Building secure systems with LIO

Deian Stefan and David Mazieres

ESSTANFORD
@ UNIVERSITY

g




Building systems is hard.



if ((err = SSLHashS
goto fail;

if ((err = SSLHashS
goto fail;
goto fail;

if ((err = SSLHashS
goto fail;

Building secure systems is harder.



The average developer

- WIL ’(Eﬂ

FOR FOOD / |

e Not equipped to write secure code
> SSL developers (arguably) are
e Most bugs are in application code

> Recent MIT study': 83% of CVE’'s are in app code!



The average developer

MET . N
W ILL Coc;;/L

FOR FooD £/,

Can we expect them to build secure systems?



The average developer

PP, . .
ezl WILL C(DE?E/L

FOR FooD £/

Can we expect them to build secure systems?

mw Yes! Use IFC to minimize damage cause by bugs.



Information flow control (IFC)

e (Goal: data confidentiality and integrity

e |dea: track and control flow of information

» Associate policy with data

> Ensure that all code abides by data policies



Information flow control (IFC)

e (Goal: data confidentiality and integrity

¢ |dea: track and control flow of information
> Assoclate policy with data
> Ensure that all code abides by data policies

m code that doesn’t specify policy can be untrusted!



In this talk: LIO & co.

e |FC system

> Dynamic IFC enforcement as a library
e Policy specification

> Simple label model: DCLabels

> Hails-like automatic labeling for web applications



DCLabels
(demo)



LIO

* |dea: mostly-coarse grained IFC
> Single context label protects all values in scope
> Labels can be associated with references, files, etc.
> Use clearance to restrict reads/writes (DAC)

e |dea: implement IFC system as a Haskell library

» Use Haskell's monad support to create sublanguage



Core LIO enforcement
(demo)



Labeled objects in LIO

Labeled references

Labeled values

Labeled threads

> Current context was just main thread

Labeled channels, mutable variables
Labeled file system

Labeled database system



Challenge: policy specification

e LIO ensures that code cannot violate IFC
e DCLabels is a simple label model

e But to ensure security, still must:

> Structure app code to minimize use of privileges

> Set the correct policy



Challenge: policy specification

e LIO ensures that code cannot violate IFC
e DCLabels is a simple label model

e But to ensure security, still must:

> Structure app code to minimize use of privileges

> Set the correct policy
... this is hard!



Web apps: use Hails MPVC model

e Structure web app into:

AE Model-Policy: specify policy alongside data model
“ View-Controller: app logic, no policy code
e | everage authoritative information in data

> Specify policy as function of the data its protecting

> Automatically label at DB interface



Data model & policy in )\chair

e Paper

» Secrecy: PC members and authors can read

> Integrity: authors can modify paper before deadline
e Review

> Secrecy: non-conflicting PC member can read and, if
review process Is done, so can authors

> Integrity: only reviewer can modity



MP with LIO’s SimpleDB
(demo)



What now?

e Extend the app to a web app (+VC)

> Use lio-simple web framework or Hails

e In a similar manner we built other web apps

> LambdaChair, GitStar-{manager,wiki,viewer},
LearnByHacking, commenting system, user auth

e Students (at UPenn & Stanford) managed to
extend policies and apps in non-trivial ways



Conclusions

e Building secure systems is hard

e |[FC with LIO makes the problem tractable
> Flexible & permissive enforcement mechanism

> DCLabels & MPVC simplify policy specification

e |Lots of research to be done on both fronts
... though policy specification is still behind!



Thank you!

www.labeled.io



References

1. David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich.
Why does cryptographic software fail? A case study and open problems.
In Proceedings of the 5th Asia-Pacific Workshop on Systems, Beijing, China, June 2014,



