Chapter 5

INFINITE SERIES

Let's Get Acquainted With The Math Tables In The Appendix

By now, you have had much practice with differential and integral calculus.
You have surely noticed that the techniques of integration were harder to
master than the techniques of differentiation. Don’t feel bad about this situ-
ation. It’s the same for everyone who studies calculus. If you don’t believe
that this is the case, look at the math tables in the appendix of this book.
Notice how much more space is devoted to tables of integrals than to tables
of derivatives! In fact, now is a good time to take a few minutes and browse
through the math tables in the appendix. In particular, look at the section
labled SERIES and the TABLE OF INTEGRALS. Look in the TABLE OF
INTEGRALS under the subsection TRANSCENDENTAL FUNCTIONS and

find f SINX) 4y
X
What you should have found is the statement
J'sin(x)_x_ x3 N X X 4 x°
x 3.31 7 5.51 770 9-91° "

is called an ‘‘infinite series expansion

. . sin(x
This strange expression for [ x(

. sin(x . .
of the integral of % For a moment, let’s ignore the question of how

this infinite series expansion was derived and just try to understand what it
means. Notice first of all that the series is a sum of powers of x. In this case,
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all powers are odd. The terms alternate in sign. For any odd number n, the
power x" is divided by n - n!. The number n - n! is obtained by multiplying
the integer n times the integer n!. The integer n! is the product (n)(n — 1)(n — 2)
+ + + (2)(1). These numbers n! grow very rapidly as n increases. The series
ends with three little dots ‘*. . .”” which is meant to imply that anyone should
be able to figure out the general term from the terms already given. You
should be aware, however, that sometimes series are terminated with . . .
without anybody really knowing the general rule! Students, in particular, love
to do this. Sometimes, the general rule for forming the series is quite com-
plicated. Look in the math tables in the section labeled SERIES at the infinite
series for tan(x) and ctn(x) where the general term is expressed as a function
of the Bernoulli numbers.

really means.

We still haven’t discussed what the infinite series for f smx(x)
Recall that in the beginning of CHAPTER 4, INTEGRATION, we discussed
the idea of the signed area function. FIGURE 4.6 is particularly relevant
here. There we saw that given a function f(x), we could always produce an
integral F(x), the ‘‘signed area function,’’ by graphical methods. In particular,
sin(x)

we could apply this technique to compute F(x) = f . Imagine that we

have done this with great accuracy and we have graphed F(x), as was done
in FIGURE 4.6. Assume that we have taken the base point for the signed
area function to be x = 0, so F(0) = 0. Now look once again at the infinite

sin(x)

series expansion for f . Notice, if we throw away all terms in the infinite

series involving powers of x larger than k, we obtain a polynomial. For
k =1, 3,5, and 7, for example, we would obtain the polynomials x, x —
x3 x3 x3 x3 x> x’
3 T s Ty M Ty Ty gy et el
these polynomials p,(x), ps(x), ps(x), and p;(x). If we were to compare the
graphs of these polynomials with the graph of F(x), starting at x = 0 and
moving away, we would see that p,(x) looks almost identically like the graph
of F(x) for very small values of x. We would see that the graph of p;(x)
looks almost identically like the graph of F(x) for an even wider interval of
values about x = 0.
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Similarly, ps(x) and p,(x) are even better approximations to F(x) over a
wider range of values of F(x) centered at x = 0. This is the fundamental
idea of what the statement of equality between any function F(x) and its
infinite series (sometimes called its ‘‘power series’’) is to mean. The infinite
series is simply a concise way of specifying a sequence of polynomials that
are better and better approximations to the function about some value of x
(x = 0 in our example).

Some Simple-Looking Functions Are Very Nasty To Integrate

sin(x)
as
X

But wait a minute! Why did we bother to express the integral f

an infinite series? We didn’t do that sort of thing in CHAPTER 4. We wrote
[ sin(x)dx = —cos(x), for example. We didn’t express [ sin(x)dx as an

J' sin(x) _ cos(x)
X X

infinite series. Why don’t we write or, if that’s not quite

right, something like that? The answer is that, try as they may, no one has

. . si .
been able to find a reasonable-looking expression for f dx in terms of

the familiar functions used to express integrals in CHAPTER 4. Mathema-
sin(x

x( )dx cannot be expressed
in terms of elementary functions.’’ This may sound a little condescending to
you, as the functions we have been using thus far in this book may not seem
so ‘‘elementary,’’ but this is what is said. Thus, the way we deal with ‘‘nasty
sin(x)

ticians express this fact by saying ‘‘the integral I

to integrate functions’’ like is to approximate them with polynomials.

Polynomials are nice functions. The bad news about this is that any given
polynomial is only a good approximation for certain restricted values of the
variable x. Usually, these values are specified as lying in some interval about
a fixed value of x. We speak of these polynomials as *‘local approximations’’
to our nasty function. When we do our calculus tricks on these local ap-
proximations, such as find areas, volumes, line integrals, etc., we have to
be careful. We must always remember that we are doing ‘‘local calculus.”’
This is not to say that you should be paralyzed with fear at the thought of
making a mistake with local calculus. By far the best strategy is to plow
ahead and be daring. But always be a little suspicious. The techniques of
power series were developed largely in the nineteenth century when no com-
puters were available. For you, it’s a different ball game! If you wonder if
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some calculations you have done are correct it may be very simple for you
to write a little program to test things out. You may learn much more in this
way than trying to rely on some nineteenth-century theorem.

Infinite Series Help Us With Nasty Functions And Local Calculus

We have much to learn about the mathematics of infinite series. Once you
get into the spirit of it, it won’t be too bad. Before we get into the more
pedantic aspects of the subject, we are going to spend some time fooling
around with power series approximations to functions. There are many pos-
sibilities here, but since we are fresh from studying integral calculus, we shall
look at some applications of integration in the local calculus setting. In doing
this, we shall work with nasty functions since nice functions can be treated
by the methods of CHAPTER 4. One problem is to recognize the nasty as
opposed to the nice functions. By ‘‘nasty’’ we mean ‘‘its integral is not
expressible in terms of elementary functions.’” As you browse through the
TABLE OF INTEGRALS in the appendix, you will see many horrible-looking
functions that clever people have been able to integrate in terms of elementary
functions. Still, you will notice that many reasonable-looking functions are
missing from the table. Indefinite integrals involving (a + bx)"? and
(a + bx?)2 are given, but not of (a + bx?)'”2 or (a + bx*)"2. Probably
these latter two functions are nasty. Integrals of sin(In(x)) and cos(In(x)) are
given but not of In([sin(x)|) and In(|cos(x)|). Probably these are nasty. And
where in the world are the integrals of sin(x?) and cos(x?)? Also, no anti-
derivatives are given for e** or ¢ “**. These are very important functions in
statistics. Just as with humans, functions can be important even though they
are nasty!

Following our usual pattern, we now give a series of exercises involving
some nasty functions and local calculus. After the exercises, we give the
solutions. Study them carefully. Then we give variations on these exercises
for you to try.

Now We Try Some Local Calculus

5.1 EXERCISES

(1) Find the area under the graph of f(x) = sin(x) for
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(2) Find the volume of the solid of revolution obtained by revolving the
sin(x)

curve f(x) = , 0 < x< mr, about the x-axis.

(3) Find the arclength of the curve y(x) = x3/3 for x between —1/2 and
+1/2.

5.2 SOLUTIONS TO EXERCISE 5.1

A Local Area Problem

(1) We are asked to compute J; s—l-nx(—x)dx. The first thing we do is write
a little program in BASIC to get a feel for this function. Here is the program
and its output. Study it carefully.

10 FOR X=.1 TO3.1 STEP .1
20 PRINT X,SIN(X)/(X)
30 S=S+SIN(X)/X

40 NEXT X
50 PRINT"A = " S+.1

X SIN(X)/X X SIN(X)/X

A .9983341 1.8 .5410264

2 .9933466 1.9 4980526

3 .9850672 2 4546486

4 .9735459 21 411052

.5 .9588511 22 .3674984

.6 .9410708 23 3242197

7 .920311 24 .281443

.8 .8966951 25 .239389

9 .8703633 26 .1982699
1 .8414709 27 .158289
1.1 .8101885 28 .1196388
1.2 .7766993 29 .0825
1.3 .7411986 3.0 4.704026E-02
1.4 .7038926 3.1 1.341338E-02
1.5 .6649966 A = 1.802058
1.6 .6247335
1.7 .5833321 A= Approximate area= 1.8 square units

sin(x)

Notice that the values of have been computed at intervals of 0.1. If

we sum these values, all of which are positive, and multiply by the interval
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width of 0.1, we obtain a Riemann sum approximation to the integral. If you
think about it a bit, you will see that this Riemann sum is going to be a little
bit smaller than the actual area we are seeking. In any case, we get a rough
idea that the area is about 1.8 square units. Knowing this may keep us from
making fools of ourselves in the calculations to follow. Now let’s try and
sin(x)

X

compute the same area using our infinite series expansion for f dx. We

had found from the tables in the appendix that

= — - +
x X=Xt s T T 9o

sin(x) x3 x3 x’ x°
[
Let’s take the polynomial F(x) = p;(x) as our approximation to the integral.
Here is a BASIC program to compute F(w) = F(3.14). We shall learn later
that in a series with decreasing terms that alternate in sign, the maximum
error is less than the absolute value of the first term omitted. We have used
that fact to estimate the error in this BASIC program’s approximation to the
integral. The value of the area as estimated by F(3.14) is 1.84, which agrees
pretty closely with our earlier Riemann sum approximation.

10 PRINT "ENTER X ":INPUT X

20 F3=3+2:F5="5+4+F3:F7=7+6+F5:F9 =9+8+F7

30 P1=X:P3=X"3/(3<F3):P5=X"5/(5+F5):P7 = X7/(7+F7)
40 PRINT "F("X")=" P1—P3+P5-P7

50 PRINT "MAX ERROR IS ", X"9/(9+F9)

RUN

ENTER X

?3.14

F(3.14)= 1.843483

MAX ERROR IS 9.085761E-03

What If We Hadn't Found The Power Series In The Appendix?

sin(x)

In a certain sense, we lucked out in finding f dx expressed as an

infinite series in our table. A more typical scenario would have been that we
found only the series

x3 x° X’
sin(x)=x—§+5—!—7—!+
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We then would have divided all of the terms of this series by x to obtain

sin(x) x2  x* xS

1 - — 4+ -2

X 3r st

sin(x)

Integrating this series term by term gives the series for f dx. We shall

X

learn later how to justify these steps. For now let’s be daring! After all, we
wrote some BASIC programs to give us some independent evidence of the
validity of these calculations. Generally; if these types of calculations are
unjustified, they produce real garbage that is easily detected by a little common
sense.

A Local Volume Problem

(2) Using the methods of CHAPTER 4, we have that the volume is

Tain2
o o[y,
0 X

in2
We begin with a short BASIC program that computes values of ﬂz(-ﬁ at
X

intervals of 0.1 and estimates the volume with a Riemann sum. The estimated
volume is 4.3 cubic units. Here is the program and some output.

A Riemann Sum Approximation To The Local Volume Problem

10 FOR X=.1 TO 3.1 STEP .1

20 PRINT X, (SIN(X))"2/X"2

30 S=S+(SIN(X))2/X"2

40 NEXT X

50 PRINT "INTEGRAL IS ABOUT "S+.1

60 PRINT "VOLUME IS ABOUT "3.14:S+.1

A .9966711 1.6 3902919

2 .9867376 1.7 3402764

3 .9703576 1.8 .2927095

4 .9477916 1.9 .2480563

5 .9193953 2 .2067054

.6 .8856142 21 .1689638

7 .8469723 22 .135055

.8 .8040621 23 .1051184

.9 .7575323 24 7.921019E-02

-

.7080734 25 5.730708E-02
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1.1 .6564054 2.6 3.931096E-02
1.2 .6032616 2.7 2.505542E-02
1.3 .5493753 28 1.431345E-02
1.4 4954648 29 6.806249E-03
1.5 4422204 3.0 2.212786E-03

3.1 1.799188E-04

INTEGRAL IS ABOUT  1.368151
VOLUME IS ABOUT 4.295995

We Get A Chance To Compute A Power Series From Scratch

To apply power series methods to this problem, we need an infinite series
for sin?(x). No such series is given in the appendix. We could take the series
for sin(x) and square it. A better approach for us at this point is to learn the
general rule for forming power series expansions of a function about x = 0.
The general method was described in CHAPTER 3, following the discussion
of TAYLOR POLYNOMIALS. The general rule for any function h(x) is

h®©) ,  h®©) , h®(0)
2 X<+ 3 X°+...+ ol X

h(x) = h(0) + NV (0)x + +...

In this expression, h™(x) is the n* derivative of h(x). This n™ derivative

evaluated at x = 0 is h™(0). Now let’s compute some derivatives of h(x) =
2

sin“(x):

hP(x) = 2sin(x)cos(x) = sin(2x)

h®@(x) = 2cos(2x)

h®(x) = —22sin(2x)
h®(x) = —23cos(2x)
h®(x) = +2%sin(2x)
h©®(x) = +25cos(2x)
h™(x) = —2%sin(2x)
h®(x) = —27cos(2x)
h®(x) = +28sin(2x)

Do you see the pattern? Note that f©(0) = 0 fork = 0,1,3,5,7,. ...
Thus we obtain
1 3 25 27 9

2
02 _ £2 _ % a4 £ 06 _ 2 .8 £ 410 _
sin“(x) = +2!x 4!x +6!x 8!X + lO!x
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Now we divide this series for sin?(x) by x? to obtain

sin?(x) B8, 20
= - = iy - = + — 8 _ L
x2 B TL R L TR Tl

Integrating term by term, we obtain

J'sinz(x)d 23 25 2 2°

= _ 3 _ 7 9 _

T Y T R T RS TR
You should notice the powers of 2 that appear in numerators of the coefficients
in this series. They are going to make convergence slow for any large values
of x. Even for x = 3.14 it is necessary to take the following polynomial to
get reasonable accuracy:

23 25 27
—_ — 3 5 _ 7
Pis(®) = X = 37" + T T e
29 211 213
+ 9 __ 11 _ 13
9-10" " 11-128 T 9.1a"

The following BASIC program confirms this and computes directly p;5(3.14).
The volume estimated by this program is 4.46, which is pretty close to our
Riemann sum method above. This program is a simple-minded and direct
translation of the formula for p,3(x) into BASIC. It would be much better
numerically to compute the factorials F4, F6, etc., and the numbers P1, P3,
etc., recursively within a loop. This is another story, however. Remember,
we are just fooling around with series at this point.

A BASIC Program To Solve The Local Volume Problem

LIST

10 PRINT "ENTER X ":INPUT X

20 FA4=24:F6=6+5+F4:F8=8+7+F6:F10=10+9+F8:F12=
12:11+F10:F14 = 14+13+F12

30 P1=X:P3=(2+X)"3/(3+F4):P5 = (2+X)"5/(5+F6):P7 =
(2+X)"7/(7+F8):P9 = (2:X)"9/(9+F10):P11 = (2+X)"(11/(11+F12):P13 =
(2+X)"13/(13+F14)

40 INTEGRAL = P1-P3+P5—P7+P9—P11+P13

50 PRINT "INTEGRAL IS ABOUT "INTEGRAL

60 PRINT "V("X") IS ABOUT "3.14+INTEGRAL

70 F16=16+14+F14

80 PRINT "MAXIMUM ERROR IS "(2+X)"15/(15+F16)
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RUN

ENTER X

23.14

INTEGRAL IS ABOUT  1.420813
V(3.14) IS ABOUT 4.461352
MAXIMUM ERROR IS 3.181611E-03

Finally, A Local Arclength Problem!

(3) Using the techniques of CHAPTER 4, we have

12 172

ARCLENGTH = f (1 + (Y'(x)?)2dx = f (1 + x*)"2dx

-12 -12

12

=2 f (1 + xH)2dx.
0

We look in the appendix and find that

1 1-1 13 1-1-3-5
1+ )" =1+x- 2+ - 4+
1+ x X T 24 268 2468 T
Substituting x* for x we obtain

1 1-1 1-1-3
1 + x4)12 = 14 _ x8 12
( x*) 1+2x 2 ax +2_4_6X

1-1-3-5
-~ +
2-4-6-8"
Integrating term by term, we find
fl+ 41/2d_ +1L_llx_+113£_3_
X = x4 S 229 " 22613

If we set x = 1/2 in this expression we should get a good approximation to
half the arclength. Actually, we need only the first three terms of this series.
With x = 1/2, we again have a series with decreasing terms of alternating
sign. Thus the error is no worse than the first term omitted. The following
little BASIC program shows us the error for omitting the term involving x!3:
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A Basic Program For The Error

LIST
10 PRINT "INPUT X "INPUT X
20 PRINT (3/(2+4+6+13))+X"(13)

RUN

INPUT X

?.5
5.868765E-07

The next program computes the first three terms of the series evaluated at
X = 1/2.

A Basic Program For The Arclength

LIST

10 PRINT "ENTER X ":INPUT X

20 P1=X:P5=X"5/2+5:P9=X"9/2+4+9

30 PRINT "F("X") = "P1+P5-P9

40 PRINT "ARCLENGTH IS ABOUT "2+(P1 +P5—P9)

RUN

ENTER X

?7.5

F( .5) = .5429688

ARCLENGTH IS ABOUT 1.085938

The arclength is thus about 1.086. There is an important detail that we
have swept under the rug thus far in our calculations with the series for
(1 + x)"2. We found the series expansion for (1 + x)"? in the math tables
in the appendix under SERIES AND PRODUCTS. Just after the series ex-
pansion for (1 + x)'2 you see the notation [x? < 1]. This notation means
that the series is valid only for values of x such that x? < 1. In other words,
[x| <1 or, equivalently, —1 < x < +1. The {x:—1 < x < +1} is also
denoted by (—1,+ 1) and is called the ‘‘interval of convergence of the
series.”” We will learn more about intervals of convergence (THEOREM
5.57). The main thing we need to note is that x = 1/2 is in the interval of
convergence and so is x* = (1/2)* = 1/16. If you look at the series for sin(x)
in the appendix, you will see that the interval of convergence is [x? < %].
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The series for sin(x) converges for all x. This means that no matter how large
x is, if you take enough terms of the series for sin(x) you will eventually get
a good approximation. The number of terms required may be very large,
however! In the case of the series for (1 + x)'2, no matter how many terms
you take, you won’t get good approximations to values of x outside the interval
of convergence (values such as x = 2 or x = 3, etc.). The general rule for
integrating a series term by term to obtain a series that approximates the
integral is that the limits of integration must both lie in the interval of con-
vergence. Thus, in our case, the limits were O and 1/2, which both lie in the
interval of convergence of (1 + x)2 and hence of the series for (1 + x#)!2,
which also has interval of convergence —1 < x < +1. Does all this talk of
intervals of convergence make you nervous about the validity of our calcu-
lation of the arclength of x3/3 from — 1/2 to 1/2? If so that’s a healthy sign.
Let’s check out our calculations with a little BASIC program:

Riemann Sum Approximation For Arclength

LIST

10 FOR X=0TO .5 STEP .01

20 S=S+(1+X4)5

30 NEXT X

40 PRINT "THE INTEGRAL IS ABOUT "2:S+.01

RUN
THE INTEGRAL IS ABOUT 1.026509

The Riemann sum approximation is close to the result obtained from the
infinite series, so probably things are all right.

There is one thing left that we should do in connection with this arclength
problem. We should derive the series for (1 + x)2. Remember the general
rule

) ) 3
y(x) = y(0) + y ”(O)X + 2 2!(0)x2 + 1 350),(3 -
Computing some derivatives, we find y¥(x) = (1/2)(1 + x) 2, y@(x) =
172)(=1722)(1 + x)732, yOx) = (122)(—1/22)(=3/2)(1 + x)™2, y¥9(x) =
(172)(— 1/2)(=3/2)(—5/2)(1 + x)~72, . . . . Substituting x = 0 into these
expressions and putting the resulting numbers into the expansion for y(x)
gives the series in the appendix for (I + x)"2. You should carry out this
calculation carefully. Only the interval of convergence remains a mystery!
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Now You Get To Try Some Local Calculus!

We now give a series of variations on EXERCISE 5.1. The problems in
these variations correspond closely to their counterparts in EXERCISE 5.1,
so you may want to check SOLUTIONS 5.2 periodically.

5.3 VARIATIONS ON EXERCISE 5.1

in(x/2
ﬂ(xx/_),os x < . Sketch

(1) Find the area under the graph of f(x) =
the graph of f(x).

(2) Find the volume of the solid of revolution obtained by revolving the
sin(x/2)
X

curve f(x) = , 0 < x < r, about the x-axis.

(3) Find the arclength of the curve y(x) = x*3 for x between —0.9 and
+0.9. Make sure the error is less than .001. This problem would be much
harder if we asked for the arclength from —2 to +2. Do you see why?

5.4 VARIATIONS ON EXERCISE 5.1

sin(3x)

(1) Find the area under the graph of fg(x) = ,0=sx=<m, asa

function of 8, 0 < B < 1. Sketch the graph of fg(x) for several values of .

(2) Find, as a function of 8, the volume of the solid of revolution obtained

sin(3x)

by revolving the curve fg(x) = , 0 =< x = r, about the x-axis. Again,

assume 0 = B = 1.

(3) Find the arclength of the curve y(x) = (ax)¥/3, 0 < a < 3/2, for x
between —0.5 and +0.5. Your answer should be a function of o such that
the error is less than .001 for all values of o with 0 < a < 3/2.

A Different Nasty Function—Same Techniques

5.5 VARIATIONS ON EXERCISE 5.1

(1) Find the area under the graph of f(x) = sin(x?), 0 < x < (m)"2. Sketch
the graph of f(x).
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(2) Find the volume of the solid of revolution obtained by revolving the
curve f(x) = sin(x?), 0 < x < (m)!?2, about the x-axis.

(3) Find the arclength of the curve y(x) = x> for x between —0.5 and
+0.5. Make sure the error is less than .001.

By now you should have some idea how infinite series can be used to
extend the range of applicability of calculus. It’s now time to be a little more
systematic about our study of infinite series.

We Start With Sequences

5.6 DEFINITION: SEQUENCES LetZ = {0, 1, 2, . . .} denote the set
of nonnegative integers. A function f whose domain D is a subset of Z and
whose range is the set R of real numbers is called a real valued sequence. If
D has infinitely many elements, then f is called an infinite sequence.

Playing The Envelope Game With Sequences

It’s time for the ENVELOPE GAME again. Imagine you have an envelope.
Inside is a sequence. What are you going to see when you open the envelope?
Well, you might see some ordered pairs written on a piece of old yellow
parchment: (0, 5.45), (1, 6.43), (5, 3.45). This would be the sequence with
D = {0, 1, 5}. At 0, this sequence would have the value 5.45, at 1 the value
6.43, and 5 the value at 3.45. If the sequence is an infinite sequence, you
won'’t see all of its values written down (obviously!). You might see something
like (0, 0), (1, 2) (2, 4), (3, 6), (4, 8), . . . . The *“. . . ,”’ read ‘‘dot, dot,
dot,”” is meant to imply that anyone should be able to figure out the general
rule from what is given: (n, 2n). Another way to describe the same sequence
is D = Z, f(n) = 2n. Another way is D = Z, f(n) = a, where a, = 2n.
Another way is D = Z, a, = 2n. Another way is a, = 2n, n = 0, 1, 2,
... . Inall cases, we must be clear about D and about the rule which assigns
to each element of D a real number.

The next definition will sound strange at first, but you will get used to it,
if not learn to love it.

Epsilons And Limits '

5.7 DEFINITION: LIMIT OF A SEQUENCE Leta,, n =0, 1, 2,
3, . .. be an infinite sequence. We say that a real number A is the limit of
a, as n goes to infinity and write
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limita, = A

n—ox
if for every real number € > O there exists an integer N, such that for all
n> N, la, — Al <e.

You Give Me ¢ Then | Give You N, Such That . ..

Many students find DEFINITION 5.7 annoying. Consider, for example,
the sequence a, = (2n + 1)/(n + 1). As n goes to infinity this sequence
obviously approaches A = 2 as a limit. We don’t need DEFINITION 5.7 to
see that this is true, so why confuse the obvious? The reason that we need
DEFINITION 5.7 is that it provides a necessary technical tool for discussing
limits of sequences in general terms, apart from any specific examples. If
DEFINITION 5.7 seems confusing to you, think of it as sort of a game.
Imagine that you are in a room sitting at a desk. On the desk is a piece of
paper with asequence a,,n = 0, 1, 2, . . ., that you’ve announced converges
to a number A. Every now and then, at random intervals, someone opens the
door to the room and hands you a positive real number € (like e = .001, for
example). You have to give that person an integer N such that for alln > N,
la, — A| < €. If you can prove that you can do this for any e that may be
given to you, then that proves that A is the limit of the sequence a,,. For the
sequence a, = (2n + 1)/(n + 1), if you are given € > 0, you can take N,
to be any integer greater than or equal to e ~!. If n > N, = €~ ! then

-1
n+1

2n+1_
n+ 1

ian - A| =

This proves, using DEFINITION 5.7, the obvious fact that (2n + 1)/(n +1)
converges to A = 2. If you take e = .001 in the above inequality, then
€~! = 1000 and N o, can be any integer greater than or equal to 1000. In
fact, N g5, = 1000 works fine. Thus, for all n > 1000,

2n+l_

lan — Al = n+1

2’ < .001.

It is more important that the beginning calculus student develop a strong
intuitive feeling for limits than a technical ability to work with DEFINITION
5.7. A little awareness of the latter is all that we ask at this point. Actually,
if you think about it a bit, DEFINITION 5.7 has a strong intuitive appeal. It
says that if you claim that the sequence a, approaches A, then, given any
level of accuracy €, which we think of as a small number, you must be able
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to specify an integer N, such that past N the sequence gets and stays within
that level of accuracy from A.

If It Doesn’t Converge, It Diverges

If a sequence a, has a limit in the sense of DEFINITION 5.7, it is called
a convergent sequence. A sequence a,, n = 0, 1, 2, . . ., that does not
have a limit is called divergent. A simple example of a divergent sequence
is the sequence a, = (—1)". This sequence hops back and forth from + 1
to — 1. Given any € < 2, it is obviously impossible to find the N, demanded
by DEFINITION 5.7. Another divergent sequence is the sequence a, = n,
n=20,1,2,....The A of DEFINITION 5.7 is specified to be a real
number. This sequence a, = n will never get close and stay close to any real
number A, because a, just gets larger and larger as n gets larger and larger.
We say that the sequence a, is ‘‘unbounded.’’

5.8 DEFINITION A sequence a,,n = 0, 1,2, . . ., is bounded if there
is a positive number B such that |a,| < B for all n.

5.9 THEOREM A convergent sequence is bounded.

Proof: Leta,,n = 0,1, 2,..., bea sequence with

limit a, = A.

n—x

Taking € = 1 in DEFINITION 5.7, let N, be such that for n > N,,
la, — A| < 1. Let B be the maximum of [ag|, [a,[, [a,], . . ., [an |, |A] + 1.
Then |a,| < B for all n. This completes the proof.

It's Equivalent To Its Contrapositive

THEOREM 5.9 says that if “‘a,, n = 0, 1, 2, . . ., is convergent’’ then
“‘a,, n =0, 1,2, ..., is bounded.”” This is equivalent to saying if ‘‘a,,
n=20,1,2,.. ., isnotbounded’’ then “‘a,,n =0, 1,2,. . .,isdivergent.”’

These two statements are called contrapositive statements. If P and Q are
propositions, then the statement ‘‘if P then Q’’ is equivalent to ‘‘if not Q
then not P.”’ In our example, P = *‘a,, n = 0, 1, 2, . . ., is convergent”’
and Q = “‘a,, n =0, 1,2, ..., is bounded.”” Here is an example from
real life: if ‘‘there is a cow in the barn’’ then ‘‘there is a mammal in the
barn.’’ The contrapositive statement, which is logically equivalent, is if ‘‘there
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is no mammal in the barn’’ then ‘‘there is no cow in the barn.”’ Care must
be taken with ‘‘real life’’ interpretations of the contrapositive.

The Converse Is Not The Same As The Contrapositive

You should pay careful attention to the distinction made in mathematical
proofs between the ‘‘contrapositive’” and the ‘‘converse.’’ The converse of
the statement ‘‘if P then Q’’ is the statement *‘if Q then P.’’ These statements
are definitely not logically equivalent. Each must be proved or disproved
separately. In the statement if ‘“‘a,, n = 0, 1, 2, . . ., is convergent’’ then

““ap, n = 0,1, 2,...,is bounded,”’ the converse is if ‘‘a,, n = 0, 1, 2,
. ., is bounded’’ then ‘“‘a,, n = 0, 1, 2, . . ., is convergent.”’ This latter
statement is false, as the example a, = (—=1)",n = 0, 1, 2, . . ., shows.

If both the statement ‘‘if P then Q’’ and its converse ‘‘if Q then P*’ are true,
then we say ‘‘P if and only if Q’’ is true. As an example, suppose we are
talking about triangles in a trigonometry course and the lengths of the sides
of a triangle T are denoted by a < b < c. Let P = “‘T is a right triangle”’
and Q = “‘a® + b? = c¢2.”’ The statement ‘‘if P then Q’’ is the PYTHA-
GOREAN THEOREM. The statement ‘‘if Q then P’’ is also a true theorem,
a consequence of the law of cosines. Thus, the statement ‘‘P if and only if
Q”’ is valid.

We now state some of the basic rules for operating with limits of sequences.
These rules are a special case of the RULES FOR LIMITS (3.14).

Some More Rules And The Agony Of A Proof

5.10 THEOREM: RULES FOR LIMITS OF SEQUENCES Suppose
thata,,n =0,1,2,...,andb,,n = 0, 1, 2, . . ., are convergent infinite
sequences. Let
limit a, = A and limit b, = B.
Define sequences t,, s,, p,, andq,, n = 0, 1,2, ..., byt, = aa,, where
o is a real number, s, = a, + b,, and p, = a,b,. If b, 7 0 for all n, define
qn = a,/b,. Then
(1) limitt, = aA

n—x

(2) limit s, A+ B

n—x
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(3) limit p, = AB
4) limitq, = A/Bif B # 0.

n—x

Proof: We give the proofs of (2) and (3). You should try to do similar
proofs for (1) and (4). We use DEFINITION 5.7. To prove (2) we must show
that given any € > 0 we can find an integer N, such that, for all n > N,
Isn — (A + B)| = |Ja, + b, — A — B| < e. We shall use the fact that for
any real numbers x and y, [x + y| < |x| + |y|. Given ¢, let p = €/2. From
DEFINITION 5.7, we know we can find N, such that, for all n > N,
la, — A| < p. Likewise, we can find N, (perhaps different than the one of
the last sentence) such that, for all n > N, |b, — B| < p. Take N, to be
the larger of these two N,,. Thus, for n > N, we have

ls, — (A + B)| = |a, + b, — A — B
<la, — Al +|b, —B|<p+p=c¢

This completes the proof of (2). To prove (3), we must show that given any
€ > 0, we can find an integer N, such that, for all n > N, |a,b, — AB| <
€. We have

la,b, — AB| = |(a, — A)b, + (b, — B)A|
= 'an - AI ibn| + |bn - Bl |A|

By THEOREM 5.9, the sequence b, is bounded by some number M, which
we choose to be larger than |A|. Now, letp = €/(2M). Then, by DEFINITION
5.7, there is an integer N, such that, foralln > N, la, — A| < p. Likewise,
there is an integer N, (perhaps different from the one of the last sentence)
such that, for all n > N, |b, — B| < p. Take N, to be the larger of these
two N,. Then, for all n > N,

|anbn - ABl = |an - AI |bn| + lbn - Bl |A|
<l|a, — A/M + |b, - BIM <pM + pM = €.
This completes the proof of (3) of THEOREM 5.10.
Look again at THEOREM 5.9 and DEFINITION 5.8. A sequence a,, n =

0,1,2,...,is “bounded”’ by B if |]a,| < B for all n. We can now refine
that idea a bit.
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Upper And Lower Bounds And A Fundamental Axiom

5.11 DEFINITION Leta,, n= 0,1, 2, ..., beasequence. We say
that the real number U is an upper bound for the sequence if a, < U for all
n. We say the real number L is a lower bound for the sequence if a, > L
for all n. A real number LU is the least upper bound of the sequence a, if it
is an upper bound for a, and if, for any real number x < LU, x is not an
upper bound of a,. A real number GL is the greatest lower bound of the
sequence a, if it is a lower bound for a, and if, for any real number x > GL,
X is not a lower bound of a,,.

Let’s look at a couple of examples of DEFINITION 5.11. As a first ex-
ample, take f(x) = —(x — 3)? + 4. Define a, = f(n),n =0, 1,2, .. ..
Then, since the maximum value of f(x) is +4 atx = +3, any number U > 4
is an upper bound for this sequence. The number 4 is the least upper bound
because any number x < 4 has a; > x and hence x is not an upper bound
for the sequence a,. As a second example, take g(x) = 4x%/(x? + 5) and

define b, = g(n), n = 0, 1, 2, . . .. By computing g'(x) = 40x/(x?> + 5)2
we see that g(x) is increasing and hence the sequence b, satisfies b, < b, |
foralln = 0, 1, 2, . . .. It is easy to see the limit as n approaches infinity

of b, is 4. Thus 4 is an upper bound. In fact, 4 is the least upper bound. See
if you can convince yourself why this is true! It is a special case of THEOREM
5.13 below.

It is a basic axiom of the real number system that every sequence of real
numbers that has an upper bound U must have a unique least upper bound
LU. Likewise, every sequence of real numbers that has a lower bound must
have a unique greatest lower bound GL. For certain types of sequences, these
unique bounds are also the limits.

Bounded Monotone Sequences Always Converge

5.12 DEFINITION A sequence a,, n = 0, 1, 2, . . ., is nondecreasing
ifa,<a,,,forn=20,1,2,... Asequencea,, n=20,1,2,....is
nonincreasing if a, = a,,, forn = 0, 1, 2,. . ..

5.13 THEOREM Every bounded nondecreasing sequence converges to
its least upper bound LU. Every bounded nonincreasing sequence converges
to its greatest lower bound GL.
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Proof: Suppose thata,, n = 0, 1, 2, . . ., is nondecreasing and bounded.
In particular, a, must be bounded above and hence must have a least upper
bound LU. Given € > 0, we note that the real number x = LU — € is not
an upper bound for the sequence a, by the definition of the least upper bound
LU. Thus, there is an integer m such that a,, > LU — e. Of course, a, <
LU as LU is an upper bound for the whole sequence a,. If we take N, =
m, then, by the fact that the sequence a, is nondecreasing, for all n > N,
LU — € < a, < a, < LU. In other words, for n > N, |a, — LU| < .
Thus, by DEFINITION 5.7, LU is the limit of the sequence a,. This completes
the proof of THEOREM 5.13 (the proof of the second statement of the
threorem is directly analogous).

Diverging To Plus Or Minus Infinity

In DEFINITION 5.7, we defined what it meant for a sequence to converge
to a limit A, where A is a real number. We stated that a sequence that did
not converge was called a divergent sequence. Divergent sequences can be

bounded, such as the sequence (—1)", n = 0, 1, 2, . . ., or unbounded,
suchasa, = n,n =0,1,2,...,0ora, = —n,n=0,1,2,...,0ra, =
(=D, n = 0,1, 2,.... Inthe sequence a, = n, the terms get steadily
larger and larger without any upper bound. In the sequence a, = —n, the

terms get steadily smaller and smaller without any lower bound. In the first
case, we say that the sequence ‘‘diverges to plus infinity’’ or ‘tends to plus
infinity.”’ In the second case, we say the sequence ‘‘diverges to minus in-
finity’’ or ‘‘tends to minus infinity.’” Although it is technically an abuse of
the notation to do so, we sometimes write

limit a, = +o° and limit a, = —o

n—x n—x
to describe these two situations. The sequence (— 1)"n doesn’t tend to either
plus infinity or minus infinity. It hops back and forth between larger and
larger positive and negative values. We simply call this sequence an ‘‘un-
bounded divergent sequence.”’ You should be getting sophisticated enough
by now to understand the following definition:

5.14 DEFINITION Leta,, n= 0,1, 2, ..., beasequence. We say
that a, diverges to plus infinity if for all x > 0, there exists an integer N,
such that for all n > N,, a, > x. Similarly, we say that a, diverges to minus
infinity if for all x < 0, there exists an integer N, such that for all n > N,,
a, < x.
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The intuitive idea of DEFINITION 5.14 is that if the sequence a, diverges
to plus infinity, then given any number x, which we imagine to be very large,
we can always find some point in the sequence beyond which all of the terms
are larger than x.

Some Practice With Sequences o

In the next exercise, you are asked to discuss the divergence or convergence
of certain sequences. This means that you should state whether or not the
sequence diverges or converges. If it converges, try to find the limit. If it
diverges, state whether or not the sequence is bounded. If the sequence is
not bounded, state whether or not the sequence diverges to plus infinity or
to minus infinity or neither.

5.15 EXERCISES

(1) Discuss the convergence or divergence of the following sequences:
2n3 + 3n + 1

(a) 12 ch=0L2. .
(b) ;:23—:31,n=0,1,2,...

(© (_?1—2‘11:1+_1’n=0’1’2""
) :—:,n=l,2,...

o 52t

(f) cos(wn),n =0,1,2,...

(®)
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1
(h) 053‘(1") n=12...

log,(log,(n))

)] log,(n) n=223,...

() cos(n),n=0,1,2,...

k) <l+l> ,n=1,2,...
n

(2) By using a computer to generate these sequences, discuss their con-
vergence or divergence:

@) cos(n?),n=20,1,2,...

() s,,n=1,2,... wheres,,; = (I/n)> "s,and s, = 1
1\*’
¢ s,,n=1,2,..., wheres,,, = (l + H) s, forn = 2, 3,
..,ands; = 1

Study The Solution, Then Modify The Original

We now discuss the solutions to EXERCISE 5.15. Remember, after learn-
ing the solution, go back to the original problem, change it a little bit, and
rework it. After doing this for all problems in EXERCISE 5.15, you should
move on to the VARIATIONS ON EXERCISE 5.15.

5.16 SOLUTIONS TO EXERCISE 5.15

(1)(a) This sequence is a ratio of two polynomials in n (i.e., a rational
function of n). If we divide numerator and denominator by the highest power
of n that appears in the denominator, we can write the same sequence, except
for the first term, as

2 + (3m?) + (/%)
3 + (2/nd)

,n=1,2 ...

In this form, it is obvious that the sequence converges to the limit 2/3 as n
goes to infinity.



250 Infinite Series

(1)(b) Again, we have a rational function of n. Divide by the highest
power of n that appears in the denominator to obtain

-n+ (m»)
2 T () ,n=1,2 ...

In this form, it is evident that the sequence diverges to minus infinity.
(I)(c) Again, we divide by the highest power of n in the denominator to
obtain
-n(—1)"+n"
l +n7"

This is an unbounded, divergent sequence that oscillates between very large
negative and positive values.

(1)(d) This is the same as the sequence (n/e)", which obviously diverges
to plus infinity.

(1)(e) Dividing numerator and denominator by n> gives

-1+ nd
1 + (In(n))y/n3 "’

If you happen to know that the limit as n tends to infinity of (In(n)/n® is
zero, then you will see that the limit of this expression is obviously —1. To
understand this fact, we use L’HOPITAL’S RULE 3.15 to write

. -.. In(n) .. In(x) N
limit =5~ = limit =5~ = limit 375 = 0.
(1)(f) This is the sequence +1, —1, +1, ... which is bounded, di-

vergent.
(1)(g) If we write logs(n) = logs;(2)log,(n), we see that every term in
the sequence is (logs(2)) ~! and thus the sequence converges to this constant.

(1)(h) Using L’HOPITAL’S RULE again, we obtain
logo(n) _ . .. 10g() _

l,il_,nit n%! ]:Talc P lj.Tit (0. DIn(2)x°! -

Thus the limit of this sequence is zero. If you worked part (b) of EXERCISE
3.20(3) you will recall the useful fact that the limit as x goes to infinity of
(In(x))/x? is zero for any a > 0.
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(1)(i) This limit is zero. The reason is again the fact that the limit as x
goes to infinity of (In(x))/x? is zero for any a > 0. In this case, we take a = 1
and use the fact that as x goes to infinity so does log,(x).

(1)(j) This problem is a little trickier than it seems. If you write the
following little BASIC program

10 PRINT COS(N)
20 N=N+1
30 GOTO 10

and watch the numbers stream out, it is clear that cos(n) does not converge.
This is the correct intuition. The function cos(x) is +1 at all X = 2mwn, n an
integer. At all real numbers of the form x = 2mn + m, cos(x) is — 1. Think
about the intervals [2Tn — .5, 2@n + .5]. In every such interval there must
be an integer m. This means that cos(m) > cos(.5). In every interval of the
form [27n + w — .5, 2wn + @ + .5] there must be an integer m’ for
which cos(m’) < cos(m — 0.5) = —co0s(0.5). Thus, for infinitely many
integers n, cos(n) > cos(.5) and for infinitely many integers n, cos(n) <
—c0s(0.5). This proves what common sense tells us, the sequence cos(n),
n=20,1,2,..., does not converge. It is bounded and divergent.

(I)(k) Let’s write a little BASIC program to check this sequence out.

10 PRINT (1+ 1/N)'N
20 N=N+1
30 GOTO 10

2.717815
2.717536
2.717995
2.717692
2.718148

Amazing! It looks like this sequence is converging to the numbere = 2.718

. . .. The easiest way to see this is to investigate the limit as n goes to infinity
1 1

of In (1 + H) = nln(l + ;) Using good old L’HOPITAL’S RULE again

gives

In(1 + x°! 1
limit xIn(1 + x~') = nmit%_x—) = limit ——— = 1.

- xroc ! xox 1+ x7!
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1 n
Thus, for the sequence a, = (l + ;) , we have shown that the

limit(In(a,)) = 1. This implies that limit(a,) = e' = e. In general, if
limit(In(a,)) = A > O then limit(a,) = e?. Formally, this is because the
function In(x) is one-to-one (FIGURE 2.13) and continuous (DEFINITION
3.12). It is also intuitively obvious if you take a look at the graph of In(x)
shown in FIGURE 2.13.

Now The Solutions To Exercise 5.15(2)

(2)(@a) The method used to analyze problem 1(j) above doesn’t work here.

The cos(x) function is evaluated at the integer points 1, 4, 16, . . ., n%, . . ..

If cos(n?) were to have a limit A as n goes to infinity, then the points of the
sequence n2, n = 1, 2, . . ., would have to eventually cluster about points
in the set {x:cos(x) = A}. This seems highly unlikely, and can, with a little
more effort than we want to make at this point, be proved not to happen.
Here is a BASIC program with some sample output from the screen after the
program has run for several minutes.

10 PRINT COS(N-+N)
20 N=N+1
30 GOTO 10

1177025
—.9925256
.9545957
9154154
.6455998
—.5313178
—.9999428
—.5312158
.6454156
9155609
.9544519
—.992599
.1169841
-.3111826
—.3815438
—.7837191
—.8679878

It is apparent that this sequence is bounded but divergent.
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(2)(b) A sequence s, defined in this manner is said to be ‘‘defined re-
cursively.”” Note that the ratio s, /s, is less than 1. Thus the sequence s,
is nonincreasing and, since O is a lower bound for the sequence, it must
converge to its greatest lower bound. The following program, when allowed
to run a bit, produces the output shown.

10 S=1:N=1
20 S=S+(1/N)"(2"=N)
30 PRINTS
40 N=N+1
50 GOTO 20

.6017975
6017975
.6017975
.6017975
.6017975
.6017975
.6017975

It seems that .6017975 is the approximate limit.

(2)(c) This sequence is again one that is defined recursively. The ration
Sa+1/8, is greater than one, so the sequence is nondecreasing. If it is bounded
above, then it must converge to its least upper bound. Using techniques that
we shall develop later in this chapter, it will be easy for us to show that this
sequence is bounded above. In any case, the following program plus output
tells us that this sequence is bounded above and gives us a good approximation
to the limit.

10 S=1:N=1
20 S=S+(1+(1/N))’(1/(2'N))
30 PRINTS
40 N=N+1
50 GOTO 20

1.414213
1.565085
1.622389
1.645175
1.654575
1.658565
1.660296
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1.66106

1.661402
1.661556
1.661627
1.661659
1.661674
1.661681
1.661685
1.661686
1.661687
1.661687
1.661688
1.661688
1.661688
1.661688

Now Try The Variations

We now begin VARIATIONS on EXERCISE 5.15. Remember that cor-
responding problems use similar methods. Many of these problems have
‘‘general ideas’’ behind them. By the time you have worked the last variation
of each type, you should try to articulate these ideas. Don’t worry about being
wrong in stating these general ideas, just try to make sense!

5.17 VARIATIONS ON EXERCISE 5.15

(1) Discuss the convergence or divergence of the following sequences:

4n3 + 3n* + 1

=0,1,2,...
(a) 7n5+2 ,n 0’ ’ ’
-n’ + 1
b) S -=:n=012
—n)" + n—1
© S g
n" — n

d n/( +n H’ n=

|
—_
-
N
-

(-n) + 1

U
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2+
) cos(*rrr:] ),n=0,l,2,...

+ 2
log,(n%)
@® ——.,n=23,...
g logs(n)
log,(n)

(h) ooor o0 = 1,2,

log,(log,(n))
log,(n)

2+1
() cos(l:1+2>,n=0,l,2,...

(k) <l+g>,n=l,2,...
n

(2) By using a computer to generate these sequences, discuss their con-
vergence or divergence:

(a) sin((44n®> + n + 1)/(7n2 + 1)), n =0,1,2, ...

n=223...

(In(n)) !
(b) s,,n=1,2,..., wheres,,, = (l + H) s, for n

I
N

3,...,ands; = 1

(=n
n+ 1\
(€ sy,n=1,2,..., wheres,,, = <2n - 1) spands, = 1

5.18 VARIATIONS ON EXERCISE 5.15

(1) Discuss the convergence or divergence of the following sequences:

4(In(n))> + 3(nm)* + 1
(a) 7(1n(n))5 T2 , N = l, 2, . e
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(=n)* ! + "
(c) W,n=2,...

d Jd+n™n=12,...

(—nlnn))? + 1 0
n3 + (In(n))® ’

2,2
) sin(Lﬂ),n =0,1,2,. ..

(e) =1,2,...

T + 2

log,(n® + log,(n))
log;(n)

(®) ,n=273, ...

In(n)
(h) W’n=2’3"--

log,(log,(n)) 45

® logs(log;(n)) e

() sin(2n),n=0,1,2,...

(k) <1+l—nr(li)),n=l,2,...

(2) By using a computer to generate these sequences, discuss their conver-
gence or divergence:

(@ cos((n® + 1))(n + 1),n=20,1,2,...

() s,,n=1,2,... wheres,,; = (I/nP)3 "s,ands,; = 1 forp =
1,2,3and q = 2, 3, 4.

1
© s,n=12, ... wheres,,, = (M> s, n =23, 4,
..,ands;, = 1 forp =2,3,4andq = 2, 4, 8.
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5.19 VARIATIONS ON EXERCISE 5.15

(1) Discuss the convergence or divergence of the following sequences:

(@

(b)

(c)

(d)

(e)

)

(®

(h)

@

0))

(k)

4a + 3a} + 1

5 12 ,n=0,1,2,... wherea, = (n®> + 1)/2n% + 1)
n
—sin®n + 1
—F— . ,n=20,1,2,...
2sin‘n + 3
(—=n)" + n"
n—“—nT‘ ,n=2,...

2 + sin(n)’, n=1,2,...

(—nln(n))? + 2n3
n3 + 2(nin(n))3

22_+_
sin(w),n =0,1,2,...

=1,2,...

™ + 2

log,(n® + 2"

,n=2,3,...
n
In(n)
(@1 n=4,5,...
log,(log;(logy())) ,n = 28,29, ... The general rule?
log;(log;(logs(n)))
sin(3n), n = 0, 1, 2, . . . The general rule?

n/In(n)
1
<1 +ﬂ> n=23 ...
n

(2) By using a computer to generate these sequences, discuss their conver-
gence or divergence:
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(2n)? _
2n— D2n + ™ T

@ s,,n=1,2,3,..., wheres,,; =

1,2,3,...,ands, = 2.
(b) sin(s,n),n =1, 2,3, ..., where s, is as in (a).

(c) sin(s, lIn(In(n + 3))]), n = 1, 2, 3, . . ., where s, is as in (a).
The function |x] is the ‘greatest integer function’’ or ‘‘floor function’’
and is called INT in BASIC. For example, INT(4.7) = 4,INT(3.14) = 3,
etc.

An Infinite Series Is A Sequence Of Partial Sums

We are now ready to start our discussion of infinite series. Let’s start with
an old friend, an infinite sequence a,, k = 0, 1, 2, . . .. Remember, this is
nothing more than a function from the domain {0, 1, 2, . . .} to the real
numbers. The value of the function at k is denoted by a, . If we have another
sequence by, k = 0, 1, 2, . . ., then we say the two sequences are the same
or are ‘‘equal’’ if a, = b, forallk,k =0, 1, 2, . . .. Suppose that for each
integern,n = 0, 1, 2, . . ., we form the sum s, = a, + a,'+ ...t a,.
This defines a new sequence s,, n = 0, 1, 2, . . ., called the infinite series
with terms from the infinite sequence a,, k = 0, 1, 2, . . .. The sequence
s, is also called the sequence of partial sums of the sequence a,, k = 0, 1,
2,....Ifs,,n=0,1,2,...,is the sequence of partial sums of a,, k =
0,1,2,...,and t,,n = 0, 1, 2, . . ., is the sequence of partial sums of
b,k =0,1,2,..., then to say the sequence (s,) equals the sequence (t,)
means that s, = t,, n = 0, 1, 2, . . .. In particular, s, = tg, S0 a3y = by.
In general, forn > 0,a, = s, — s,_; = t, — t,_; = b,, and hence a, =
b, for all n. Thus, two sequences can give rise to the same sequence of partial
sums if and only if these two sequences are themselves equal.

Infinite Sums—Two Interpretations

We now confront another notational artifact of calculus. The infinite series

with terms from the infinite sequence a,, k = 0, 1, 2, . . ., is denoted by
E a.
k=0

So, nothing wrong with that! Unfortunately, if s, = ag + a, + ... + a,

is the n' partial sum, we also have the notation
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Z a, = limits, = A

k=0 n—x
which says that the limit of the sequence of partial sums is A. In other words,
the same infinite summation notation is used to designate both the sequence
and its limit, two very different things. Usually, there is enough additional
information floating around in any given discussion to avoid confusion.

Equal Series . .. Equal Limits, It's Not The Same

In general, if you want to say that two infinite series are equal, you say
something like

x x

*“The infinite series 2 a, equals the infinite series E b,.”’
K=0 K=0

This would mean that a, = b, for all k. On the other hand, the statement
Z aq = Z bk’
K=0 K=0

by itself usually means that the limits of the two series are equal and does
not mean that a, = b, for all k.

As a specific example, let a, = (1/2)%, k=0, 1, 2. . . .. and let by =0,
by, = (2/3)%, k = 1, 2, .. .. These ‘‘geometric series’’ are studied in high
school algebra or precalculus courses and both converge to the number 2.
Thus, we write

> oa = D b =2
= k=0

k=0

Every Sequence Is A Sequence Of Partial Sums

Before studying examples of series, there is one other general remark to
be made. It seems from the definition that infinite series are a special class
of infinite sequences. This is true in the sense that an infinite series s,, n =
1, 2, ..., is specified as the sequence of partial sums of some infinite
sequence a,, n = 0, 1, 2, . . .. Because of this, we discuss infinite series
in terms of this underlying sequence a, and its properties, giving the theory
of infinite series a special notational and conceptual flavor. You should realize,
however, that any sequence b,, n = 0, 1, 2, . . ., can be regarded as an
infinite series. Just define a; = byanda, = b, — b,_;, n = 1,2, ...,
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and the sequence b, = s,, where s;, n = 0, 1, 2, . . ., is the sequence of
partial sums of a,, n = 0, 1, 2, . . .. This is the type of remark that interests
mathematicians and bores everyone else. It does come in handy in some
specific problems concerning sequences and series, so at least take note of
it.

5.20 EXAMPLE: GEOMETRIC SERIES Leta, = 1, k = 0, 1, 2,

. ., where r is any real number. The infinite series with terms from this
sequence is the sequence of partial sumss, = 1 +r+ ... + ", n = 0,
1, 2, . ... We know from precalculus courses that s, =(1—r"*1)/(1 —r)
ifr# 1.Ifr = 1thens, = n + 1. It is obvious from this formula that the
sequence s, diverges if |r] = 1 and converges to 1/(1 — ) if |r] < 1. Thus,
we write

- 1
(x) X 1+ = if [r] < 1.
K=0 I —-r
As examples of geometric series, take r = (1/2) and r = (2/3) to get
o < 1
k= — K= — =
k20(1/2) T - 2 go @ = T = 3

If the first term is missing from a geometric series (*) then the sum of the
series is r/(1 — r) instead of 1/(1 — r). Thus, for example,

(2/3)

k = ——— =
21 @3° =17 (2/3)

Our next example has some very special properties that are important to
understanding series.

5.21 EXAMPLE: HARMONIC AND ALTERNATING HARMONIC
SERIES Let a, = 1/k, k = 1, 2, .. .. The series of partial sums s, =
1+@172) +@1/3) +...+ (Am),n=1,2,...,is called the harmonic
series. This series diverges. One way to see this is to write the series as

1 + [(172)] + [(1/3) + (1/4)] + [(1/5) + (1/6) + (L/T) + (1/8)] + . ..
where the general term in square brackets is
(/@™ + 1) + ...+ 12"*H).

Each term in square brackets is greater than or equal to 1/2 and there are
infinitely many such terms, thus the series must diverge.
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An important related series is the alternating harmonic series where a, =
(= D*"(1/k),k = 1,2, .. .. The partial sums of this series are of the form
s, =1 —(172) + (1/3) — (1/4) + ... + (= D" (1/n). This series con-
verges. To see why intuitively, imagine that you are standing in a room with
your back against a wall. Imagine that you step forward 1 meter, then back-
ward 1/2 meter, then forward 1/3 meter, etc. After n such steps, your distance
from the wall is the value of the partial sum s,. By the time you are stepping
forward one millimeter, etc., an observer in the room (who by now has decided
you are nuts) would conclude that you are standing still. In other words, you
have converged. This argument works just as well for any step sizes, as long
as they are alternating forward and backward, of decreasing size, and tend
to zero. In the case of the alternating harmonic series, your final distance
from the wall is In(2) meters. Check it out on your computer. See also
EXERCISE 5.70(16).

Alternating Series

From the discussion of EXAMPLE 5.21, we have the following theorem:

5.22 THEOREM Leta,k =1,2,. . ., be asequence of positive num-
bers such that a, = a, ,, fork = 1, 2, . . .. If limit a, = O then

k—x

> (—Dk g,
k=1

converges and

n

2 (=D ey = B (= DK My < fag

k=1

Proof: The intuitive idea of the proof was discussed in connection with
EXAMPLE 5.21. Let s,,, n = 1, 2, . . ., be the sequence of even partial
sums. We write

So3n = (@) — @) + (a3 — ag) + ... + (ay_; — a,).

Each of the terms in parenthesis is nonnegative. Thus the sequence s,, is
nondecreasing. The sequence s,, is also bounded above by a,. By THEOREM
5.13, this sequence converges to its least upper bound, LU. Similarly, define
the sequence s,,,;, n = 0, 1, . . ., of odd partial sums. This sequence can
be written
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Sone1 = @1 — (a3 — a3) — (a4 — as) — ... — (8 — Axp+y)

This sequence is obviously nonincreasing and bounded below by zero. Thus,

it converges to its greatest lower bound, GL. But, [sy,.; — Szl = 3,41
tends to zero as n tends to infinity and hence GL = LU is the limit of the
sequence s,, n = 1, 2, 3, . . .. This proves that the series converges. The

ideas of EXAMPLE 5.21 explain the error estimate.

Absolute Convergence

There is the germ of another important idea in EXAMPLE 5.21.

5.23 DEFINITION Lets,,n = 0,1, 2, ..., be the series with terms
a, k =0,1,2,.... Lett, be the series with terms |a,|, k = 0, 1,2, . . ..
If the series t, converges, then the series a, is said to converge absolutely or
to be an absolutely convergent series

Another way that DEFINITION 5.23 is stated is

o

x
> a, converges absolutely if . |a,| converges.
k=0 k=0

It may not be obvious to you that a series that converges absolutely must
converge. We shall explain why below. The converse is false, in that a series
that converges need not converge absolutely. This is the case with the alter-
nating harmonic series, which converges but does not converge absolutely
because the harmonic series diverges.

Convergent Series—A Thought Algorithm

It’s time to refresh our intuition about infinite series. Remember, we start
with a sequence a,, k = 0, 1, 2, . . .. These are the terms of the infinite
series s,, n = 0, 1,2, ..., where s, = a; + a; + * - - + a,. Imagine
that we have written a computer program to evaluate these numbers s,. We
start the computer program running and watch the screen. The numbers s,
stream onto the screen. At first we are thrilled. The numbers are changing
rapidly. But after awhile they begin to change only in the 10" decimal place
and we become bored. This is the sort of thing that happens when the series
is converging to some number A. We may never see A on the screen, only
numbers close to A. Here is a definition of convergence of infinite series that
corresponds to our computer intuition.
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Alternative Definition Of Convergence

5.24 DEFINITION Lets,,n =0,1,2,.. ., be the sequence of partial

sums of the sequence a,, k = 0, 1, 2, . . .. The sequence s, converges if
for every € > 0 there exists an integer N, such that for all g = p > N,
la, + ... + a <e.

In our imaginary computer experiment, the € is a small number, like 1077,
where, if the numbers are changing by an amount less than that number, we
lose interest. The number N, corresponds to the number of terms in the sum
that have been computed when this begins to happen. After this begins to
happen, we can watch the computer add any amount of additional terms from
any p to any q and the sum won’t change by much. The advantage of DEF-
INITION 5.24 is that it doesn’t explicitly mention the limit of the series. Of
course, we have already given the definition of the convergence of a series
in terms of the convergence of the sequence of partial sums. This uses DEF-
INITION 5.7. Technically this means that DEFINITION 5.24 is really a little
theorem. We won’t worry about this technicality.

Absolute Convergence Implies Convergence

Just to give DEFINITION 5.24 a try, let’s prove that a series that converges
absolutely must converge.

5.25 THEOREM If a series converges absolutely then it converges.

Proof: Lett,,n = 0,1, 2, ..., be the sequence of partial sums of the
sequence |ag|, |a,|, |a|, . . .. We assume that t, converges. Thus, given any
€ > 0, there exists an N, such that for q = p > N, |a,| + ... + [a | <
€. But, fa, + ... + a <|[a + ... + [aj] and hence, forq = p > N,
la, + ... + aj| < e. By DEFINITION 5.24, this proves that the sequence
s, of partial sums of a,, k = 0, 1, 2, . . ., converges. This completes the
proof.

Alternating Series

5.26 DEFINITION Leta,, k = 0, 1,2, ..., be an infinite sequence.
For any integert = 0, 1, 2, . . ., we consider the sequence a,, a,;;, 3,42,
. . .. This sequence will be called the *‘t™ tail sequence of the sequence a."’
The sequence of partial sums s, = a, + a,,; + ... + a,4,,n =0, 1, 2,
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. ., is the *‘t™ tail series’’ of the series s, = ay + ... + a,, n = 0, 1,
2, ...
In the infinite sum notation, we say that

o

“the series 2, a is the t™ tail of the series >, a”’
k=t k=0
In this context, we are using the infinite sum notation to specify the series
or sequence of partial sums and not the limit. When we say

Zak=ao+a1+...+at_]+2ak
k=0 k=t

we are using the infinite sum notation to denote the limits of these respective
series. Again, although this notation is not the greatest, it is concise and
doesn’t usually lead to confusion.

It's Enough To Test The Tail . ..

The next result is simple, but extremely useful for testing series for con-
vergence.

5.27 THEOREM If any tail series of a series converges then the series
converges. Conversely, if any tail series diverges then the series diverges.

Proof: Suppose that a,, k = 0, 1, 2, . . ., are the terms of the series. To
say that the t' tail series converges means that given any € > 0 there exists
N, such that for all q = p > N, |a, + a,4; + ... + ag] < e. This is
exactly what is required by DEFINITION 5.24 for the whole series to con-
verge. Conversely, if the tail series diverges then there is some € > 0 such
that for every integer N there exists ¢ = p > Nsuch that|a, + ... + aj| =
€. This shows that the conditions of DEFINITION 5.24 are not valid when
applied to the whole series and thus the whole series diverges.

As an example of the way THEOREM 5.27 is used, consider the series
with terms a, = (—1)¥100/k — 99.5|, k = 1, 2, . . .. We would like to
apply THEOREM 5.22, but the hypothesis of this theorem doesn’t quite apply.
In particular, we don’t have |a,| = |a,,,| fork = 1, 2, . . .. The sequence
|ay| is increasing until k = 99, then |age| = |a;0o] = 200. After that, the
sequence |a,| does satisfy the conditions of THEOREM 5.22, and hence the
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t™ tail series converges for t = 100. By THEOREM 5.27, the whole series
converges. We are using [a,| for what we called a, in THEOREM 5.22.
Here is another useful result that follows from DEFINITION 5.24.

A Result About Products Of Sequences

5.28 THEOREM Suppose that the series with terms a,, k = 0, 1, 2,

. ., converges absolutely and let b,, k = 0, 1, 2, . . ., be any bounded
sequence. Then the series with terms a,b,, k = 0, 1, 2, . . ., converges
absolutely.

Proof: Let M be such that |b,| < M for all k. By hypothesis, the series

lagl + |a;] + ... + |a,| + .. ., converges. Given any € > 0, there exists
an N such that for all ¢ = p > N, |ag| + ... + |a,| < &M. This implies
that |agbg| + ... + la,b,| < €. Thus, by DEFINITION 5.24, the series

with terms a, b, converges absolutely. This completes the proof.

We’ll learn later that the series with terms a, = 1/kP, k = 1,2,3, .. .,
converges if p > 1 and the convergence is obviously absolute since the terms
are all positive. Thus, if we take p = 3, then the series 1 + 273 + 373 +
473 + . .. converges absolutely. If we multiply the terms of this series by
the divergent, unbounded sequence b, = k, then we still obtain an absolutely
convergent series, 1 + 272 + 372 + 472 4+ . . .. This shows that the
converse of THEOREM 5.28 is false in that absolute convergence of the
series with terms a, b, does not imply that the sequence b, is bounded.

The Comparison Test For Convergence

One of the easiest ways to determine the absolute convergence of a series
is to compare it with another series known to converge absolutely. The idea
is stated in the following corollary.

5.29 COROLLARY (COMPARISON TEST) Suppose that the series

with terms a,, k = 0, 1, 2, . . ., converges absolutely. Let c,, k = 0, 1,

2, .. ., be a sequence such that |c,| < Mla,|, k = 0, 1, 2, . . ., where M

is some positive real number. Then, the series with terms ¢,, k = 0, 1, 2,
. ., converges absolutely.

Proof: We apply THEOREM 5.28. Define a sequence b, by b, = 0 if
a, = Oand, otherwise, b, = c,/a,. This sequence c, is bounded by M. Thus,



266 Infinite Series

by THEOREM 5.28, the sequence a,b, = c, converges absolutely. This
completes the proof.

The Comparison Test For Divergence

Another way to state the COMPARISON TEST is that if the series with
terms |a |, k = 0, 1, 2, . . ., diverges and if Clc,| = |a,|, fork = 0, 1, 2,

.. and C > 0, then the series with terms |c,|, k = 0, 1, 2, . . ., diverges.
To see this, we note that if the series with terms |c,| converged then, by
setting M = C~! in COROLLARY 5.29, we would have that, contrary to
assumption, the series with terms |a,| would converge. In this application of
COROLLARY 5.29, the roles of the a, and c, are reversed.

By now you are thinking ‘‘ENOUGH THEORY!”’ You are right. It’s time
to put this stuff to work. One of the best ways to learn a subject is to teach
it. Our goal in what follows is to show you how to be a good instructor in
the subject of infinite series, by teaching you how to make up problems for
your classmates to solve.

Now You Learn To Make Up Infinite Series Problems

5.30  PROBLEMS BASED ON THE INTEGRAL TEST Suppose that
we have a continuous function f(x) such that f(x) > 0 and f(x) is nonin-
creasing for x >t > 0. Leta,, k = 0, 1, 2, . . ., be a sequence such that
lay| =< f(k), k = t. Then the ‘‘integral test’’ states

ZLO a, converges absolutely if f f(x)dx < oo.
t
On the other hand, if |a,| = f(k) for k = t then
E |a,| diverges if f f(x)dx = oo.
K=0 t

The reason that these results are true is shown in FIGURE 5.31. There we
see that the area under the curve is related to the sum of the tt tail of the
series with terms a, in such a way that both either converge or diverge.
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FIGURE 5.31 The Integral Test
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Look For Positive Nonincreasing Functions

To construct problems based on the integral test, all we need to do is find
functions f(x) that eventually, past some real number t, become positive and
nonincreasing. We then evaluate the integral from t to infinity of f(x). If it
diverges we can construct a divergent series, if it converges we can construct
a convergent series.

For example, let’s take f(x) = x~!. The integral

f% = In(x) so fl dTX = limit In(x) — 0 = +x,

X—x
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Thus, the series

5!

k=1 k
diverges to infinity. We already knew this.

Let’s try a function f(x) = (xIn(x)) ! that goes to zero a little bit faster
than x ~'. Perhaps the related series will converge. We compute

e

X
xln(x) In(In(x)) so m = l)gn,lt In(In(x)) — In(In(2)) =

Thus, the series

+ o0

z kln(k)

is a divergent series also.
Trying once again along these same lines, we discover that

f dx ——lsojx x_ _
x(In(x))? ~ In(x) 2 x(In(x))?
Thus we obtain the interesting fact that

i 1

¥=2 k(In(k))?

converges.

Some Tricks For Making Difficult Problems

In EXERCISE 5.32, you will be asked to construct four problems based
on the integral test and exchange these problems with your classmates. If you
want to make these problems appear more difficult than they really are, here
is a useful trick. If you have a series with terms a, that converges absolutely
and &, is any sequence such that the sequence b, = a,/a, is a bounded
sequence, then the series with terms a, also converges absolutely. This is just
a restatement of THEOREM 5.28. For example, take

3k + 1

l a —_— —
a = mandak = @+ 1)(ln(k))2’k =2,3....

It is easy to check that limit (4,/a,) =3 and hence the sequence b, = 4,/a,,

k—x

k = 2,3, ..., is bounded. Thus, the series
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x

3k + 1
=2 (k* + 1)(In(k)?
converges. To make this look even more messy, the expression In(k) could

be replaced by someting like In((k? + 1)/(k + 2)). The same sort of trick
can be played with divergent sequences.

Check The Tables And Chapter 4 For Integrals

In finding integrals to use in constructing convergent and divergent series,
don’t forget to browse through the problems from CHAPTER 4 and the
TABLE OF INTEGRALS in the back of the book. The TABLE OF IN-
TEGRALS contains a section called MISCELLANEOUS DEFINITE IN-
TEGRALS that has some interesting integrals. Two such integrals are

flne+1dxandflnl+xgl.

0 e* — 1 0 1 —x/ x

The second integral can be transformed into the first by the substitution
x = e~ ". Using the first integrand, we compute

d In e* + 1)  —2¢e*
dx e* — 1 e —1°
Thus the function In((e* + 1)/(e* — 1) is positive and decreasing for x > 0.

According to our integral table, the integral of this function from O to infinity
is w2/4. In particular, the integral from 1 to infinity is finite and hence

i n ek + 1
k=1 Ck -1
converges.

The integral test, as we have used it thus far, is based on integrals where
the upper limit is infinity. The second integral mentioned above

J’ ! (1 + x) dx
In —
0 1 —x/ x
has upper limit 1. As remarked above, by making the change of variable x =
e Y, this integral can be transformed into the integral of the previous para-

graph. Instead, let’s make the change of variable x = v~!. Then dx =
—v~2dv and the integral becomes

0 1 + v\ dv * v + 1) dv
- ln—_—= In - .
x 1 -vl) v 0 v—1/) v
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i 1 k +1
& k k-1
converges.

As one final example of the integral test, consider the integral

This means that the series

-p+l1

* 1
-P = —] > -P = — > 1.
fx dx +11fp lsoflx dx p_llfp 1

This means that the series
> ke
k=1

converges if p > 1. Otherwise, by the integral test again, the series diverges.

Transforming Integrals Into Series

So now it’s your turn to make up some exercises for your classmates based
on the integral test. BE MEAN!

5.32 EXERCISES Make up four exercises based on the integral test to
exchange with your classmates.

5.33 PROBLEMS BASED ON THE COMPARISON TEST Suppose
the infinite series

2 ay
k=0
converges absolutely. COMPARISON TEST 5.29 says that if ¢, k = 0, 1,

2, ..., is a sequence such that |c,| < MlJa,| for some positive real number
M and k 0, 1,2, ., then the series

x
2 Ck
k=0

also converges absolutely. The usual way that the inequality |c,| < Ml|a,] is
established is by showing that

limit — | kl
ko [ay]
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exists. For example, the rational function

3k +3 3+ (3K
T K2+5 k+ 5Kk

Ck

is very close to a, = 3/k for large values of k. In fact, the ratio c,/ay
approaches 1 as k tends to infinity. The series with terms 3/k diverges and
thus so does the series with terms c,.

On the other hand, the series with terms c, defined by

3k +3 3+ (3K
K +5 k2+ (5K

Cx

has terms that look like 3/k? for large values of k. The series with terms
3/k? converges and therefore so does the series

i 3k + 3
o k> + 57
Thus, if you know that a series a, + a; + . . . converges absolutely, and
you define a series ¢, k = 0, 1, 2, . . ., such that the limit |c,/a,| exists,
then the series ¢, + ¢; + . . . converges absolutely.

Two Series Behave The Same If Their Terms Behave The Same

5.34 EXERCISES Make up four exercises based on the comparison test
to exchange with your classmates.

5.35 PROBLEMS BASED ON THE ROOT TEST The method called

the ROOT TEST for convergence is a special case of the comparison test

just discussed. We take a, = r¥ so that the series ap + a, + . .. is the

geometric series. If b, k=0, 1, 2, . . ., is any sequence with limit [b,| < I,
k—x

then there is some r < 1 and some integer t such that, for all k = t, |b,| <
r. Thus |b|* < r* for k = t, and hence

Y. |by/* and thus Y, |by[¥
k=t k=0

converges. For example, take

AP+ k+S

by kK2 -k + 6
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The limit of the sequence by is 2/3. It then follows that the series
S (Btks ‘
k=0 3k2 -k + 6

converges.

Another example is gotten by taking b, = (1 — (1/k)5, k = 1,2, .. ..
The limit of b, as k tends to infinity is e ~!. Thus, the series

> - (1K)
k=1

converges. If the limit as k tends to infinity of |b,| is greater than 1, then the
sequence |b,|* doesn’t tend to zero, and consequently

M

[b*

=~
I

0

diverges. If the limit of |by| is equal to 1, then the series

8

[y
0

-
]

can either converge or diverge. For example, b, = k"0 and b, = k(-%k
both tend to 1 as k tends to infinity. In the first case, the series

> Ib
k=0

diverges and in the second case it converges.

There is a very common class of series whose convergence or divergence
can be determined by the root test. These series, which look sort of like the
geometric series, have the following form:

> f(k)rk, r a real number, f(k) > 0.
K=o

If we think of f(k)r* = |b,|¥, then |b,| = (f(k))"*r. In most examples, f(k)
is chosen such that the limit as k goes to infinity of f(k)"k is 1. Here are
some examples of such f(k): f(k) = k, f(k) = k2, f(k) = kP, p any real
number, f(k) = 3k® + 2k? + k + 1, f(k) any positive valued polynomial
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in k, f(k) any positive valued rational function of k. In most cases, the way
you show that f(k)"* tends to 1 is by showing that its logarithm, (1/k)In(f(k))
tends to zero as k goes to infinity. Here is a series that converges, constructed
by this method

In this series, the (1/2) can be replaced by any function of k that has limit
1/2. For example, (2k + 1)/(4k + 3) could be used in place of the 1/2.
The name ROOT TEST that is given to this method comes from the fact
that the limit condition is put on the numbers |b,|, which are the k™ roots of
the terms |b,|* that appear in the series. This method is also called CAUCHY’S

TEST. If the series is initially written 2 a,, then the root test is applied to
k=0

lb] = |a,|'%. The series converges absolutely if « = limit |a,|'* < 1, di-
verges absolutely if a > 1.

5.36 EXERCISES Make up four exercises based on the root test to ex-
change with your classmates.

5.37 PROBLEMS BASED ON THE RATIO TEST The method we
now discuss is called the RATIO TEST for convergence. This method is
again based on comparison with the geometric series. It is a less powerful
method than the root test discussed previously. If we have a series with terms

a,k =0,1,2, ..., then we may consider
. .. ]a
limit law ] =p
ko |2yl

The RATIO TEST states that if p < 1 then the series converges absolutely,
and if p > 1 then the series [a,|, k = 0, 1, 2, . . ., diverges. It is not too
difficult to show that if the limit of |a, . ,|/|a,| is p then the limit of |a,|'* is
also p. The converse is not true. For example, if we take

a = 2_k‘(_l)k
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then
R . e A— _
llmltM = limijt 27! *2-D*
k—x |ak' k—x

which does not exist. On the other hand,

limit |a,|"* = limit 271~ V%= 12

k—x k—x

shows that the series converges.

The Ratio Test Is Less Powerful But Sometimes More Useful

The ratio test is sometimes more useful than the root test in dealing with
series whose terms involve factorials. Consider the series

For this series, we obtain

k + 1)?
limit il limit ( )

ko Ay ke 2k + DK + 2) 4.

Thus the series converges. Applying the root test involves taking the limit of
(k"% and ((2k)!)"*. The best way to do this is to use a formula called
STIRLING’S FORMULA, which approximates k! by (2mk)!/?(k/e)k.
Making this substitution for k! and the corresponding substitution of
(2m(2k))2(2k/e)?* for (2k)! in a, = (k!)?/(2k)!, taking the k™ root, and then
taking the limit also gives 1/4. The ratio test is much easier in this example!

It is easy to see why the ratio test is valid for determining convergence.
Suppose that the limit of |a, , ,|/|a,| is less than 1. Then there is some positive
r < 1 and some integer t, such that for all k > t, |a, ,,|/|a,| <r. In particular,
lag 41| <rlay, |acso] <r?lay, . . ., |2l <1*[a, . . .. The series with terms
laJr*, k = 1, 2, .. ., is the geometric series and converges. Thus

x
> a, converges and hence , a, converges.
k=t K=0

5.38 EXERCISES Work as many of EXERCISE 5.36 as you can using
the ratio test.
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Conditional Convergence—You Can Get Anything You Want

We have already studied, in EXAMPLE 5.21, the alternating harmonic
series

M

(= DE1(1/K).

k=1

]

This series does not converge absolutely as the harmonic series 1 + (1/2) +
(1/3) + . . . diverges. In general, we have the following definition:

5.39 DEFINITION A series that converges but does not converge ab-
solutely is called a conditionally convergent series.

Here are some things to be aware of in connection with conditionally
convergent series. If we take the conditionally convergent series 1 — (1/2) +
(1/73) — . .. and extract the subseries consisting of every other term, we
obtain the divergent series | + (1/3) + (1/5) . . .. For absolutely convergent
series, any subseries also converges. If that doesn’t seem very interesting to
you, a related fact, pointed out by the mathematician Riemann, states that,
given any number, by rearranging the terms of a conditionally convergent
series you can make the resulting series converge to exactly that number. We
won’t have any use for Riemann’s result, but it’s fun to contemplate and can
be proved in a way understandable to the beginner. If, on the other hand,
you rearrange the terms of an absolutely convergent series, the new series
converges to the same value as the old series.

Another thing you can do to create a new series from a given series a, +
a; + ... is to insert parentheses: (a, + a;) + (a;, + a3 + az) + (as +
ag) + ..., for example. If the series aob + a; + ... converges, condi-
tionally or absolutely, it doesn’t matter, then this new series converges to the
same thing. If all of the a, are nonnegative, then the divergence of the series
a, implies the divergence of the new parenthesized series. For divergent series
with both positive and negative terms, be careful. For example, the series
I —1+1-—1...isdivergent,but(l — 1) + (I — 1) + ... obviously
converges to zero.

Conditional Convergence—Dirichlet’s Test

5.40 PROBLEMS BASED ON DIRICHLET’S TEST AND ABEL’S
TEST Leta,, k =0, 1,2, ..., be a sequence of nonnegative numbers
such that a, ., =< a,, k = 0, 1, 2, . . ., and the limit of the sequence ay is
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zero. In other words, a, is a nonincreasing sequence which tends to zero. Let
b,k =0,1,2,.. ., beasequence with the property that the corresponding
sequence of partial sums, s, = bg + ... + b,, n =0, 1,2, ..., is
bounded. Then the series

x

2 agby

k=0
converges. This result is called DIRICHLET’S TEST. Of course, by replacing
a, by —a,, we see that the result is valid if the a, are nondecreasing and
tend to zero.

THEOREM 5.22 was an example of a class of series of this type. If we
take b, = (— 1)k then clearly the partial sums of this sequence are bounded.
This gives the class of series in THEOREM 5.22. In constructing convergent
series by the Dirichlet method, the challenge is to think up interesting se-
quences, b, k = 0, 1, 2, . . ., with bounded partial sums. You can also
simply make up sequences with bounded partial sums. For example + 1, +2,
+3, -1, =2, =3, +1, +2, +3, —1, =2, =3, . .. has its partial sums
bounded. In the paragraph just prior to EXAMPLE 5.20, we pointed out that
every sequence is the sequence of partial sums of some series. Thus, if we
start with any bounded sequence ¢\, k = 0, 1, 2, . . ., and form the sequence
by = co, by = ¢, — ¢,k =1,2,. . ., then the sequence b, is a sequence
with bounded partial sums, s, = c,.

Another class of interesting examples can be gotten by taking by = sin(kt + ),
k =0,1,2,..., where vy is any real number and 7 is any real number that
is not an integral (including zero) multiple of 2m. That the partial sums
bp+ b, +...+b,,n=0,1,2, ..., forma bounded sequence is an
easy result in complex analysis. Of course, the sequence cos(kt + vy), k =
0, 1,2, ..., also has bounded partial sums. Feel free to use these sequences
in the EXERCISES 5.41. This means that the following series converge
conditionally (remember EXERCISE 5.15 (1-))).

< x oc

> sin(k)ink) >, cos(mk + 1)k >, sin(wk)k"2.
1

k=0

Abel’'s Test

There is a useful variation on Dirichlet’s method, called ABEL’S TEST,
where instead of just having the sequence of partial sums of the sequence
bounded, we make the stronger assumption that the series by + b, + b, +

. . actually converges. In this case we can take the sequence a,, k = 0, 1,
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2, . . ., to be any nonincreasing sequence or nondecreasing sequence which
has a limit. In other words, this ‘‘monotonic’’ sequence tends to a limit, but
the limit need not be zero as in DIRICHLET’S TEST. For example, a, =
1 + l/k,k =1,2,3,.. ., would be such a sequence. ABEL’S TEST states
that under these conditions, the series agby + a;b; + . . . converges. In the
general statement of Dirichlet’s method or Abel’s method, we take k = 0,
1,2, ..., but the sequences a, and b, can start at any value of k and these
results are still valid. Remember, the fact that ‘‘the tail series of the series
converges implies that the series converges’’ is a result for all convergent
series, conditional or absolute. As an application of Abel’s method, the series

S (=1 + VK)(1/In(k))
k=2

converges.

Both DIRICHLET’S TEST and ABEL’S TEST deal with series formed
by taking term-by-term products of sequences where various conditions were
put on the sequences. In the case of absolute convergence, we had available
the very powerful THEOREM 5.28 which said that the termwise product of
a bounded sequence and an absolutely convergent series gave rise to another
absolutely convergent series. This theorem is clearly false for conditionally
convergent series. As an example, multiply the alternating harmonic series

> (= DRIk
k=1

termwise by the bounded sequence (— DLk =1,2,....

Dirichlet’s And Abel’s Test—You Make Up The Problems

5.41 EXERCISES Make up four exercises, using either DIRICHLET’S
TEST or ABEL’S TEST, to exchange with your classmates.

Basic Arithmetic Rules For Series

We now give some EXERCISES on infinite series, followed by the SO-
LUTIONS and VARIATIONS on these exercises. As usual, after reading the
solution to a problem, change the original problem slightly and rework it.
Then go on to the variations. One thing to keep in mind above all else is the
basic fact that an infinite series is a sequence of partial sums. You have had
some good solid practice with sequences to fall back on when stuck! In
particular, RULES FOR LIMITS OF SEQUENCES 5.10 apply. You should
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translate these rules into series notation. For example, if a; + a; + ... +
ac+ ...and by + b, + ... + b + ... are two convergent series
(conditional or absolute, it makes no difference) and « is any real number,
then we have

(1) Y g, = a Y, ay
k=0 k=0
) D@ +b) =D a+ by
k=0 k=0 k=0

How would you define multiplication of two series in terms of their partial
sums? Give an example.

Exercises On Series

5.42 EXERCISES
(1) Apply the root test, the ratio test, and the comparison test to each of
the following series:

=Sk + Dk + 2)k + 3)
k=1 k!

(a)
k/2

() +k+l

(c) 2

(d)

lW‘N
[

) Apply the comparison test to each of the following series:

@ > 1

K=o k? — 150
S

k=52k_k2
D
k=2(k3“k2— 1)1/2

hod (k+l”2— k — 112
3 ) k( )

(b)

(c)

@)
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(3) Discuss the convergence of the following series:

(a) Z( (1+22+32+...+k‘2)

ol 1 1 1
(b) P4 (+-2'+..‘+E>

(4) The geometric series is the series 1 + r + r2 + ...+ + ...
where r is any real number. The terms of this series are of the form rf®
where f(k) = k. Discuss the following generalization of the geometric series
in which f(k) = k is replaced by f(k) = (In(k))®, B a real number:

x

>, pint®,

k=1

(5) Discuss whether or not the following series converge or diverge. If
convergent, specify whether the series is conditionally convergent or abso-
lutely convergent and explain why.

@@ D, (- *arccot(k)
k=0

(b)

* — 1)k
(©) Z( D) cos(1/k)

o —9%2 -5
d) z —+—- sin(k)

Study The Solution—Change And Rework The Problem

5.43 SOLUTIONS TO EXERCISE 5.42

(I)(a) We are asked to apply three methods, the root test, the ratio test,
and the comparison test to this problem. We’ll do all three methods, but first
let’s think a bit. If a, denotes the k'™ term of this series, then the numerators
of a, is a polynomial of degree 3 and the denominator is an expression that
grows faster than any polynomial in k. If the denominator were only the
degree 5 polynomial p(k) = k(k — 1)k — 2)(k — 3)(k — 4), then by
comparison with the series with terms k ~2 the series would converge. The
actual denominator, which is p(k)(k — 5)!, is bigger than p(k) for k > 6,
thus the series converges by comparison with the series with terms k ~2. The
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comparison test is the easy way to go here and would, when you have had
a little practice, tell you at a glance that the series converges.

To apply the root test, we would compute (a,)'*. Using k! = (2mk)"2(k/e)*,
approximately, and using the fact that (bk + c)* tends to 1 as k tends to
infinity for any real numbers b > 0 and c, we get that (a,)!’* tends to zero.
Thus, the series converges by the root test.

By the ratio test, we must compute a, , ,/a,. We get

Ay _ k +4
a, k + 1)?

which tends to zero as k tends to infinity. Thus, the series converges by the
ratio test.

(1)(b) Remember, it is an immediate consequence of DEFINITION 5.24,
that if a series with terms a, converges then the terms a, must tend to zero
as k tends to infinity. The contrapositive is that if a, does not tend to zero
then the series with terms a, does not converge. In this example, the terms
a, tend to infinity. Thus, this series is divergent. If you like, this can be
thought of as comparison with the divergent series with each term 1.

To apply the root test, we compute easily that the limit of (a,)'’* as k tends
to infinity is 22, The series diverges by the root test.

To apply the ratio test, we compute a , ,/a, equals

k2 + k + 1

21/2
kK+1D?+&+1+1

which again tends to 2'? and again implies divergence.

(1)(c) If a, denotes the k™ term of this series, then it is obvious that a,
tends to 1/2 as k tends to infinity. The series diverges. The root test and the
ratio test both yield limits of 1 and hence no conclusion can be drawn from
them. Check this out by computing the limits in both cases.

(1)(d) An exponential function a*, a > 1, grows much faster than any
polynomial of any degree. In particular, p(x)/a* goes to zero as x tends to
infinity, for any fixed polynmial p(x) and any a > 1. We can write the term
¢ = k35 7k as (k°57%2)5 %2, The expression k35 %2 tends to zero as k
tends to infinity and thus the series converges by comparison with the geo-
metric series with terms a, = 57 %2 (take r = 572 in the geometric series).
Stop now and reread 5.33 PROBLEMS BASED ON THE COMPARISON
TEST. Using that notation, we have c,/a, tends to zero and hence the series
with terms ¢, converges.
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The root test is easy for this problem. The numerator of (c,)"* is k3% and
the denominator is 5 = 5. The numerator tends to 1 and the denominator,
of course, tends to 5. Thus the limit of (c,)"* is 1/5 and the series converges.

By the ratio test, we get that ¢, ,/c, = (1/5)(k + 1)°/k> which again
tends to 1/5. It is a theorem that if the limit of (c,)"* exists then the limit of
Ck+1/cy exists and is the same. The converse, as we noted in 5.37 PROBLEMS |
BASED ON THE RATIO TEST, is false.

Solutions To (2) Of EXERCISE 5.42

(2)(@) For large values of k, (k2 — 150) "' ‘‘behaves like’” k™2, so this
series with terms (k> — 150) ™! converges absolutely by comparison with the
series with terms k ~2. To be more precise about what we mean by *‘behaves
like,’ letc, = 1/(k? — 150) and leta, = 1/k2. The sequence c,/a, converges
to 1 and is consequently a bounded sequence. The series with terms a,
converges absolutely and thus, by the discussion of 5.33 PROBLEMS BASED
ON THE COMPARISON TEST, the series with terms ¢, = 1/(k> — 150)
converges absolutely.

(2)(b) This problem is another example of the idea discussed in connection
with the solution to problem (b) of (1). The exponential function 2k grows
much faster than k2. The terms of this series behave like 2 7% and hence this
series converges absolutely by comparison with the geometric series
14+ 271"+ 272+ ... To apply the discussion of 5.33 PROBLEMS
BASED ON THE COMPARISON TEST directly, we letc, = (2% — k?) !
and a, = 2% The ratio c,/a, tends to 1 as k tends to infinity. The series
with terms a, converges absolutely and hence so does the series with terms
Cy.

(2)(c) In the polynomial k> — k2 — 1, the term k* is dominant for large
k. Thus (k3 — k? — 1) behaves like k¥? for large k, and the series of this
problem converges absolutely by comparison with the series with terms
k~¥2, In applying the discussion of 5.33 PROBLEMS BASED ON THE
COMPARISON TEST, take a, = k™*?and ¢, = 1/(k® — k? — 1)"2. The
sequence c,/a, converges to 1 and the series with terms a, converges abso-
lutely.

(2)(d) Multiply the numerator and denominator of the k™ term of this
series by [(k + 1)'2 + (k — 1)'?] to get the same series with the k™ term
now written 2k “![(k + 1)"2 + (k — 1)¥2]7!. This term behaves like 4k ~32
for large k and hence the series of this problem converges absolutely. We
leave it to you to be more precise about ‘‘behaves like’’ for this problem.
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Solutions To (3) Of Exercise 5.42

(3)(@) We are going to apply ABEL’S TEST with
a, =1+272+372+ ... 4+k2
We showed, using the integral test, that the series
1 4+272 43724 .. +k 2+ ...

converged. Hence, the a,, which are the partial sums of this series, form a
nondecreasing sequence with a limit. Taking b, = (— 1)¥(1/k) and applying
ABEL’S TEST gives that the series of this problem converges.

(3)(b) This problem looks a lot like part (a) except that the sequence of
terms s, = 1 + (1/2) + ... + (1/k) diverges, being the partial sums of
the harmonic series. This looks bad for ABEL’S TEST. From the integral
test, we know that s, is approximately In(k). Since In(k)/k goes to zero, there
may be hope for DIRICHLET’S TEST. Define a, = s,/k. The fact that
In(k)/k goes to zero implies that a, goes to zero. Here’s a computer program
to compute the a,.

10 K=1:SK=0
20 SK=SK+1/K
30 PRINT K,SK/K

40 K=K+1

50 GOTO 20
k ay
1 1
2 75
3 6111111
4 .5208334
5 .4566667
6 .4083334
7 .3704082
8 .3397322
9 3143298
10 .2928968
11 .2745343
12 .2586009
13 .2446257
14 2322545
15 .2212153
16 .2112956
17 .2023266
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18 1941727
19 .1867231
20 .179887

21 1735885
22 1677643
23 .1623605
24 1573316
25 .15626383
26 .1482469
27 144128

28 .1402561
29 .1366088
30 1331662

It looks like a; is monotonically decreasing to zero. By DIRICHLET’S
TEST or by THEOREM 5.22, this means that the series of this problem
converges. Actually, we can show by direct computation that the a, are
monotonically decreasing to zero. First, write

1
ac = agy = L (L+ (1) + .+ (1K)

1
- <1 +(12) + ...+ (k) + (U + 1))).

Now write this expression as

Kk + D) <(k + )+ (12) + ...+ (1K)

- k(1 + (172) + ...+ (I/k) + (M(k + l))).

Simplifying this expression gives

k
- =—F-( + 12) + ...+ (k) — .
A — Ay Kk + D) (( (172) (1/k)) - 1)
This shows that a, — a,, is greater than zero for all k since there are k
terms in the sum 1 + (1/2) + ... + (1/k) and each term is greater than
1/(k + 1). That a, tends to zero follows by comparison with In(k)/k.

(4) The exponents (In(k))® are all positive real numbers but are not integers
unless B = 0, so we should require r = 0 to avoid complex numbers. If
r = 1 then the series diverges for all values of 3 as any positive power of a
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number greater than or equal to 1 is still greater than or equal to 1. Think of
the graph of x¢ for x = 1 where € > 0 is small. Thus, we assume 0 < r <
1. If B = 0 then (In(k))® = 1 for all k and the series diverges unless r =
0. If B < 0 then the sequence of exponents (In(k))® tends to 0 and, unless r
= 0, the terms of the series tend to 1 which implies divergence. Remember,
any series diverges if its terms don’t converge to zero. So far, nothing but
bad news! If this series converges, we must have 0 < r < 1 and B > 0. Of
course, if r = O the series converges, so let’s assume 0 <r < 1and 8 < 0.
Write r = e~ ® where a > 0. Then we have

)P — o —alnk)P — o= (nk)aink)P~! — —ollnk)P~!

Clearly, if 0 < B < 1 then B — 1 is negative and this series diverges (its
terms become larger than k ~!). If 8 = 1 then this series converges only if
o > 1. If B > 1 then this series converges for all @ > 0. Why? Because for
B > 1 the expression a(ln(k))P~! tends to infinity as k tends to infinity. As
soon as a(In(k))P is bigger than 2, say, we can compare the tail of our series
with the series k 2, which we know converges.

To summarize, we have that the series

>, 1®»® where r > 0 and B is a real number
k=1

convergesif f = 1and0 <r<e lorif > 1and 0 <r < 1. In all other
cases, it diverges. Remember this fact! Its very useful for comparison tests.

Do you see how this result contains our previous result about the conver-
gence of the series with terms k ~P derived just prior to EXERCISE 5.32?
Write

i kP = i (e P)ino,
k=1 k=1

By the result we have just obtained, with r = e 7P, this series converges if
e P < e~ ! and diverges otherwise. In other words, it converges if p > 1
and diverges otherwise.

(5)(@) The graph of the function arccot(x) is shown in FIGURE 2.39.
The sequence arccot(k) converges monotonically to zero. Thus, the series of
this problem converges by DIRICHLET’S TEST with a, = arccot(k) and
by = (—1)k. But, does this series converge absolutely? In the TABLE OF
INTEGRALS, we find that the integral of arccot(x) is xarcctn(x) + (1/2)In(1 + x2).
Thus the series with terms arccot(k) diverges by the integral test. The series
with terms (— 1)*arcctn(k) is conditionally convergent.
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(5)(b) This looks like DIRICHLET’S TEST again with b, = sin(k) and
a, = |k — 99.5|7'. The DIRICHLET TEST calls for the a, to be nonin-
creasing (or nondecreasing) with limit zero. The a, of this example in fact
increase until k = 99. After that, the sequence is nonincreasing and converges
to zero. But that’s good enough. That means, by the DIRICHLET TEST,
that the tail series aggbgg + a;p0bj00 + . . . converges. This implies that the
whole series converges. But does it converge conditionally or absolutely?
Read again the solution to EXERCISE 5.15 (1-j) and you will see that, for
the same reason presented there, this series does not converge absolutely.

(5)(c) This is an application of ABEL’S TEST with a, = (— 1)k/k and
by, = cos(1/k). As k tends to infinity, cos(1/k) is nondecreasing and tends to
1. The a, are the terms of the alternating harmonic series, which converges.
This series does not converge absolutely, by comparison with the harmonic
series.

(5)(d) Again, we have an application of DIRICHLET’S TEST with a, =
(—9k? — 5)/(k* + 1) and b, = sin(k). The sequence a, is nondecreasing
with limit zero and the sequence b, has bounded partial sums.

This completes the solutions to EXERCISE 5.42. It’s time for the varia-
tions. Remember to refer to the corresponding problem in EXERCISE 5.42
if you get stuck. Also, don’t forget your computer! With simple programs,
often involving no more than five or six lines of code, you can gain much
valuable information about the infinite series in these problems.

5.44 VARIATIONS ON EXERCISE 5.42

(1) Apply the root test, the ratio test, and the comparison test to each of
the following series:

i (k — Dk — 2)k — 3)

K=l k!

(a)

x 2k/2
(b) k; kK2 + k + 1

S k241

© k=1 2k2 + 3
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(d Z

(2) Apply the comparison test to each of the following series:

(1. Ol)k
K=o k10001 — 1,50
® 2 3k2°°°

© 3T

i (k +1)l/4 _ (k _ 1)1/4

(d) ”

(3) Discuss the convergence of the following series

(a) E(_l)k< L L, +—1 )
=2k \2(n(2)?  3(n(3)* "  k(n(k))?

o (= D* ((In(1))? = (In(2))? (In(k))?
A
®) k=1 Kk < 1 - 2 * k
(4) The geometric series is the series 1 + r + 2 + ... + ¥ + ...

where r is any real number. The terms of this series are of the form rf®
where f(k) = k. Discuss the following generalization of the geometric series
in which f(k) = k is replaced by f(k) = k", y a real number:

> ¥ where r > 0.

(5) Discuss whether or not the following series converge or diverge. If
convergent, specify whether the series is conditionally convergent or abso-
lutely convergent and explain why.

oc

(a) Z (— D¥In(k)arccot(k)

k=1
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x 1k
(c) E (=D cos(k)
k=1 Kk

S —9k2 — 5
(d) kZok3—+l—sm(k)cos(k)

5.45 VARIATIONS ON EXERCISE 5.42
(1) Apply the root test, the ratio test, and the comparison test to each of
the following series:

Sk + Dk + 2)k + 3)
k=a kk — Dk — 2)k — 3)

(a)

(b) kzl 2ln(k)

= Ink) + (1/k)

© 2 a0y + 3
s kln(k)
@ 35

(2) Apply the comparison test to each of the following series:
- 1

@) kgl (In(k))? — 150

£

1
® 3 i)

oc

1
(©) kz'z (K> — k2 — 1)2%
x (k + 1)1/200 _ (k _ 1)1/200
kzl k

(3) Discuss the convergence of the following series. In each case give a
theoretical reason for convergence and divergence and write a program to

(d)
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evaluate the series to back up your conclusion. The series expansion for e*
is given in the appendix, if you think that might help.

@ D (-Dke " — 1 + 1/k)
k=1

x

b > e -1+ 1/k

k=1

(4) Discuss convergence of the following series in terms of the real numbers
o and B:

x

2 k(n(k)P

k=1

(5) Discuss whether or not the following series converge or diverge. If
convergent, specify whether the series is conditionally convergent or abso-
lutely convergent and explain why.

@ D, (- 1) arccot(k))?, B < 1
k=0

= sin(k) — cos(k)

®) o |k — 99.5|

o

(€0 D cos(k)sin(1/k)

k=1

x _ 2 _
) 2 9 5 —— (sin(k)cos(k/2) + cos(k)sin(k/2))
k=0

5.46 VARIATIONS ON EXERCISE 5.42

(1) Apply the root test, the ratio test, or the comparison test to each of the
following series:
= VK

(a) k; o

5 ()
® 25



5.46 Variations on Exercise 5.42

2

> k!
©

srkk+ D). 2k= 1)

o (kh*
) kzl (k?)!

Apply the comparison test to each of the following series:

- (2K)!
@) ,:S;:. KhZ—1)... K-k + 1)

x 1 In(k)
(b) kgs (ln(ln(k))

< 1 In(In(k))
© 2, (r(]a)

x kln(k)
=2 (In(k))*

(d)

289

(3) Discuss the convergence of the following series in terms of the real
numbers o and (3:

2 (Ini)etnt*
k=4

(4) Discuss convergence of the following series in terms of the real number

B:

x

2 r(ln(ln(k))B’ r>0
k=4

(5) Discuss whether or not the following series converge or diverge. If
convergent, specify whether the series is conditionally convergent or abso-
lutely convergent and explain why.

(@ D, (= 1)*(arccot(k))®, B > 1
K=o

= sin(k) — cos(k)
®) 2k = 99s)
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(© O (sin(k) — sink + (1/K)))
k=1

(d > In(1 + (1/K))sin(2k + )
k=0

Sequences Of Functions

Up to now, we have been concentrating mainly on sequences and series
where the terms are real numbers. We began this chapter, however, looking
at ‘‘power series’’ approximations to functions. We now return to the idea
of series of functions. The idea is simple; we consider a sequence a,(x), k =
0, 1, 2, . . ., where each a,(x) is a real valued function of x. For example,
a,(x) could be sin(kx) or a,(x) could be x*. The case a,(x) = x* is shown
in FIGURE 5.47. Notice that for any particular values of x, say x = 1/2,
the sequence a,(x), in this case a,(1/2) = (1/2)¥, becomes a sequence of real
numbers. We are experts on such sequences by now, so most of the hard
work needed to study sequences of functions is done.

We know that when we study functions, we have to know the domains of
the functions. In the sequence of functions a,(x) of FIGURE 5.47, we have

FIGURE 5.47 The Sequence of Functions x*, k = 1,2, ...

1.0
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0.7
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been vague about this. Let’s consider two cases. First let’s take the domain
of a,(x) to be the interval [0,1/2] = {x:0 < x < 1/2} forall k = 1, 2, 3,
. . .. For each x in the interval [0,1/2], the sequence of numbers a,(x) con-
verges to zero. We say that the function a(x) = 0 is the ‘‘limit of the sequence
of functions a,(x) on the interval [0,1/2].”

0,1,2,..., Converges Uniformly On [0,1/2]

For the second case, let’s take the domains of the a,(x) to be the interval
[0,1) = {x:0 < x < 1}. It is still the case that for each x in [0,1), a,(x)
converges to zero. Thus the function a(x) = 0 on [0,1) is still the limit of
the sequence a,(x). But, there is something interesting and very important
about the difference between these two examples. In the first case, where the
common domain is the interval [0,1/2], given any € > 0, if we choose N
such that 1/2N < e, then for all k > N and all x in [0,1/2], |a,(x)| < €. The
key phrase here is ‘‘and all x in [0,1/2].” A glance at FIGURE 5.47 will
explain why this is true. Each a,(x) has a,(1/2) as its maximum value over
the interval [0,1/2]. Thus, if we make this maximum value small, all other
values of a,(x) on the interval [0,1/2] will be even smaller!

0,1,2,... Does Not Converge Uniformly On [0,1)

But what if we try to play the same game with the common domain of the
sequence taken to be the interval [0,1)? 1t won’t work. Even though the
sequence of functions a,(x) converges to the function a(x) = 0 at each x in
this interval, we can’t claim that given any e > 0 there is an N such that,
for all k > N and all x in [0,1), |a,(x)] < €. Do you see why? Look at
FIGURE 5.47. Given € = 1/2, for example, and any k, no matter how large,
there will always be some x in the interval [0,1), perhaps very close to 1,
with ay(x) > e. This example leads to the following extremely important
definition.

The Definition Of Uniform Convergence

5.48 DEFINITION Let a,(x) be a sequence of real valued functions de-
fined on a common domain D. Suppose that for each x in D, the sequence
a,(x) converge to a(x). If, given any € > 0, it is possible to choose N, such
that for all k > N, and for all x in D, |ak(x) - a(x)l < €, then we say that
a,(x) converges uniformly to a(x) on D.
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FIGURE 5.49 A Uniformly Convergent Sequence

31 )

ay(x)
a5(x)
%
.

[ ]
L )
a(x)

8 X t

{

The Intuitive Idea Of Uniform Convergence

We now want to understand the intuitive idea behind DEFINITION 5.48.
Look at FIGURE 5.49. There you see a sequence of functions, a,(x), k =
1, 2, 3, 4, . . ., which we imagine converging uniformly to a limit function
a(x) on the interval [s,t]. The graph of the function a(x) is shown by a black
line which has a certain thickness (or else you couldn’t see it). Let’s call the
thickness of this line €. According to DEFINITION 5.48, there is an integer
N such that for all k > N, |a,(x) — a(x)| < e. Intuitively, this means that
for all k > N, the lines representing the graphs of the functions a,(x) com-
pletely disappear into the black line that represents the graph of a(x). This is
the idea behind the following theorem:

The Limit Of The Integrals Is The Integral Of The Limit

5.50 THEOREM Let a,(x), k = 0, 1, 2, . . ., be a sequence of real
valued continuous functions that converge uniformly on the interval [s,t] to
a function a(x). Define functions A,(x), k = 0, 1, 2, . . ., and A(x) by

X

A(x) = fx a(tdt, k =0,1,2,...,and A(x) = f a(t)dt.
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Then the sequence of functions A (x),k =0, 1,2, . . ., converges uniformly
to A(x) on [s,t].

The Intuitive Idea Of Theorem 5.50

To understand the meaning of THEOREM 5.50, we refer again to FIGURE
5.49. The shaded area under the graph of the function a is the area under
that function and above the interval [s,x]. This area is the integral.

f ' a(t)dt

which is a function of its upper limit x as x varies in the integral [s,t]. For
notational simplicity, let’s define, as in THEOREM 5.50,

X

A(x) = fx a(t)dt and A, (x) = f a,(t)dt.

We know that, for all k > N, the graphs of the functions a,(x) disappear into
the black line representing the graph of a(x). This means that, for all k > N
and all x in [s,t], the difference |A(x) — A(x)| is less than the area of the
black line used to draw the graph of the function a from x = s to x = t.
Theoretically, this black line can be made as thin as we wish to imagine it.
This is the intuitive meaning behind uniform convergence of the sequence
Ay (x) to A(x) for x in [s,t]. In more advanced courses in analysis, students
learn a precise statement and proof of THEOREM 5.50. They study ‘‘path-
ologies’” of the functions a,(x). The functions might be discontinuous, so
badly so that they don’t have integrals in some sense, etc. We don’t have to
worry about such strange things in our brief introduction to sequences of
functions. Knowing the intuitive idea behind the very useful THEOREM 5.50
is 99 percent of what is required to use it intelligently.

One way to paraphrase THEOREM 5.50 is ‘‘For uniformly convergent
sequences of functions, the integral of the limit is the limit of the integrals.”’
There is a corresponding result that, loosely stated, says: ‘‘For uniformly
convergent sequences of functions, the derivative of the limit is the limit of
the derivatives.”” We have to be more careful about this statement. Here is
a more precise version which concerns the sequence of derivative functions
ay(x) of a sequence of functions a,(x).

The Limit Of The Derivative Is The Derivative Of The Limit

5.51 THEOREM Let a,(x), k = 0, 1, 2, .. ., be a sequence of real
valued functions that converge uniformly on the interval [s,t] to a function
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a(x). If the sequence of derivative functions a,(x), k = 0, 1, 2, . . ., con-
verges uniformly to a function b(x) on [s,t], then b(x) is the derivative function
a'(x) fors < x <t.

There are technical difficulties with THEOREM 5.51 that must be studied
in more advanced courses. The main difference that we should be aware of
between THEOREM 5.51 and THEOREM 5.50 is that in THEOREM 5.51,
the uniform convergence of the derivative sequence must be verified in each
case and does not follow generally from uniform convergence of the original
sequence a,(x). It is not too hard to imagine why this is the case in terms of
FIGURE 5.49. Imagine for k > N that all of the functions a,(x) have dis-
appeared into the black line that represents the graph of a(x), s < x < t. As
we have noted already, the integral of these ‘‘disappearing functions’’ can’t
differ from each other by more than the area of the black line. But we could
imagine that these functions inside the black line could still be very wiggly,
which means that their derivatives might oscillate wildly and differ a lot from
each other. This is why the uniform convergence of the derivative functions
must be a part of the hypothesis in THEOREM 5.51.

Examples Of Theorems 5.50 And 5.51

Let’s test out the ideas of THEOREM 5.50 and THEOREM 5.51 on
the sequence a,(x) = x* of FIGURE 5.47. In this example, we have uni-
form convergence on any interval [0,t] where t < 1. The integral A (x) =
xk*1/(k + 1). THEOREM 5.50 says that these functions A,(x) converge
uniformly on [0,t] to the integral A(x) of the function a(x) = 0. Of course,
A(x) = 0 also and it is obviously true that the A (x) converge uniformly on
[0,t] to the zero function. The derivative functions ay(x) = kx*~! can easily
be shown to converge uniformly to the function a’(x) = 0 on [0,t] if t < 1.
This is because the maximum of aj(x) on the interval [0,t] occurs at t and
has value kt*~!. If 0 < t < 1 then this sequence converges to zero. This
verifies THEOREM 5.51 for the sequence x* on [0,t].

To see what can happen if we don’t have uniform convergence, consider
the sequence b, = kx*~', k = 1,2, .. ., onthe interval [0,1). The functions
kx*~! were called a(x) in the previous paragraph, but we change the name
to by (x) to emphasize the new domain [0,1). On [0,1), the sequence b, (x)
converges to b(x) = 0 at each x, but the convergence is not uniform (why?).
The integrals

X

B, (x) = f b ()dt = xk
0
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do not converge uniformly to the zero function on [0,1). In particular, the
area under each curve b, (x) = kx*7!, for 0 < x < 1, is 1. The area under
the limit function b(x) is 0. Thus, the limit of the integrals need not be the
integral of the limit for non-uniformly convergent sequences.

We now must consider infinite series of functions. Just as with sequences
of real numbers, we start with a sequence a,(x),k = 0, 1,2, . . ., of functions
defined on a common domain D and consider the sequence s,(x) = ay(x) +
a;(x) + ...+ a,(x),n=20,1,2,...,of partial sums with terms from
this sequence. This sequence of partial sums is the infinite series with terms
from the sequence a,(x), k = 1, 2, . ... Just as before, we use without
serious harm, the notation

x

2 ax)

k=0
to mean both the series and its limit function, depending on the discussion.

If the sequence of partial sums s,(x) converges uniformly to a limit on the

domain D, then we say that the series with terms from the sequence a,(x),
k=0,1,2,...,is uniformly convergent. The following definition, tech-
nically a theorem in a more advanced course, corresponds to DEFINITION
5.24.

Uniform Convergence Of Series

5.52 DEFINITION (UNIFORM CONVERGENCE OF SERIES) The
infinite series ap(x) + a;(x) + ... converges uniformly on the domain D
if, given any € > 0, there exists an N such that for all @ = p > N, and for
all xin D, |a,(x) + ... + a,(x)| <e.

The key phrase in DEFINITION 5.52 is “‘for all x in D.”” Through our
practice with infinite series of numbers, we have already acquired the technical
skills needed to deal with infinite series of functions. Our main concern with
series of functions will be how to deal with the important issue of uniform
convergence. The next theorem gives a simple but very useful test for uniform
convergence.

5.53 THEOREM (WEIERSTRASS’S M TEST) Let ap(x) + a,(x) +
. . . be an infinite series of functions defined on a domain D. Let M, be a
sequence of numbers such that |a,(x)| < M, for all x in D. If the series M, +
M, + ... converges then the series ap(x) + a,(x) + ... converges uni-
formly on D.
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Proof: Given any € > 0, we can choose N, such that for allq = p > N,
M, + ... +M| =My +...+M,<eButlax) +... +ax|=s
la,x)| + ... + |agx)| <My + ... + M, forall xinD. Thus the sequence
a9(x) + a,(x) + . . .converges uniformly on D by DEFINITION 5.52. This
completes the proof.

You can see from the proof of THEOREM 5.53 that, in fact, the series of
absolute values, |ag(x)| + |a;(x)| + . . ., converges uniformly on D. The
series with terms a,(x), k = 0, 1, 2, . . ., is thus ‘‘absolutely uniformly
convergent.”’ Notice also that if the sequence M, k = 0, 1, 2, . . ., is
replaced by a sequence of functions My (x),k = 0, 1,2, . . ., which converge
uniformly on D and satisfy |a,(x)| < M(x) for all x in D, the proof is still
valid.

As a simple example of the M-test, consider the series

s k

X
kZ]F,a>l.

1
Let M, = el Take the domain D of the functions x¥/k® to be [—1,+ 1].

On the interval [— 1, + 1], [x¥/k*| =< M. Thus the convergence of the series
with terms M, k = 1,2, . . ., implies the uniform convergence of the series
of functions with terms x¥/k® on the interval [—1, +1].

The analogs THEOREMS 5.50 and 5.51, which concern integrals and
derivatives of sequences of functions, follow immediately. The series with
terms from the sequence of functions a,(x),k = 0,1, 2, . . ., is, by definition,
the sequence of partial sums s, (x), n = 0, 1, 2, . . ., of this sequence.
Suppose the domain D of these functions is the interval [s,t]. Suppose that
the sequence s,(x) converges uniformly on [s,t] to s(x). By definition, this
means that the series with terms a,(x), k = 1, 2, . . ., converges uniformly
on [s,t]. Define functions S,(x) and S(x) on [s,t] by

X X

S,(x) = f s,()dt and S(x) = f s(t)dt.

s S

By THEOREM 5.50, the sequence S, (x) converges uniformly to S(x) on the
interval [s,t].

The previous paragraph contains all of the ideas needed to apply THEOREM
5.50 to series. It is necessary, however, to fool around with the notation a
bit to make sure you can recognize the various possible ways of saying the
same thing. For example, we can write
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S(x) = f (2 ak(t)> dt and
L \k=0

X X

S,(x) = f s (Hdt = f <2 ak(t)) dt = > f a, (H)dt.
k=0

k=0
s

The last of the above expressions for S (x) is a common way of thinking
about S, (x). Starting with the sequence of functions a,(x), k =0,1,2,. . .,
we form the new sequence of functions

X

fak(t)dt,k=0,1,2,....

S

This sequence is the sequence of integrals of the terms of the series ag(x) +
a;(x) + .. .. Doing this is called ‘‘term by term integration of the series.’’
Sn(x) is the sequence of partial sums of these integrals. Here is a common
way to state THEOREM 5.50 applied to series when using this type of
notation.

Term-By-Term Integration

5.54 THEOREM Suppose that the series of functions of x

x

2 ay(x)

k=0

converges uniformly on the interval [s,t]. Then the series of functions of x

d
2 ( f a,() t)

converges uniformly on [s,t], and

kgo ( f ak(t)dt) = f <k20 ak(t))dt.

The analog of THEOREM 5.51, concerning term-by-term differentiation
is as follows:
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Term-By-Term Differentiation

5.55 THEOREM Suppose that both of the series

> a(x) and > ay(x)

converge uniformly on [s,t]. The for x in [s,t],

d x x
—_— a, (x) = a;(x).
dx k§=:0 K kZO «

We began this chapter by working with infinite series of functions called
power series. We didn’t really know what we were doing, but it was fun. In
particular, we did term-by-term integration on power series. For example, at
one point we had the power series

sin(x) x2  x* xS

X 31 st 7 *

We integrated this power series term by term. We knew it was o.k. to do
this because we checked our answer on the computer by other means (a
Riemann sum). The limits of integration that we used were from O to .
According to THEOREM 5.54, integration term by term is all right if this
series converges uniformly on the interval [0,7]. Not only must the series
converge uniformly on [0,7], but it must converge to sin(x)/x for us to get
the correct answer.

When a series does or does not converge to a given function is another
matter that we will take up below. To show that the series for sin(x)|x
converges uniformly on [0,7], we can use the M-test (THEOREM 5.53) with
M, = w*/(k + 1)! Each term in the series satisfies [x*/(k + 1)!| < M, for
0 < x < . The series with terms My, k = 0, 2, 4, . . ., is easily seen to
converge (root test, ratio test, or comparison test) and hence the given series
for sin(x)/x converges uniformly on [0,7]. The same argument shows that it
converges uniformly on any interval [ —c, +c] for any real number ¢ > 0.

Power Series: > ¢, (x — a)*

In general, a power series is a series of functions a,(x), k = 0,1,2,. . .,
where a(x) = c(x — a)¢ and the ¢,, called the ‘‘coefficients of power
series,’’ are real numbers and a is a real number.
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5.56 DEFINITION (Power Series) A series of functions of the form

x

> clx — a)k
k=0
where aand ¢, k = 0, 1, 2, . . . are real numbers, is called a power series.
Suppose we try to apply the root test to the power series with terms
ck(x — a)k. We compute the limit

limit |c, (x — a)¥|' = limit |c,|"* |x — a] = L|x — al.
k—x k—x

The number L is the limit as k goes to infinity of |c,|'’*. The series converges
if [x — a] < L' and diverges if [x — a| > L~'. The number R = L' is
called the ‘‘radius of convergence’’ of the power series. Except for some
technical details (the limit of |c,|"* might not exist), we have proved the
following theorem.

5.57 THEOREM Let

x

2 c(x — a)k

k=0

be a power series and let L be the limit of |c,|"*. The number R = L™ ! is
called the radius of convergence of the power series. The power series con-
verges absolutely for all numbers x such that [x — a] < R and diverges for
|x — a] > R. For [x — a| = R the power series may either converge or
diverge, depending on the particular case.

For example, if ¢, = 2 % then L = 1/2. Thus the radius of convergence
of the power series

> 27Kx — a)k
k-0

is 2. If ¢, = 1/k!, then L = 0. In this case, we say that the radius of
convergence is infinite. The power series

> (x — a)¥/k!
K=o

converges for all x.
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The Proof Of Taylor's Theorem

The next result concerns power series approximations to functions. We
shall prove a theorem called ‘‘TAYLOR’S THEOREM.’ This theorem is
very useful and has an unforgettably simple proof based on integration by
parts. Recall that, just prior to EXERCISE 4.26, we introduced the following
tabular notation or ‘‘box notation’’ for describing integration by parts:

f(x) g(x)

f'(x) g'(x)

[ fogcoax = 00ee0 - [ Foveeoa

In words, the integral of the product of the entries on either diagonal is the
product of the entries in the top row minus the integral of the product of the
entries on the other diagonal.

Suppose we have a function f(x) that is ‘‘smooth’’ in the sense that it has
lots of derivatives. Most functions we use in calculus are like that. They can
be differentiated over and over again. The functions sin(x), tan(x), cos(x),
In(x), e*, cosh(x), arcsin(x) (1 + x)"2, etc., have this property for many
values of x.

Let b be any real number, and consider the following sequence of boxes
with their corresponding integration by parts formulas:

fO(x) b — x

£@(x) -1

J'f“’(x)d(b - x) = fOX)b - x) + ff‘Z)(x)(b — x)d(b — x)

(b — x)?

f@(x) N

fO(x) —(b - x)

—x)2 3
f b xdb—x) = ) 2vX) f fOx )(b 2 4(b—x)
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(b - x)}
f(3)(x) T
(b — x)?
R T
— )2
ff(3)(x) (b_z'x)__ d(b ) f(3)( ) ff(tt)( ) d(b X)

(general case)

£ (x) ® - x"
n!
(b _ X)n—l
(n+1) —_ 7
Y (n—1)!

n—1 n n
ff‘“)(x) b= x)l)' dlb—x) = f“‘)()(b x) ff(““’(x) x) d(b—x).

In the above sequence of boxes, focus your attention on the boxes, not the
formulas. It’s easier to remember that way, and the formulas follow auto-
matically. In these formulas, the minus sign that usually appears in the last
integral of the integration by parts formula is incorporated into the d(b — x).
Starting with the first formula, replace the last integral in each formula with
the expression given for it in the next formula to get

J'f‘”(x)d(b - X) =

— 2 _ n
wa—n+wwggﬁ+“.+wmgvﬁ

f””m( ”dw—m
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This expression is an exact statement about indefinite integrals. It looks
useless at first glance. However, now let’s compute the definite integral

ff‘”(x)d(b - x) = f(b) — f(a).
b

The above formula now becomes
f(b) — f(a) =

— 2 _ n
fOa)b — a) + f@(a) (szi + ...+ f™a) &n'i)

+ ff(nﬂ)(x) % db — x).
J !

By writing d(b — x) = dx and reversing the order of the limits of inte-
gration, this same formula can be written

(b— )2 (b a)"

f(b) = f(a)+fV(a)(b—a)+f?(a) ———

f o+ 0 E= 2 g

The above formula is not an approximation. It is an identity valid for any
function f with n + 1 continuous derivatives in some interval that contains
a and b. In this identity, you can imagine the number a as fixed and b as a
variable. When thinking of the identity in this way, it is common to replace
the symbol b by x and write

A+ ™ (a) ———

(X a)"

(x—a)2
2|

f(x) = f(a)+fP@@)(x —a) +fP@@) ——— +f(a) ———

+ ff(n'f'l)(t) u dt
n!

We have changed the variable from x to t in the definite integral, to avoid
confusion with x, the new name for b. We introduce the following standard
terminology.
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Taylor Polynomial

5.58 DEFINITION Let f(x) be a function with n + 1 derivatives at a
point a. The polynomial

T, (x) = f(a)+fD()(x —a)+ fP(a) —— .+ f™W(@) ———

(x—a)? (x— a)“
21
is called the ‘‘Taylor polynomial of degree n of f at a.”’
Putting these ideas together, we have the following important theorem.

5.59 THEOREM (Taylor’s Theorem) Let f be a function with contin-
uous derivative function f®*? in the interval I = (a,B) = {x:a < x < B}.
For any a and x in I

f(x) = T,(x) + f £+ 1(p) 9‘;—'0 dt where

(x—a)2 (x—a)" —a)"
2!

T.(x) = f(a)+fP(a)(x —a)+f?(a) —— .+ (@) —
is the TAYLOR POLYNOMIAL of degree n of f at a.
The expression

X

Roea () = f £ % dt

a

is called the remainder in the Taylor polynomial approximation to f(x). This
integral represents the amount f(x) differs from its Taylor polynomial of degree
n at a. If for fixed x and a, the sequence R, (x,a) tends to zero as n tends to
infinity, then we write

x — k
f(x) = 2 f®)(a) u_‘
K=0 k!

The power series

x

3 ¥ y*x -2 a)k

is called the ‘‘Taylor series of f at a.”
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There are two different questions that can be asked about the Taylor series
of f at a. The first question is ‘‘For what values of x does the Taylor series
of f at a converge?’’ The second question is ‘‘For what values of x does the
Taylor series of f at a converge to f(x)?’” For example, in the math tables in
the appendix we find the statement

3 x7

sin(x)=x—x—+x———+ [x2 < ]
3! 5! 7!

5

This statement conveys the information that the Taylor series of sin(x) at
a=0is

x3 X5 x7

X — ; + ; - % +

and, by the statement [x? < =], that this series converges to sin(x) for all x.
The function z(x) = e~ %% defined to be zero at x = 0, has derivatives of
all orders, z(™(x), for all values of x, including x = 0 (you should show this
to be true). At 0, z™() = O, for all n = 0, 1, 2, . . .. Thus the Taylor
series of this function at a = O is the identically zero series. The Taylor
series of this function at a = 0 obviously converges for all x but is equal to
z(x) only at x = 0. Using z(x), you can construct other curious examples of
Taylor series. The function g(x) = sin(x) + z(x) has the same Taylor series
as sin(x) at a = 0. This Taylor series converges everywhere but converges
to g(x) only at x = 0. The function h(x) = z(x)sin(x) + sin(x) has the same
Taylor series as sin(x) at a = O but converges to h(x) only at x = @k, k =
0, =1, £2,....

Estimating The Remainder In Taylor's Theorem

In regard to the second question, ‘‘For what values of x does the Taylor
series of f at a converge to f(x)?”’, it is helpful to have some techniques for
showing convergence of the series of remainders R, (x,a). One useful tech-
nique supposes that we know an upper bound for f™*!(t) on the interval
[a,x].

5.60 REMAINDER ESTIMATE Suppose that [f®*(t)| < B, , for all
t in the interval [a,x]. Then

[x — a*!

|Rn+[(xaa)' = Bn+l (n + 1)'
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Proof: We see from the form of R, ,(x,a) given above as a definite integral
that |R, , ;(x,a)| is less than or equal to the upper bound B, , times the area
between the curve |x — t|"/n! and the interval [a,x] on the x-axis. This area
is exactly [x — a|"*'/(n + 1)! which proves the assertion

There is another common way of expressing the remainder, R, (x,a),
called LAGRANGE’S FORM OF THE REMAINDER.

5.61 LAGRANGE’S FORM OF THE REMAINDER There exists some
number ¢ between a and x such that

(X _ a)n+l

= f(n+1)
Roi1(x,a) = f*75(c) ot D

The good news about Lagrange’s form for the remainder is that it is not an
approximation but an equality. The bad news is that we hardly ever are able
to find the mysterious number c. By considering all possibilities for c, we
can get back to estimating the remainder, as in REMAINDER ESTIMATES
5.60.

As an application of REMAINDER ESTIMATES 5.60, consider the Taylor
series for sin(x) at O:

* xR x2k+1
Zo D o+ 1 2k + 1)
By the ratio test, or the root test together with Stirling’s formula, we see
easily that this series converges absolutely for all x. In fact, from Weierstrass’s
M test, it converges uniformly on every interval [a,], where a < {3 are real
numbers. The higher order derivatives of sin(x) are all either + sin(x), —sin(x),
+cos(x), or —sin(x). Consequently, the bound B,,,; = 1 works for all n.
Thus, the sequence of remainders, |R, . (x,0)|, is less than or equal to |x|"*!/
(n + 1)!, which converges to zero for all x. This shows that the Taylor series
for sin(x) at O converges to sin(x) for all x.
There are three basic operations on general power series that we now must
take a look at.

5.62 BASIC OPERATIONS ON A POWER SERIES

(1) Starting with D, c,(x — a)* form D, ke (x — a)*~! by differen-
K=0 K=1

tiating term by term.
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(2) Starting with E cx(x — a)¥ form 2 (x — a)**! by in-

(k + 1)
tegrating term by term.

(3) Starting with 2 ck(x — a)kform Z cx(x — a)k~!bydividing each
K=1 K=1

term by x — a.

5.63 THEOREM Each of the power series of 5.62 BASIC OPERA-
TIONS ON A POWER SERIES has the same radius of convergence R=L™!
where

L = limit |c,|'*.

k—x

Proof: In case (1) we compute limit [kc, (x — a)* |V =
k—

(limit (k”“)) (limit |ck|”“> (hmit x — a|(“_”’k> = ()@L)(|x — a)).
k—x k—x

k—x
Thus, in case (1), the second series converges if Ix - a| <L !=Rand
diverges if [x — a] > R.
In case (2), using the fact that limit (k + 1)~V = 1 and
k—

limit |[x — a|®**V% = |x — al,

k—x

we again get R as the radius of convergence of the second series.
In case (3), we need only that

limit [x — a|®*~ Dk = |x — q
k—x

to get R as the radius of convergence. This completes the proof of THEOREM
5.63.

To complete our understanding of BASIC OPERATIONS ON A POWER
SERIES we need the next easy result.

Uniform And Absolute Convergence Of Taylor's Series

5.64 THEOREM If R is the radius of convergence of the power series

o

> clx — a)k

k=0
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and 0 < r < R, then this series converges uniformly on the interval [a — T,
a+ r].

Proof: Apply the Weierstrass M test with My, = |c, | r*.

It obviously follows from THEOREM 5.64 that a power series converges
uniformly on any interval [a,B], where o and 8 are contained in the interval
of convergence of the power series.

It’s time to worry about notation again. If you see a statement like this

o

*‘Consider the power series c(x) = E c(x — a)k. ..

LX)

then the symbol c(x) stands for the power series itself. That is, c(x) stands
for the sequence of partial sums of the sequence ¢, (x — a)k, k = 0, 1, 2,
. ... If, on the other hand, you see a statement like this

<

“‘Consider the function c(x) = kz cy(x — a)* where [x — a| <R ...”
=0
the c(x) stands for the function defined by the limit of the power series for
values of x such that [x — al is less than the radius of convergence R. There
is usually little chance of confusing these two different meanings for c(x).
We now summarize the above discussion with an important theorem for
working with power series.

Differentiation And Integration Of Power Series

5.65 THEOREM Let R be the radius of convergence of the power series
with terms ¢, (x — a)*, k = 0, 1, 2, . . ., and define the function

cx) = D c(x — a)¥ |x — a| <R.

k=0

Then

(1 c'(x)

> key(x — a)k~!for |x — a] <R
P

X

) f c(x) dx

a

> — a)kt! - a <R
k§0k+ 1(x a)*! for [x — a

and, if c(a) = 0,
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o

) _ D c(x — a)*~!for [x — a] <R.
X —a k=1

3

Proof: Chooser < R such thata — r < x< a + r. All series of the theo-
rem converge uniformly on the interval [a — r, a + r]. Then (1) follows
from THEOREM 5.51 and (2) follows from THEOREM 5.50. The uniform
convergence of the series in (2) is a consequence of THEOREM 5.50, although
we have verified uniform convergence directly by THEOREMS 5.63 and
5.64. In the case of (3), c(a) = 0 means that c, = 0. Thus, (3) follows by
multiplying both sides by (x — a) and using the basic arithmetic rule (1) for
series stated just prior to EXERCISE 5.42.

In the beginning of this chapter, we started with the series for sin(x).

. x3  x3
s1n(x)=x—§+§—
We then divide by x to obtain
sin() _ | _ x*  x*
X 31 5

Next we integrate term by term to obtain

sin(x) x3 x3
f x *=loggtss o

All of the above operations are now justified by THEOREM 5.65, and all
series have the same radius of convergence (R = ®) as the original series.

The operation of differentiation as in THEOREM 5.65(1) can be applied
repeatedly, always obtaining a series with the same radius of convergence as
the original. When you compute ¢™(x) and evaluate at x = a, you obtain
c¢™(a) = nlc,. Thus, if a function is defined by a power series in its radius
of convergence, such as c(x) was in THEOREM 5.65, that power series is
the Taylor series of that function.

Addition And Multiplication Of Power Series

The same argument used to prove THEOREM 5.65(3) shows that if you
take any polynomial p(z) = a, + a;z + a,z> + ... + a,z" and form the
product

p(x — a)e(x) = p(x — a) kzo c(x — a)k
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and collect terms on the right according to powers of (x — a), then you obtain
the power series for p(x — a)c(x) and that power series converges for
[x — a] <R.

More generally, you can take any two power series

c(x) = D c(x — a)kand d(x) = D, di(x — a)¥
k=0 k=0
and add them term by term or take their product, expressing the answer as a
sum of powers of (x — a). These operations can be done purely *‘formally’’
without regard to intervals of convergence. If, however, r is the minimum of
the two radii of convergence for these two power series, then c(x) and d(x)
are functions defined for [x — a| < r. In that case, the sum of the two series
converges to the function c(x) + d(x) for [x — a| < r and the product con-
verges to c(x)d(x) for [x — a| < r. In either case the actual radius of con-
vergence of the sum series or product series might be larger than r. For
example, if the series for c(x) had radius of convergence 1 and you subtract
that series from itself, you get the zero series, which has infinite radius of
convergence.
As an example of taking the product of two series, consider

sin(x) = sin(a) + cos(a)(x — a) — sin(a)(x — a)%/2! + ...
and
e* = e® + ed(x — a) + ex(x — a)?2! + ...
The product
e*sin(x) = e?sin(a) + (e2sin(a) + ecos(a))(x — a) + e*cos(a)(x —a)’+. . ..

Instead of doing such a calculation, you can always compute the Taylor
series directly. For f(x) = e*sin(x), we find that f’(x) = e*sin(x) + e*cos(x)
and f@(x) = 2e*cos(x). Thus f{(a) = e?sin(a) and fP(a) = 2e?cos(a) and
we obtain the same series directly from the definition of the Taylor series.

Composing Power Series

Finally, there are the operations of division of power series and composition
of power series. Both operations usually involve tedious operations. Modern
algebraic symbol manipulation software is a great help with regard to these
and all operations on power series. To simplify matters, we shall stick to
power series in x. Taylor series expansions of functions about a = 0 are
called MACLAURIN SERIES. Let’s compute the Maclaurin series of the
composition e*i"™, We have
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e =1+ x + x22! + x33!1 + ...
and
sin(x) = x — x3/3! + x3/5! — .. ..
Both series converge for all x. The composition e*sin(x) is thus
1+ (x — x33! + x3/5! — .. )+ (x — x33! + x3/5! — .. )%2!
+ (x — x33! 4+ x3/50 — )33+ L.
Taking powers and collecting terms, we get
esin® = 1 + x + x%/2! — 3x44! — . ..

What happens with radii of convergence under composition of power series
can be quite tricky. A little common sense will avoid the worst blunders. If
you are going to compose c(x), which converges for |x| < R, and d(x) which
converges for |x| < R, and want the power series for c(d(x)) to converge at
X = t, then you better have both || < R, and |d(t)] < R;. In our example,
both power series had infinite radius of convergence. In combinatorial math-
ematics, composition of power series plays an important role even when the
series don’t converge. One very common type of composition of series is to
compose a series, such as that of sin(x), with a power of x, such as x2, to
obtain a series such as sin(x?) = x2 — x%/3! + . ... Here, c(x) = sin(x)
and d(x) = x2.

Dividing Power Series

Dividing one series c(x) by d(x) to obtain the series for c(x)/d(x) is directly
analogous to polynomial division and every bit as tedious. Of course, you
must take care not to divide by zero. Here we divide the series for sin(x2)
by cos(x) to obtain a few terms of the series for sin(x2)/cos(x).

) x* xS
-
T T
x2 x4 x%
R SIS _ X

Y X 6 *
x2__x_4_+_x_6
Y
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0|
A~

Thus, computed to three terms, we have

SiLXz)_X2+X_+X_6+ —E<X<E
cos(x) 2 24 O 2 2

Limits Of Functions

In DEFINITION 3.11 we defined the notion of a limit of a function f(x)
at x = tin terms of limits from the left and limits from the right at t. Using
sequences, we can be more precise about these definitions. Let x,, k = 0,
1, 2, ..., be an infinite sequence. If the limit as k goes to infinity of x, is
t, we use the shorthand notation x, — t. If also x, < t for all k then we write
xx = t— and if x, > t for all k, we write x, — t+. We have the following
definition:

5.66 DEFINITION We say that the ‘‘limit from the left of f(x) at t is
A’’ and write

limit f(x) = A

x—t—

if for every sequence x, — t— the sequence f(x,) — A. Similarly, we define
the “‘limit from the right of f(x) at t is A’’ and write

limit f(x) = A.

x—t+

Combining these ideas, if the limit from the left and the right of f(x) at t is
A, then we say that ‘‘the limit of f(x) at t is A’’ and write

limit f(x) = A.

X—t
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The Epsilon—Delta Definition Of A Limit

The definition of ‘‘the limit of f(x) at t is A’ can be stated directly as ‘‘for
every sequence X, — t, f(x,) — t.”’ An alternative definition of *‘‘the limit
of f(x) at t is A’ is to say that ‘‘For every € > 0 there exists a 8 > 0 such
that for all x such that [x — t| < 8, |f(x) — A| < €.”” This definition is called
‘‘the epsilon-delta definition of the limit.”’ It is equivalent to the definition
of ‘‘the limit of f(x) at t is A”* given in DEFINITION 5.66. You should be
getting to the point now where you can prove that these two definitions are
equivalent. Give it a try!

Continuous Functions

Corresponding to DEFINITION 3.12, we have

5.67 DEFINITION We say that f(x) is left continuous at t if
limit f(x) = f(t).

X—>t—
Similarly, we define ‘‘f(x) is right continuous at t.”’ If f(x) is both left
continuous and right continuous at t then we say that f(x) is continuous at t.

A direct statement that f(x) is continuous at t is ‘‘for every sequence x, — t,
f(x,) — f(t).”” Intuitively, continuous functions at t have nice smooth graphs
at the point (t,f(t)). The function f(x) = +1 if x =0 and f(x) = —1 if
x < 0 is discontinuous at x = 0. It is right continuous at x = 0 but not left
continuous. At x = 0, the graph of this function, which you should sketch,
has a ‘‘jump discontinuity’’ at x = 0. Imagine a sequence of functions f,(x)
converging uniformly to this function f(x) on [ — 1, + 1]. As in FIGURE 5.49,
there is some N such that for all n > N, the graphs of the functions f,(x)
have disappeared into the line representing the graph of f(x). Thus, forn > N,
the functions f,(x) must also be discontinuous at x = 0. The idea is that if
a sequence of functions f,(x) converges uniformly to a function f(x) that is
discontinuous at t, then all but possibly a finite number of the f,(x) must also
be discontinuous at t. The contrapositive to this statement is as follows:

Uniform Convergence And Continuity

5.68 THEOREM Let f (x) be a sequence of functions that converge uni-
formly to f(x) on some interval [a — r, a + r]. If all but possibly a finite
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number of the functions f,(x) are continuous att,a — r <t < a + r, then
f(x) is continous at t.

Proof: We must show that for any sequence x, — t, f(x,) — f(t). The
values of x, may be assumed to be in the interval (a — r, a + r). This is
equivalent to showing that for any € > 0, there is some K such that for all
k > K, [f(t) — f(x,)| < e. We write

ft) — fx)| = [ft) — £.(0) + £, — fa(xi) + fa(xi) — f(xy)|
< |f(@t) — £,0)] + () — fu(x)| + [fa(xi) = f(x)|.

By uniform convergence, we can, by picking n large enough, make sure that
If,,(x) - f(x)| < €/3 for all x in the interval, in particular for x = t and
X = X,, k =0, 1, .. .. Fix such an n and choose it to be such that f (x) is
continuous at t (only finitely many f,, are not continuous at t). Now, choose
K such that forall k > K, |f,(t) — f.(x,)| < €/3. Thus, forallk > K, |f(t) —
f(x,)| < €. This completes the proof.

Limits And Uniformly Convergent Series

In THEOREM 5.68, the word ‘‘continuous’’ can be replaced by ‘‘right
continuous’’ or ‘‘left continuous.’’ The next corollary follows from THEO-
REM 5.68 by replacing the function f,(x) by the partial sums s,(x).

5.69 COROLLARY If all of the functions in the sequence a,(x), k =
0,1,2,...arecontinuous at t and the series ag(x) + a;(x) + . . . converges
uniformly on an interval containing t, then

x

limit E a,(x) = E a,(t).
k=0

x—>t K

The most useful applications of COROLLARY 5.69 are to power series.

Consider the Maclaurin series
x
> cxk, x| <R
k=0

where R is the radius of convergence. If || < R then, by uniform convergence
on [—r,+r] where |t| < r < R, we have

limit D, c,xk = D ¢yt

x—t k=0 k=0
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Continueus Functiens

If the series converges absolutely for x = R, then, by the M test, the series
converges uniformly on [ —R,R]. Thus,

x

limit >, c,xk = X c Rk
x—R k=0 k=0

It is an interesting result, due to Abel, that the above equality is valid even

if the series

o

> ¢ Rk

k=0
converges only conditionally. This result can be proved from the ABEL’S
TEST that we studied in 5.40 PROBLEMS BASED ON DIRICHLET’S TEST
and ABEL’S TEST. Here is a sequence of steps leading to an interesting
fact. You should be able to justify each step, the last of which uses Abel’s
limit theorem.

— =1—-t+t2 -3+ ... lt| <1
1 +t
1 2 4 6 |
s=1—-t+t2+t* -6+ ... It <1
1+t
arctan (x) fx d X X +x5 X + x| <1
n = = - - - - = .
ol + t? 35 7
1 1 1
g=l)i£}tarctan(x)=l—5+§—5+...

The last identity, which can be written

111
41—+ 4 ...
m ( 375 7 )

is called Gregory’s series for w. Try it on your computer!

5.70 EXERCISES

(1) Verify that all series marked ‘“ — >’ in the SERIES AND PRODUCTS
section of the MATH TABLES in the Appendix are correct to at least four
nonzero terms.
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(2) Verify that all series marked ‘‘—>>"" in the SERIES AND PROD-
UCTS section of the MATH TABLES in the Appendix are correct to at least
four nonzero terms.

(3) Verify that all series marked ‘‘*’” in the SERIES AND PRODUCTS
section of the MATH TABLES in the Appendix are correct to at least four
nonzero terms.

(4) Compute the TAYLOR SERIES expansions of e, sin(x), and cos(x)
about x = a. Show your work clearly.

(5) Find the radius of convergence R of the following series from EXER-
CISE 5.42. Discuss convergence at R and —R if R < ¢,

&k + Dk + 2)k + 3) i
k=1 k!

(a)

b k
(b) Z|k2+k+l

Sk +1
© kz. 2k +

() 2&"
© RZO Kz — 150
®) 2 or e

°° I
® 2 e

il (k + 1)!/2 _ (k _ 1)1/2 .
X
K=1 k

(h)
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—x)k
(i) Z (=% 1+2"2%2+ 372 4+ 0 + k72
k=1 k

6)) }_: x)(+§+ +£)

(k) D, (- )karccot(k)x¥
k=0
o sink)
R P b
o (—x)*
m > cos(1/k)
=

m k. Sl sin(k)x*
(6) Find the radius of convergence R of the following series from VARI-
ATIONS 5.44. Discuss convergence at R and —R if R < .

2 k - 1)(kl:' 2)(k — 3)x"

(a)

> 2k/2 "
®) Zl k20 + k + l

5 k2 + 1
© 2‘1 2%?

> k3500

k
o (LODKY

(d)

i xk
© 2@ 15

xk
| 2k — 32000

M

(f)

k
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(g) k22 (k3 _ k2 — 1)1/4
(h) x (k + 1)1/4 _ (k _ 1)1/4Xk

K=1 k

@ St 1 F— +---+—1——->
Y&k 2@ T 3me)? k(In(k))?

.  (—x)k
() ,2', »

((ln(l))2 L@y (1n(k>)2>
1 2 k

(k) 2 (— x)¥In(k)arccot(k)
K=l

0 i __sin(k) n

5 In|k — 9.5
o (=x)k
m) > L cos(k)
k=1

< _ 2 _
(n) Z 9 Ssm(k)cos(k)x“

(7) Find the radius of convergence R of the following series from VARI-
ATIONS 5.45. Discuss convergence at R and —R if R < .

Sk + Dk + 2)k + 3)

xk
k=a k(k = Dk — 2)(k — 3)

(a)

(b) k§=:l 2ln(k) X

o In(k) + (1/k) _,

© =1 (In(k))® + 3 X

kln(k)

(d) g



318

(e)

()

(g)

(h)

U)

0)

(k)

U]

(m)

(n)

Infinite Series

xk

21 (In(k))? — 150

(ln(ln(k))k

22 (k3 — k2 — 1)1/299

nd (k + 1)1/200 — (k — 1)1/200 .
X
k=1 k

x

§_) (=D¥e Y& — 1 + 1/k)xk

k=1

M

(e Yk — 1 + l/k)xk

,,
[

Mg

(— I)k(arccot(k))Pxk, B < 1

=~
I

0

x

sin(k) — cos(k)
o |k — 99.5]

<

> cos(k)sin(1/k)x¥

x 2
S 2K 7 3 Gin(ocosk2) + cos(osin(k/2))xk

(8) Find the radius of convergence R of the following series from VARI-
ATIONS 5.46. Discuss convergence at R and —R if R < o,

(a)

k
Ekx

=1 k!
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x k
(b) Z w xk
k=1 k!

d k!xk

© ; kk + 1) 2k — 1)
= (xk!)%

@ 2 6y

= (2k)'x
© Zl KKE—1) (K2 -k + 1)

x 1 In(k)
k
@ Z (ln(ln(k)) X

= 1 In(In(k))
k
® 2 x (ln(k)>

x kln(k)
X
=2 (Ink))*

(h)

x

i) D (—x)arccot(k))?, B > 1

= sin(k) — cos(k) i

0 o In(Jk — 99. 5[)

™M

(k) (sin(k) — sin(k + (1/k))) xk

(1)) E In(1 + (1/k))sin(2k + m)xk
k=0
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(9) Consider the sequence of functions

X
a(x) = 1 + kx2

Show that a,(x), k = 0, 1, 2, . . ., tends to the zero function, a(x) = 0,
uniformly on the domain D = {x: — < x < }. Discuss the convergence
of the sequence of derivatives ay(x) to a'(x) = 0.

(10) Consider the sequence of functions on [0, 1]

0 if0 =< x <
! XS kT

1
k +1

a (x) = < sin(m/x) if =x=

-

1
0 if-<x=1
lk X

fork = 1, 2, .. .. Does this sequence converge to a function on [0, 1]? Is
convergence uniform? Prove or disprove your assertion.

(11) Consider the series

<

> ax)

where a,(x) is as in (10). Discuss the convergence of this series on [0, 1].
Does this series converge uniformly? Prove or disprove your assertion. Sketch
some of the functions s,(x) in the sequence of partial sums of this series.

(12) Discuss the convergence of the series
s =S — .
K=o 1 + k2x
For what x does this series converge absolutely? On what intervals does it
converge uniformly? Prove or disprove your assertions.
(13) For what range of x can ‘

(a) sin(x) be replaced by x — x3/6 + x3/120 with error less than
.0001?

(b) cos(x) be replaced by 1 — x%/2 with error less than .001?

(c) e* be replaced by 1 + x + x%2 + x3/6 with error less than
.0001?



5.70 Exercises 321

(d) In(1 — x) be replaced by —x — x%2 — x3/3 with error less
than .01?

(14) Find the Maclaurin series for
(a) jx ! dt
YV b1y

(b) J: In(1 + t3)dt

X tz
(c) 0 mdt
(15) Compute the Maclaurin series for f(x) = (I — x)~2 in the following
three ways:

(a) Directly from the definition by computing derivatives f®(0), k
=0,1,2,....

(b) By differentiating the series for (1 — x)~! term by term. Justify
your computations '

(¢) By direct multiplication of (I + x + x> + .. .) times itself.
Show that the coefficient of x" in the series (1 + x + x% + .. .)?%is
the number of pairs of nonnegative integers (i, j) withi + j = n.
What is the corresponding interpretation of the coefficient of x" in
(1 + x + x2+ ...)P, p>2,pan integer?

(16) Using Abel’s limit theorem, discussed just after COROLLARY 5.69,
show that In(2) = 1 — (1/2) + (1/3) — (1/4) + . ...

(17) By starting with the Maclaurin series
f(x) = ap + a;x + a,x% + ...
with the a, unknown, substitute this series into the differential equation
x2f'(x) — xf(x) = sin(x).
Solve for the a, and thus obtain a power series solution to this differential
equation. REMARK: If f(x) is a solution so is f(x) + cx for any constant c.

(18) Obtain the Maclaurin series of the following functions in two different
ways. The first way is directly, by computing the derivatives f*(0), and the
second way is by direct multiplication of the Maclaurin series of the two
factors.

(a) e**sin(x)
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(b) sin(x)cos(2x)
(c) sinh(x)cosh(2x)
(d) sin(x)In(1 + x)

(19) Directly and by long division, obtain the first three nonzero terms of
the Maclaurin series of the following functions:

@) In(1 + x)
cos(x)
) 2Lt
e
eX
© x2+x + 1
sin(x)
) 1 +x

(20) Directly and by composition, obtain the first four nonzero terms of the
Maclaurin series of the following functions.

(a) tan(x3 + 1)

(b) cos(sin(x))

(¢) cos(In(l + x))
(d) sin(1 + x + x2?)





