How was the midterm?

- A: Easy
- B: Okay
- C: Hard
Was the midterm fair?

• A: Yes

• B: No
Logistics

• News: HW and PA due Sunday 23:59

• Type Tetris is now extra credit
 ➢ See week4 notes for how to approach problem
Type classes
Problem w/ parametric polymorphism

• Consider the list member function:

\[
\begin{align*}
\text{member} \ x \ [\] \ &= \ False \\
\text{member} \ x \ (y:ys) \ &= \ \text{if} \ \ x \ == \ y \\
&\quad \text{then} \ True \\
&\quad \text{else} \ \text{member} \ x \ ys
\end{align*}
\]

• Is the type \(\text{member} :: a \to [a] \to \text{Bool} \) correct?

➤ A: yes, B: no
Problem w/ parametric polymorphism

• Consider the list member function:

```haskell
member x [] = False
member x (y:ys) = if x == y
                 then True
                 else member x ys
```

• Is the type `member :: a -> [a] -> Bool` correct?

➤ A: yes, B: no
Can these work on any type?

- sort :: [a] -> [a]
- (+) :: a -> a -> a
- show :: a -> String
- serialize :: a -> ByteString
- hash :: a -> Int
No! But we really want to use those same symbols to work on different types

- E.g., 3.4 + 5.5 and 3+5
- E.g., show 4 and show [1,2,3]
- E.g., 4 == 5 and Left “w00t” == Right 44
Motivation for overloading

• Parametric polymorphism doesn’t work...
 ➤ Single algorithm, works on values of any type
 ➤ Type variable may be replaced by any type

• What we want: a form of overloading
Motivation for overloading

• Parametric polymorphism doesn’t work...
 ➤ Single algorithm, works on values of any type
 ➤ Type variable may be replaced by any type

• What we want: a form of overloading
 ➤ Single symbol to refer to more than one algorithm
 ➤ Each algorithm may have different type
How should we do overloading?
Non-solution: local choice

- Overload basic operators such as + and *

\[a \times b \]

- Don’t allow for overloading functions defined from them

➤ Problem?
Non-solution: local choice

• Overload basic operators such as + and *

 a `multInt` b

 a * b

• Don’t allow for overloading functions defined from them

 ➤ Problem?
Non-solution: local choice

- Overload basic operators such as + and *

 \[
 a \times b \rightarrow a \text{ `multInt` } b
 \]

 \[
 a \times b \rightarrow a \text{ `multFloat` } b
 \]

- Don’t allow for overloading functions defined from them

 ➤ Problem?
Non-solution: local choice

- Overload basic operators such as + and *

 \[
 a \ast b \quad \iff \\
 a \text{ `multInt` } b \\
 a \text{ `multFloat` } b
 \]

- Don’t allow for overloading functions defined from them

\begin{itemize}
 \item \textbf{Problem?}
\end{itemize}

first usage tells us that

\[
square :: \text{Int} \rightarrow \text{Int}
\]
Non-solution: local choice

• Overload basic operators such as + and *

\[
\begin{align*}
 a \ast b & \rightarrow a \texttt{ `multInt` } b \\
 a \ast b & \rightarrow a \texttt{ `multFloat` } b
\end{align*}
\]

• Don’t allow for overloading functions defined from them

\[
\begin{align*}
 \textbf{Problem?} & \quad \text{square } x = x \times x \\
 \text{square } 3 & \\
 \text{square } 3.14 & \text{ first usage tells us that } \\
 \text{square :: Int -> Int} &
\end{align*}
\]
Non-solution: local choice

- Overload basic operators such as + and *

 a * b
 \rightarrow
 a \ `\text{multInt}` \ b

 a \ `\text{multFloat}` \ b

- Allow for overloading functions defined from them

 \textbf{Problem?}
Non-solution: local choice

• Overload basic operators such as + and *

 \[
 a \ast b \quad \rightarrow \quad a \ '\text{multInt} \ ' b
 \]

 \[
 a \ '\text{multFloat} \ ' b
 \]

• Allow for overloading functions defined from them

 ➤ **Problem?**

 \[
 \text{ssquare } x \ y = (\text{square } x, \text{square } y)
 \]

 \[
 \text{ssquare } 3 \ 4
 \]

 \[
 \text{ssquare } 3.3 \ 4
 \]

 \[
 ... \quad \text{Code blowup!}
 \]
Non-solution: fully polymorphic

• Make functions like == fully polymorphic

 ➤ (==) :: a → a → Bool

• At runtime: compare underlying representation

 ➤ 3*3 == 9 ⇒ ??

 ➤ (\x → x) == (\x → x + 1) ⇒ ??

 ➤ Left 3 == Right “44” ⇒ ??

• Problems?
Non-solution: fully polymorphic

• Make functions like == fully polymorphic
 ➤ (==) :: a -> a -> Bool

• At runtime: compare underlying representation
 ➤ 3*3 == 9 => ??
 ➤ (\x -> x) == (\x -> x + 1) => ??
 ➤ Left 3 == Right "44" => ??

• Problems? Breaks abstraction!
Non-solution: “eqtype” polymorphism [SML]

• Make equality polymorphic in a limited way

 ➤ (==) :: a== -> a== -> Bool

 ➤ member :: a== -> [a==] -> Bool

• a== are special type variables restricted to types with equality

• Problem?
Solution: type classes
OOP
Solution: type classes

• **Idea:** generalize eqtypes to arbitrary types

• Provide concise types to describe overloaded functions
 ➤ Solves:

• Allow users to define functions using overloaded ones
 ➤ Solves:

• Allow users to declare new collections of overloaded functions
Solution: type classes

• **Idea:** generalize eqtypes to arbitrary types

• Provide concise types to describe overloaded functions
 ➤ Solves: exponential blow up

• Allow users to define functions using overloaded ones
 ➤ Solves:

• Allow users to declare new collections of overloaded functions
Solution: type classes

• **Idea:** generalize eqtypes to arbitrary types

• Provide concise types to describe overloaded functions
 ➤ Solves: exponential blow up

• Allow users to define functions using overloaded ones
 ➤ Solves: monomorphism

• Allow users to declare new collections of overloaded functions
Back to our old examples

➤ square :: Num a => a -> a

➤ sort :: Ord a => [a] -> [a]

➤ Show :: Show a => a -> String

➤ member :: a -> [a] -> Bool
Back to our old examples

➤ square :: Num a => a -> a

➤ sort :: [a] -> [a]

➤ Show :: a -> String

➤ member :: a -> [a] -> Bool
Back to our old examples

- square :: Num a => a -> a
- sort :: Ord a => [a] -> [a]
- Show :: a -> String
- member :: a -> [a] -> Bool
Back to our old examples

➤ square :: Num a => a -> a

➤ sort :: Ord a => [a] -> [a]

➤ Show :: Show a => a -> String

➤ member :: a -> [a] -> Bool
Back to our old examples

➤ square :: Num a => a -> a

➤ sort :: Ord a => [a] -> [a]

➤ Show :: Show a => a -> String

➤ member :: Eq a => a -> [a] -> Bool
Type classes

• **Class declaration:** what are the Num operations?

• **Instance declaration:** how are the ops implemented?
Type classes

- **Class declaration:** what are the Num operations?

```haskell
class Num a where
    (+) :: a -> a -> a
    (*) :: a -> a -> a
    ...
```

- **Instance declaration:** how are the ops implemented?

```haskell
instance Num Int where
    (+) a b = plusInt a b
    (*) a b = mulInt a b
    ...

instance Num Float where
    (+) a b = plusFloat a b
    (*) a b = mulFloat a b
    ...
```
Type classes

• **Class declaration:** what are the Num operations?

```haskell
class Num a where
    (+) :: a -> a -> a
    (*) :: a -> a -> a
...
```

• **Instance declaration:** how are the ops implemented?

```haskell
instance Num Int where
    (+) a b = plusInt a b
    (*) a b = mulInt a b
...

instance Num Float where
    (+) a b = plusFloat a b
    (*) a b = mulFloat a b
...
```
Type classes

• **Basic usage:** how do you use the overloaded ops?
 ➤ 3 + 4
 ➤ 3.3 + 4.4
 ➤ “4” + “5”

• Functions using these ops can be polymorphic too
 ➤ E.g.,
 square ::
 square x = x * x
Type classes

• **Basic usage**: how do you use the overloaded ops?
 - 3 + 4
 - 3.3 + 4.4
 - "4" + "5"

• Functions using these ops can be polymorphic too
 - E.g., `square :: Num x => x -> x`
 `square x = x * x`
type-classes-use.hs
Type classes can have subclasses

- Example: consider Eq and Ord classes
 - Eq:
 - Ord:

- Subclass declaration can express relationship:
 - E.g., `class Eq a => Ord a where ...`

- When you declare functions you just need to specify Ord, we know that it must also be Eq
Type classes can have subclasses

- Example: consider `Eq` and `Ord` classes
 - `Eq`: allow for equality checking
 - `Ord`:

- Subclass declaration can express relationship:
 - E.g., `class Eq a => Ord a where ...`

- When you declare functions you just need to specify `Ord`, we know that it must also be `Eq`
Type classes can have subclasses

- Example: consider `Eq` and `Ord` classes
 - `Eq`: allow for equality checking
 - `Ord`: allow for comparing elements of the type

- Subclass declaration can express relationship:
 - E.g., `class Eq a => Ord a where ...`

- When you declare functions you just need to specify `Ord`, we know that it must also be `Eq`
How do type classes work?

• Basic idea:

\[
\text{square} :: \text{Num } x \Rightarrow x \rightarrow x
\]

\[
\text{square } x = x \times x
\]

• Intuition from C's qsort:

\[
\text{void qsort(} \text{void *base, size_t nel, size_t width,}
\]

\[
\text{int (*compar)(const void *, const void *)};
\]

➤ Pass operator as argument!
How do type classes work?

• Basic idea:

\[
\text{square} :: \text{Num } x \Rightarrow x \rightarrow x \\
\text{square } x = x \times x
\]

• Intuition from C’s qsort:

\[
\text{void qsort}(\text{void *base, size_t nel, size_t width,} \\
\text{\hspace{1cm} int (*compar)(\text{const void *}, \text{const void *})});
\]

➤ Pass operator as argument!
How do type classes work?

- **Class declaration**: desugar to dictionary type decl

```haskell
class Num a where
    (+) :: a -> a -> a
    (*) :: a -> a -> a
    ... 
```

- **Instance declaration**: desugar to dictionary values

```haskell
instance Num Int where
    (+) a b = plusInt a b
    (*) a b = mulInt a b
    ... 
```
How do type classes work?

- **Class declaration:** desugar to dictionary type decl

  ```haskell
class Num a where data Num a = MkNumDict
  (+) :: a -> a -> a                 (a -> a -> a)
  (*) :: a -> a -> a                 (a -> a -> a)
  ...
  ...
  ```

- **Instance declaration:** desugar to dictionary values

  ```haskell
  instance Num Int where
  (+) a b = plusInt a b
  (*) a b = mulInt a b
  ...
  ```
How do type classes work?

• **Class declaration:** desugar to dictionary type decl

class Num a where
 data Num a = MkNumDict
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 ...

• **Instance declaration:** desugar to dictionary values

instance Num Int where
 dictNumInt = MkNumDict
 (+) a b = plusInt a b
 (*) a b = mulInt a b
 ...

...
How do type classes work?

- Basic usage: whenever you use operator you must pass it a dictionary value:
 - E.g., (*)
 - E.g., (==)

- Defining polymorphic functions: always take dictionary values, so type and definition must reflect this
 - E.g.,
How do type classes work?

• Basic usage: whenever you use operator you must pass it a dictionary value:
 ➤ E.g., (*) dictNumInt 4 5
 ➤ E.g., (==) dictEqFloat 3.3 5.5

• Defining polymorphic functions: always take dictionary values, so type and definition must reflect this
 ➤ E.g.,
 ➤ E.g.,
How do type classes work?

• Basic usage: whenever you use operator you must pass it a dictionary value:

 ➤ E.g., \((\ast)\) dictNumInt 4 5
 ➤ E.g., \((==)\) dictEqFloat 3.3 5.5

• Defining polymorphic functions: always take dictionary values, so type and definition must reflect this

 ➤ E.g., square :: Num x \rightarrow x \rightarrow x
 square dict x = (\ast) dict x
 ➤ E.g.,
How do type classes work?

• Basic usage: whenever you use operator you must pass it a dictionary value:
 ➤ E.g., (*) dictNumInt 4 5
 ➤ E.g., (==) dictEqFloat 3.3 5.5

• Defining polymorphic functions: always take dictionary values, so type and definition must reflect this
 ➤ E.g., square :: Num x -> x -> x
 square dict x = (*) dict x
 ➤ E.g., square dictNumFloat 4.4
How does this affect type inference?

• Type inference infers a qualified type: $Q \Rightarrow \tau$

• τ is ordinary Hindley-Miner type, inferred as usual

• Q is a constraint set/set of type class predicates

• Consider:

```haskell
f :: (Eq a, Num a) => a -> Bool
f x = x + 2 == 3
```
How does this affect type inference?

- Type inference infers a qualified type: \(Q \Rightarrow \tau \)

- \(\tau \) is ordinary Hindley-Miner type, inferred as usual

- \(Q \) is a constraint set/set of type class predicates

- Consider:

 \[
 f :: (Eq a, Num a) \Rightarrow a \rightarrow \text{Bool} \\
 f \ x = x + 2 == 3
 \]
Modification to our TI algorithm

- Modify the “Generate constraints” step to include type class constraints
- Simplify constraint set in final step
Generate constraints

• Example: \(f \ x \ y = x \equiv y \)

➤ Assign \(\tau_0 \) to \(x \)

➤ Assign \(\tau_1 \) to \(y \)

➤ Constraints:

 ➤

 ➤
Simplify constraints

• Eliminate duplicates:
 ➤ \{\text{Num } a, \text{Num } a\} = \{\text{Num } a\}

• Use more general instance declaration
 ➤ \{\text{Eq } [a], \text{Eq } a\} = \{\text{Eq } a\}
 if \text{instance} \text{Eq } a => \text{Eq } [a]

• Use sub-class declaration declaration
 ➤ \{\text{Ord } a, \text{Eq } a\} = \{\text{Ord } a\}

• Example: \{\text{Eq } a, \text{Eq } [a], \text{Ord } a\} =
Simplify constraints

• Eliminate duplicates:
 ➤ \{\text{Num } a, \text{ Num } a\} = \{\text{Num } a\}

• Use more general instance declaration
 ➤ \{\text{Eq } [a], \text{ Eq } a\} =

• Use sub-class declaration declaration
 ➤ \{\text{Ord } a, \text{ Eq } a\} =

• Example: \{\text{Eq } a, \text{ Eq } [a], \text{ Ord } a\} =
Simplify constraints

- Eliminate duplicates:
 - \{\text{Num } a, \text{Num } a\} = \{\text{Num } a\}

- Use more general instance declaration
 - \{\text{Eq } [a], \text{Eq } a\} = \{\text{Eq } a\} \text{ if } \text{instance Eq } a \implies \text{Eq } [a]

- Use sub-class declaration
 - \{\text{Ord } a, \text{Eq } a\} =

- Example: \{\text{Eq } a, \text{Eq } [a], \text{Ord } a\} =
Simplify constraints

• Eliminate duplicates:
 ➤ \{\text{Num } a, \text{ Num } a\} = \{\text{Num } a\}

• Use more general instance declaration
 ➤ \{\text{Eq } [a], \text{ Eq } a\} = \{\text{Eq } a\} \text{ if instance Eq } a \Rightarrow \text{ Eq } [a]

• Use sub-class declaration declaration
 ➤ \{\text{Ord } a, \text{ Eq } a\} = \{\text{Ord } a\} \text{ if class Eq } a \Rightarrow \text{ Ord } a

• Example: \{\text{Eq } a, \text{ Eq } [a], \text{ Ord } a\} =
Simplify constraints

• Eliminate duplicates:
 ➤ \{\text{Num } a, \text{Num } a\} = \{\text{Num } a\}

• Use more general instance declaration
 ➤ \{\text{Eq } [a], \text{Eq } a\} = \{\text{Eq } a\} \text{ if instance Eq } a \Rightarrow \text{Eq } [a]

• Use sub-class declaration declaration
 ➤ \{\text{Ord } a, \text{Eq } a\} = \{\text{Ord } a\} \text{ if class Eq } a \Rightarrow \text{Ord } a

• Example: \{\text{Eq } a, \text{Eq } [a], \text{Ord } a\} = \{\text{Ord } a\}
Are these the same as in OO?

class String a where show :: a -> String = interface Show {
 String show();
}
Are these the same as in OO?

class String a where
 show :: a -> String

interface Show {
 String show();
}

type-based dispatch vs value-based dispatch
Summary

• Type classes are a good approach to the overloading

• They provide a form of polymorphism: ad-hoc

• More flexible than designers first realized

 ➤ The type-driven, dictionary approach

• Not the same as OO classes/interfaces