Semantics of a Small Imperative Programming Language
The following OBJ code defines the syntax and semantics of a simple
programming language, beginning with a specification of the integers that is
especially suitable for theorem proving applications.
*** the data types for the programming language
obj ZZ is pr INT .
op _is_ : Int Int -> Bool .
var I J K L : Int .
eq I is I = true .
eq (I + J) is (K + J) = I is K .
eq (I - J) is (K - J) = I is K .
cq I is J = false if (I < J) or (J < I) .
eq I + - I = 0 .
eq -(I + J) = - I + - J .
eq 0 * I = 0 .
eq - I * J = -(I * J) .
eq I - J = I + - J .
eq I * (J + K) = (I * J) + (I * K) .
cq I * J = I + (I * (J - 1)) if 0 < J .
eq (I + J) * K = (I * K) + (J * K) .
eq not(I <= J) = J < I .
eq not(I < J) = J <= I .
eq I + 1 <= J = I < J .
eq I < J + 1 = I <= J .
eq I <= J + -1 = I < J .
eq I <= J + - K = I + K <= J .
eq I < J + - K = I + K < J .
eq I + -1 < J = I <= J .
eq I <= I = true .
eq I < I = false .
cq I < I + J = true if 0 < J .
eq I + -1 < I = true .
cq I + J < I = true if J < 0 .
cq I <= J = true if I < J .
cq I <= J + 1 = true if I <= J .
cq I <= J + K = true if (I <= J) and (I <= K) .
cq I + J <= K + L = true if (I <= K) and (J <= L) .
endo
*** the programming language: expressions ***
obj EXP is pr ZZ .
dfn Var is QID .
sorts Exp Arvar Arcomp .
subsorts Var Int Arcomp < Exp .
ops a b c : -> Arvar .
op _+_ : Exp Exp -> Exp [prec 10] .
op _*_ : Exp Exp -> Exp [prec 8] .
op -_ : Exp -> Exp [prec 1] .
op _-_ : Exp Exp -> Exp [prec 10] .
op _[_] : Arvar Exp -> Arcomp [prec 1] .
endo
*** the programming language: tests ***
obj TST is pr EXP .
sort Tst .
subsort Bool < Tst .
op _<_ : Exp Exp -> Tst [prec 15] .
op _<=_ : Exp Exp -> Tst [prec 15] .
op _is_ : Exp Exp -> Tst [prec 15] .
op not_ : Tst -> Tst [prec 1] .
op _and_ : Tst Tst -> Tst [prec 20] .
op _or_ : Tst Tst -> Tst [prec 25] .
endo
*** the programming language: basic programs ***
obj BPGM is pr TST .
sort BPgm .
op _:=_ : Var Exp -> BPgm [prec 20] .
op _:=_ : Arcomp Exp -> BPgm [prec 20] .
endo
*** semantics of basic programs ***
th STORE is pr BPGM .
pr ARRAY .
sort Store .
op initial : -> Store .
op _[[_]] : Store Exp -> Int [prec 65] .
op _[[_]] : Store Tst -> Bool [prec 65] .
op _[[_]] : Store Arvar -> Array [prec 65] .
op _;_ : Store BPgm -> Store [prec 60] .
var S : Store .
vars X1 X2 : Var .
var I : Int .
vars E1 E2 : Exp .
vars T1 T2 : Tst .
var B : Bool .
vars AV AV' : Arvar .
eq initial [[X1]] = 0 .
eq S [[I]] = I .
eq S [[- E1]] = -(S[[E1]]) .
eq S [[E1 - E2]] = (S[[E1]]) - (S[[E2]]) .
eq S [[E1 + E2]] = (S[[E1]]) + (S[[E2]]) .
eq S [[E1 * E2]] = (S[[E1]]) * (S[[E2]]) .
eq S [[ AV[E1] ]] = (S[[AV]])[ S[[E1]] ] .
eq S [[B]] = B .
eq S [[E1 is E2]] = (S [[E1]]) is (S [[E2]]) .
eq S [[E1 <= E2]] = (S [[E1]]) <= (S [[E2]]) .
eq S [[E1 < E2]] = (S [[E1]]) < (S [[E2]]) .
eq S [[not T1]] = not(S [[T1]]) .
eq S [[T1 and T2]] = (S [[T1]]) and (S [[T2]]) .
eq S [[T1 or T2]] = (S [[T1]]) or (S [[T2]]) .
eq S ; X1 := E1 [[X1]] = S [[E1]] .
cq S ; X1 := E1 [[X2]] = S [[X2]] if X1 =/= X2 .
eq S ; X1 := E1 [[AV]] = S [[AV]] .
eq S ; AV[E1] := E2 [[AV]] =
(S[[AV]])[ S[[E1]] <- S[[E2]] ] .
cq S ; AV[E1] := E2 [[AV']] = S [[AV']] if AV =/= AV' .
eq S ; AV[E1] := E2 [[X1]] = S [[X1]] .
endth
*** extended programming language ***
obj PGM is pr BPGM .
sort Pgm .
subsort BPgm < Pgm .
op skip : -> Pgm .
op _;_ : Pgm Pgm -> Pgm [assoc prec 50] .
op if_then_else_fi : Tst Pgm Pgm -> Pgm [prec 40] .
op while_do_od : Tst Pgm -> Pgm [prec 40] .
endo
obj SEM is pr PGM .
pr STORE .
sort EStore .
subsort Store < EStore .
op _;_ : EStore Pgm -> EStore [prec 60] .
var S : Store .
var T : Tst .
var P1 P2 : Pgm .
eq S ; skip = S .
eq S ; (P1 ; P2) = (S ; P1) ; P2 .
cq S ; if T then P1 else P2 fi = S ; P1
if S[[T]] .
cq S ; if T then P1 else P2 fi = S ; P2
if not(S[[T]]) .
cq S ; while T do P1 od = (S ; P1) ; while T do P1 od
if S[[T]] .
cq S ; while T do P1 od = S
if not(S[[T]]) .
endo
Back to CSE 230 homepage
Maintained by Joseph Goguen
Last modified 31 January 1999