized
by these authors. Some experimental results from prior work on multimedia instruction [23] are also relevant,
suggesting that narrative, especially when it is oral (i.e., in the audio medium), is important for controlling the
interpretation of material in other media. It is also well known in cinema that exactly the same scene with a
different narrative can have a completely different interpretation and emotional effect; music can also have a
powerful effect on interpretation. Our proof website design conventions are discussed in Section 3.3 draw on
some of these ideas for their justification.

3.2 Algebraic Semiotics

A basic insight due to Ferdinand de Saussure [50] is that signs should not be considered in isolation, but rather
as elements ofsystemsof related signs, including their structural aspects. For computer scientists, it is natural to
use tools from algebraic specification (e.g., see [24]) to formalize the intuitive notion of asign system,as a loose
algebraic theory (consisting of a signature and some axioms) plus some further structure specific to semiotics,
including constructors, a hierarchy of levels for signs, and priorities among constructors [18]. A related insight is
thatrepresentationscan be seen as translations or maps from one sign system to another [18]; it is similarly natural
to formalize these translations using the algebraic specification notion oftheory morphism. Our case studies show
that maps between sign systems in general do not fully preserve structure, and in particular, must involvepartial
functions. These considerations motivate the precise definition ofsemiotic morphismthat is given in [18]; a key
point is that thequalityof a representation can be examined in terms of what is preserved by its semiotic morphism.

User interfaces are of course prime examples of representations, and it is natural to study them using semiotic
morphisms which map from the sign system of the underlying functionality to a sign system for displays; the
quality of the interface is then measured by the quality of its semiotic morphism. Details, some of which are quite
technical, are omitted here, but may be found in [19] and [18]. In particular, note that this theory provides a natural
way to handle multimedia displays.

3.3 Proofwebs and the Tatami Conventions

Professional advice for user interface design in general, and for website design in particular, nearly always calls
for using style guidelines to produce a uniform “look and feel” that is appropriate for the particular application,
e.g., see [43, 51]. We have developed the followingtatami conventions(updated from [19, 22]) as style guidelines
for the proof websites generated by Kumo. To clarify the discussion, we distinguish sign systems forabstract
proofwebsanddisplay proofwebs; the first contains the proof information, while the second also includes display
information. We will use the word “unit” for any block of information of the same kind in a display proofweb.

1. Homepagesare provided for every major proof part; these serve to introduce and motivate the problem to
be solved and the approach taken to the solution.
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2. Tatami pagesare the basic constituents of display proofwebs; each tatami page has one or moreproof units
showing its inference rule applications, interleaved with one or more explanation units; it is feasible to have
both on the same web page because there should only be a small number of proof steps per page (about 7
non-automatic rules works well). Tatami pages are also called “proof pages.”

3. Theexplanation unitsof tatami pages are prover-supplied informal discussions of proof concepts, strategies,
obstacles, etc.; these may contain graphics, applets, and of course text.

4. Tatami pages can be browsed in an order designed by the prover to be helpful and interesting to the reader;
if possible, these pages should tell a story about how obstacles were overcome (or still remain); this order
will be called thenarrative order.

5. Major proof parts, including lemmas, have their own subwebsites, each with the same structure as the main
proof, including homepage and explanation units. These appear in a separate dedicated persistent popup
window.

6. Tatami pages also have associated formal proof scores, which appear in another separate popup window
when summoned from a tatami page. It is convenient to have a separate window because users usually want
to look at the proof and explanation at the same time as the proof score. Readers can also request proof
score execution, and the result is displayed in the same window as the score, so that one can easily alternate
between them. (The proof score is sent to an OBJ server and the result is returned for display.)

7. Major proof parts can have an optional closing page, to sum up important results and lessons; these appear
in the same window as their tatami pages.

8. Formal proof steps are automatically linked to pre-existing tutorial background pages; e.g., each application
of induction is linked to a webpage that explains the kind of induction used. Tutorial pages have their own
dedicated persistent popup window.

9. A menu of open subgoals appears on each homepage, and error messages are placed on appropriate pages.
In database mode, a summary of this information may be seen in the status window, which is a specialized
popup that reports any currently open subgoals.

These conventions have the effect of integrating proofs with the information that is needed to motivate, understand
and debug them; the intention is to make proofs easier to do and to understand, and to display information in a
way that facilitates typical patterns of use.

3.4 Justifying the Design Guidelines

This subsection applies the techniques discussed in Sections 3.2 and 3.1 to justify some of our design guidelines
for the proof websites generated by Kumo. We first justify the tatami conventions given in Section 3.3 using the
same enumeration as in that section. This list of justifications mainly draws on narratology, while the justifications
that are given after this will mainly use algebraic semiotics.

1. Having homepages for major proof parts is motivated by the orientation sections in Labov’s theory of story
structure [33]; homepages orient proof readers to what is to follow. Homepages appear in the same window
as their tatami pages because they are part of the same narrative flow.

2. Interleaving prover-supplied informal explanations with proof steps was suggested by the similar interleav-
ing of narrative and evaluative material in stories (see Section 3.1 and [33]); the evaluative material provides
the motivation for important proof steps, by relating them to values shared among the appropriate commu-
nity of provers. Limiting the number of non-automatic proof steps on tatami pages to approximately 7 is
consistent with classic work of Miller on limitations of human cognitive capacity [40].

3. Explanation units correspond to the evaluative material in Labov’s theory.

4. The idea of a giving a “narrative” order to tatami pages comes from the theory of stories [33]; the idea of
including obstacles comes from Campbell [8] and others on “heroic” narratives.
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Figure 4. A Typical Tatami Homepage and Proof Page

5. Having separate hyperlinked websites for major proof parts is similar to the way that flashbacks and other
temporal dislocations occur in stories. It is helpful to have them in a separate window in order to clarify
their relation to the main sequence of proof steps.

6. Separating mechanical proof scores from the proof pages that generate them allows hiding the most routine
details of proofs, just as human proofs often omit details in order to highlight the main ideas [38]; however,
proof readers can still view them, and even execute them.

7. The optional closing webpages for proof websites are inspired by Labov’s theory of story structure [33], and
these also appear in the same window as proof pages, again because they are part of the same narrative flow.

8. Linking proof steps to tutorial pages can be motivated by connectionist theories which assert that concepts
are organized as linked structures, e.g. [49]. (However, other research on concepts regards such theories as
overly simple [48, 34].)

9. Open subgoals are important to provers when they read a proof, since proving new results is a major value
within this community. The open subgoals are the leaf nodes of the current proof tree, and hence form a list
in a natural way.

Now we give some justifications that use ideas from algebraic semiotics. The basis for these arguments is that
any display to users can be seen as a semiotic morphism from the sign system for abstract proofwebs to that of
display proofwebs, and that these morphisms can be compared for their quality, based on how well they preserve
source structure and content; see [18] for more details (but note that[18] refers to an older version of Kumo).

� Windows: The main contents of a display proofweb are its proof steps, informal explanations, tutorials, and
mechanical proof scores. These four are also the main contents of abstract proofwebs, and their preservation
has much to do with the quality of their representation. These four basic sorts of the abstract data type for
proofwebs are reflected in our choice of windows for displaying them. Because tatami pages are the main
constituent of proofwebs, theirs is the master window, and because explanation pages are so closely linked,
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they share that window; each unit is enclosed is its own “box.” Tutorial and machine proof score pages each
have a separate window.

� Backgrounds: Each major sort of unit has its own background color: proof units have light beige, ex-
planations have light yellow, tutorials have yellow marble, and proof scores have light purple. Although
the choice of colors is somewhat arbitrary, and is easily changed by editing the XSL file, their distinctness
reflects the importance of distinguishing these four units.

� Navigation: Similar considerations hold for navigation. Each page has a title, supplied by the user in the
Duck script. Buttons are used to move to other pages of the same sort, and to open widows that display
information of other sorts. Each persistent window has somewhat different layout and navigation buttons,
reflecting its different typical uses. For example, the master tatami window has “NEXT” and “PREV” buttons
to step through the narrative ordering of tatami pages, as well as buttons that support conventional tree
traversal (“LEFT”, “ RIGHT”, etc.).

� Mathematical Formulae: We usegif files for mathematical symbols, in a distinctive blue color, because
mathematical signs come from a domain that is quite distinct from that of natural language. (We hope to use
MML when it becomes available.)

Some additional applications of semiotic morphisms to the user interface design of the Tatami system are de-
scribed in [19], in a more precise style than here, although they are based on an older version of the system.
For example, [19] shows that certain early designs for the status window were incorrect because the corresponding
semiotic morphisms failed to preserve certain key constructors. The graduate user interface design course at UCSD
uses algebraic semiotics (seewww.cs.ucsd.edu/users/goguen/courses/271 ), and more information can
be found there.

3.5 Dynamic Algebraic Semiotics

Classical semiotics is concerned with static signs; it does not allow for signs that change in response to user input,
or that move on their own. This section sketches a new generalization of algebraic semiotics that can handle
dynamic interfaces, by extending its foundation from classical algebra to hidden algebra. As a simple example,
consider the problem of designing that part of the Kumo interface that supports browsing proofs. Kumo provides
one set of buttons to traverse in the proof author’s narrative order, labeled “NEXT” and “PREV”, as well buttons
“ LEFT”, “ RIGHT”, etc. for the usual tree oriented traversal. It is common practice to draw an automaton having
one state for each proof tree node, and a transition label for each traversal button. But this does not allow for the
fact that different proofs have different structures, and thus different automata, nor does it account for the different
displays that are produced in each state, nor for the variety of possible implementations of transition lookup, e.g.,
using lists, arrays, or hash tables. An automaton can describe how a single proof instance can be navigated, but
it cannot describe the general method which generates proof navigation support for any given proof, nor the way
that this method is implemented, nor the quality of the resulting interface.

In fact, despite the formal character of the model itself, the construction and use of transition diagrams (or
the corresponding automata) in user interface design is intuitive, and does not provide an adequate basis for a
rigorous mathematical analysis of possible designs. In order to address the display, implementation and quality
questions raised above, the automaton model must be supplemented in variousad hocways, whereas our approach
can handle all of these within a single unified framework. Another example of dynamics in Kumo that would be
difficult to handle with traditional user interface modeling techniques is the facility to execute the proof script for
a proof part by downloading it to a BOBJ server and then viewing the result on a local browser as it executes.

This is not the place for details, but we can say that hidden algebra (see Section 2.4) provides a precise way to
handle both the display and implementation aspects of examples like that described above, and the corresponding
extension of semiotic morphisms gives a precise basis for comparing the quality of interface designs realizing the
desired dynamics, without bias towards any particular implementation.
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3.6 Gibsonian Affordances

An “affordance” in the sense of Gibson [11, 12] may be defined as “a capability for a specific kind of action,
involving an animal and a part of its environment.” For example, a cup provides an opportunity to exercise an
affordance for drinking. Affordances are realized by the sensory-motor schemata (in the suggestive terminology
of Piaget, though with a rather different meaning) that support some particular kind of action, such as drinking
coffee from a cup. Instead of constructing, storing, and then using (massively large and complex) representations
of objects (such as cups) from the external world, we rely upon the world to provide us with the information that
we need, when we need it; this “offloading” of representation into the world can provide an enormous gain in
efficiency, as shown in second generation AI research, e.g., that of Brooks [5, 6]. It seems promising to integrate a
theory of affordances with algebraic semiotics, in the hope that this could produce new insights for each field, and
advance the state of theoretical research in user interface design. One difficulty is that affordances as originally
formulated are not well suited to symbolically mediated activities; however it seems that socially-based semiotics
described in [17] could provide a good basis for resolving this difficulty; also work of Ittelson [32] and Norman
[41] seems relevant (though [41] is a bit naive); the “image schema” notion that developed in modern cognitive
linguistics [34, 35] is also very relevant.

4 Conclusions and Future Research

The Tatami project has developed in a perhaps surprising diversity of directions, including theoretical foundations
of behavioral verification for distributed concurrent systems (using hidden algebra), web-based system develop-
ment, and multimedia interface design (using algebraic semiotics). Although significant progress has been made,
a great deal still remains to be done in each of these three areas. Fortunately, they are mutually reinforcing. For
example, improvements in the user interface design of the Tatami system and its Kumo prover make it easier to
do proofs in hidden algebra, which in turn inspire further developments in the theory, which in turn inspire further
improvements to the system. We have also discovered how to handle dynamic displays, based on what amounts to
a new kind of “dynamic” semiotics.

Some topics that it would be interesting to explore in future research include: making Kumo’s proof displays
even more interactive, for example, by using audio, avatars, chatrooms, and/or archetypal characters; extending
our use of fuzzy logic with a fuzzy critical path algorithm that can choose the open subgoal having the greatest
potential for increasing the overall credibility of a proof; extending the theory of semiotic morphisms to dynamic
displays; and integrating Gibsonian affordances with algebraic semiotics (along the lines discussed in Section 3.6
above). In addition, we hope to use the Tatami system in teaching the UCSD graduate course on programming
languages, which would stimulate further developments to the system, its interfaces, and its theory. Finally, we
feel we are now in position to begin developing methodological guidelines for applying hidden algebra and the
Tatami system to more challenging applications such as communication protocols.
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A Sample Duck Code

A Duck text for proving correctness of the traditional array-with-pointer implementation of stack is shown below.
It has two parts, the first for proofs and the second for display. In addition to the main theorem, there is a
key lemma, which is proved by induction, whereas the main goal is proved by coinduction. Each proof part
begins with the keyword “proof: ” and ends with “[] ”, which signals that Kumo should try to finish the proof
using only its automatic rules (see Section 2.5). A name may be optionally given after the keyword “proof: ”.
Comment lines begin with “*** ”. More detail on this proof can be obtained from its homepage; see theURL

www.cs.ucsd.edu/groups/tatami/kums/exs/ ; more information on the latest version of Kumo can be
obtained atwww.cs.ucsd.edu/groups/tatami/kumo/ .

*** file: /net/cs/htdocs/users/goguen/kumo/stack/stack.duck
*****************************************
style: beijing
*****************************************
spec: /net/cs/htdocs/users/goguen/kumo/stack/stack.bob
*****************************************
cobasis:

op top _ : Stack -> Nat .
op pop _ : Stack -> Stack .

[]
*****************************************
proof: <<StackThm1>>

goal: pop empty = empty and
((forall N I : Nat A : Arr) top push(N, <I, A>) = N ) and
((forall N I : Nat A : Arr) pop push(N, <I, A>) = <I, A> ) .

[]
*****************************************
proof: <<ArrayLemma>>

goal: (forall I J N : Nat A : Arr)
(I <= J implies <I, put(N, J, A)> = <I, A>) .

by: induction on I with scheme {0, s};
[]
*****************************************
proof: <<StackThm2>>

goal: pop empty = empty and
((forall N I : Nat A : Arr) top push(N, <I, A>) = N ) and
((forall N I : Nat A : Arr) pop push(N, <I, A>) = <I, A> ) .

[]

*****************************************
display: <<ArrayLemma>>

title: "A Behavioral Property of Pointer-Array Pairs"
dir: /net/cs/htdocs/groups/tatami/kumo/exs/stack/lemma
homepage: /net/cs/htdocs/users/goguen/kumo/stack/stacklemma.hp
specexpl: /net/cs/htdocs/users/goguen/kumo/stack/stackspec.exp

<<ArrayLemma>>
expl: /net/cs/htdocs/users/goguen/kumo/stack/stacklemma.exp

[]
*****************************************
display: <<StackThm1 StackThm2>>

title: "Implementing Stack with Pointer and Array"
dir: /net/cs/htdocs/groups/tatami/kumo/exs/stack
homepage: /net/cs/htdocs/users/goguen/kumo/stack/stack.hp
specexpl: /net/cs/htdocs/users/goguen/kumo/stack/stackspec.exp
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closing: /net/cs/htdocs/users/goguen/kumo/stack/stack.close

<<StackThm1>>
subtitle: "This proof does not succeed, because a lemma is needed."
expl: /net/cs/htdocs/users/goguen/kumo/stack/stack.exp1

<<StackThm2>>
subtitle: "This time we succeed using the lemma."
expl: /net/cs/htdocs/users/goguen/kumo/stack/stack.exp2

[]

B Sample XSL Code

The XML files produced by Kumo described in Section 2.5 are used together with an XSL style file to generate
theHTML that is actually displayed by the user’s browser. Below is the XSL code for the output of a conjunction
elimination rule application:

<xsl:template match="Conjunction-elimination">
<a href="{constant(conjel)}" target="back">

Conjunction elimination </a>
yields the following

<xsl:apply-templates match="count"/>
subgoals:

</xsl:template>

This says that the generatedHTML will contain the text “Conjunction eliminationyields the followingK sub-
goals:” where the integerK is number of subgoals, obtained by calling another XSL rule, named “count ”; the
link to the conjunction elimination tutorial page, indicated by the underline, is also inserted, withURL named by
the constant “conjel ”. (The list of subgoals is already present in the XML file being processed and therefore
need not be inserted by this rule.)

C A Formal Description of 2-Doags

Here we briefly define the data structure that is used for organizing validations. IfN is a set, thenN� denotes the
set of finite lists overN . A 2-doagD consists of a setN of nodes, a setF of fans, two functionsd0 : F ! N

andd1 : F ! N� (calledsourceandtarget), a setW of “labels” plus a labeling functionl : N !W , such that

1. for each noden, the fans with sourcen are ordered;
2. for each fanf , the target nodes off are ordered;
3. letD[ be the ordinary directed ordered graph constructed fromD to have the same nodesN asD, and to

have as its edges fromn to n0 pairs(f; n0) such thatn0 is a target node of a fanf with sourcen, with edges
ordered by the ordering of fans plus that of edges within fans; thenD[ must be acyclic.

The labeling function is just to accommodate the additional information attached to nodes mentioned in Section
2.3.3. Note thatD[ need not have a unique root and need not be connected. 2-doags are really a kind of hypergraph,
and fans are really hyperedges, but we use the “2-dimensional” language because of its suggestiveness for our
application. Similarly, a 2-occurrence inD is just a path inD[.
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