
Building secure systems with LIO

Deian Stefan and David Mazières

Building systems is hard.

Building secure systems is harder.

!
 if ((err = SSLHashSHA1.upda
 goto fail;
 if ((err = SSLHashSHA1.upda
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.fina
 goto fail;

The average developer

• Not equipped to write secure code

➤ SSL developers (arguably) are

• Most bugs are in application code

➤ Recent MIT study1: 83% of CVE’s are in app code! 
 

The average developer

!

Can we expect them to build secure systems?  
 

The average developer

!

Can we expect them to build secure systems?  
 

➠ Yes! Use IFC to minimize damage cause by bugs.

Information flow control (IFC)

• Goal: data confidentiality and integrity

• Idea: track and control flow of information

➤ Associate policy with data

➤ Ensure that all code abides by data policies

Information flow control (IFC)

• Goal: data confidentiality and integrity

• Idea: track and control flow of information

➤ Associate policy with data

➤ Ensure that all code abides by data policies

 ➠ code that doesn’t specify policy can be untrusted!

In this talk: LIO & co.

• IFC system

➤ Dynamic IFC enforcement as a library

• Policy specification

➤ Simple label model: DCLabels

➤ Hails-like automatic labeling for web applications

DCLabels
(demo)

LIO

• Idea: mostly-coarse grained IFC

➤ Single context label protects all values in scope

➤ Labels can be associated with references, files, etc.

➤ Use clearance to restrict reads/writes (DAC)

• Idea: implement IFC system as a Haskell library

➤ Use Haskell’s monad support to create sublanguage

Core LIO enforcement
(demo)

Labeled objects in LIO

• Labeled references

• Labeled values

• Labeled threads

➤ Current context was just main thread

• Labeled channels, mutable variables

• Labeled file system

• Labeled database system

Challenge: policy specification

• LIO ensures that code cannot violate IFC

• DCLabels is a simple label model

• But to ensure security, still must:

➤ Structure app code to minimize use of privileges

➤ Set the correct policy

Challenge: policy specification

• LIO ensures that code cannot violate IFC

• DCLabels is a simple label model

• But to ensure security, still must:

➤ Structure app code to minimize use of privileges

➤ Set the correct policy
… this is hard!

Web apps: use Hails MPVC model

• Structure web app into:

➤ Model-Policy: specify policy alongside data model

➤ View-Controller: app logic, no policy code

• Leverage authoritative information in data

➤ Specify policy as function of the data its protecting

➤ Automatically label at DB interface

Data model & policy in .

• Paper

➤ Secrecy: PC members and authors can read

➤ Integrity: authors can modify paper before deadline

• Review

➤ Secrecy: non-conflicting PC member can read and, if
review process is done, so can authors

➤ Integrity: only reviewer can modify

chair

MP with LIO’s SimpleDB
(demo)

What now?

• Extend the app to a web app (+VC)

➤ Use lio-simple web framework or Hails

• In a similar manner we built other web apps

➤ LambdaChair, GitStar-{manager,wiki,viewer},
LearnByHacking, commenting system, user auth

• Students (at UPenn & Stanford) managed to
extend policies and apps in non-trivial ways

Conclusions

• Building secure systems is hard

• IFC with LIO makes the problem tractable

➤ Flexible & permissive enforcement mechanism

➤ DCLabels & MPVC simplify policy specification

• Lots of research to be done on both fronts 
… though policy specification is still behind!

Thank you!

www.labeled.io

References
1. David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich.
 Why does cryptographic software fail? A case study and open problems.
 In Proceedings of the 5th Asia-Pacific Workshop on Systems, Beijing, China, June 2014.

