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Building systems is hard.
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Building secure systems is harder.



The average developer
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e Not equipped to write secure code
> SSL developers (arguably) are
e Most bugs are in application code

> Recent MIT study': 83% of CVE’'s are in app code!
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Can we expect them to build secure systems?



The average developer
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Can we expect them to build secure systems?

mw Yes! Use IFC to minimize damage cause by bugs.



Information flow control (IFC)

e (Goal: data confidentiality and integrity

e |dea: track and control flow of information

» Associate policy with data

> Ensure that all code abides by data policies



Information flow control (IFC)

e (Goal: data confidentiality and integrity

¢ |dea: track and control flow of information
> Assoclate policy with data
> Ensure that all code abides by data policies

m code that doesn’t specify policy can be untrusted!



In this talk: LIO & co.

e |FC system

> Dynamic IFC enforcement as a library
e Policy specification

> Simple label model: DCLabels

> Hails-like automatic labeling for web applications



DCLabels
(demo)



LIO

* |dea: mostly-coarse grained IFC
> Single context label protects all values in scope
> Labels can be associated with references, files, etc.
> Use clearance to restrict reads/writes (DAC)

e |dea: implement IFC system as a Haskell library

» Use Haskell's monad support to create sublanguage



Core LIO enforcement
(demo)



Labeled objects in LIO

Labeled references

Labeled values

Labeled threads

> Current context was just main thread

Labeled channels, mutable variables
Labeled file system

Labeled database system



Challenge: policy specification

e LIO ensures that code cannot violate IFC
e DCLabels is a simple label model

e But to ensure security, still must:

> Structure app code to minimize use of privileges

> Set the correct policy



Challenge: policy specification

e LIO ensures that code cannot violate IFC
e DCLabels is a simple label model

e But to ensure security, still must:

> Structure app code to minimize use of privileges

> Set the correct policy
... this is hard!



Web apps: use Hails MPVC model

e Structure web app into:

AE Model-Policy: specify policy alongside data model
“ View-Controller: app logic, no policy code
e | everage authoritative information in data

> Specify policy as function of the data its protecting

> Automatically label at DB interface



Data model & policy in )\chair

e Paper

» Secrecy: PC members and authors can read

> Integrity: authors can modify paper before deadline
e Review

> Secrecy: non-conflicting PC member can read and, if
review process Is done, so can authors

> Integrity: only reviewer can modity



MP with LIO’s SimpleDB
(demo)



What now?

e Extend the app to a web app (+VC)

> Use lio-simple web framework or Hails

e In a similar manner we built other web apps

> LambdaChair, GitStar-{manager,wiki,viewer},
LearnByHacking, commenting system, user auth

e Students (at UPenn & Stanford) managed to
extend policies and apps in non-trivial ways



Conclusions

e Building secure systems is hard

e |[FC with LIO makes the problem tractable
> Flexible & permissive enforcement mechanism

> DCLabels & MPVC simplify policy specification

e |Lots of research to be done on both fronts
... though policy specification is still behind!



Thank you!

www.labeled.io
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