Fundamentals and lambda calculus

Deian Stefan
(adopted from my & Edward Yang’s CSE242 slides)
Logistics

• Assignments:
 ➤ Programming assignment 1 is out
 ➤ Homework 1 will be released tomorrow night

• Podcasting: everything should be set

• Section: 8-8:50AM default; TA choice to do 3-3:50PM

• Clickers, sign up: see piazza/course page for link
 ➤ We’ll use them today
JavaScript functions

• JavaScript functions are first-class
 ➤ Syntax is a bit ugly/terse when you want to use functions as values; recall block scoping:

 (function () {
 // ... do something
 })();

• New version has cleaner syntax called “fat arrows”
 ➤ Semantics not always the same (this has different meaning), but for this class should always be safe to use
fat-arrows.js
In this lecture
In this lecture
In this lecture
What is the lambda calculus?

• Simplest reasonable programming language
 ➤ Only has one feature: functions
Why study it?

• Captures the idea of first-class functions
 ➤ Good system for studying the concept of variable binding that appears in almost all languages

• Historically important
 ➤ Competing model of computation introduced by Church as an alternative to Turing machines: substitution (you’ll see this today) = symbolic comp
 ➤ Influenced Lisp (thus JS), ML, Haskell, C++, etc.
Why else?

• Base for studying many programming languages
 ➤ You can use lambda calculus and extended it in different ways to study languages and features
 ➤ E.g., we can study the difference between strict languages like JavaScript and lazy ones like Haskell
 ➤ \(\lambda \) + evaluation strategy
 ➤ E.g., we can study different kinds of type systems
 ➤ Simply-typed \(\lambda \) calculus, polymorphic, etc.
Why else?

- Most PL papers describe language models that build on lambda calculus
 - Understanding λ will help you interpret what you are reading in PL research papers
 - Understanding λ will help you get started with other formal/theoretical foundations:
 - Operational semantics
 - Denotational semantics
Before we get started, some terminology

• Syntax (grammar)

• Semantics

• PL implementation: Syntax -> Semantics
Before we get started, some terminology

- **Syntax (grammar)**
 - The symbols used to write a program
 - E.g., \((x + y)\) is a grammatical expression

- **Semantics**

- **PL implementation**: Syntax -> Semantics
Before we get started, some terminology

• Syntax (grammar)
 ➤ The symbols used to write a program
 ➤ E.g., \((x + y)\) is a grammatical expression

• Semantics
 ➤ The actions that occur when a program is executed

• PL implementation: Syntax -> Semantics
Today

- Syntax of λ calculus
- Semantics of λ calculus
 - Free and bound variables
 - Substitution
 - Evaluation order
Lambda calculus

• Language syntax (grammar):

 ➤ Expressions: \(e ::= x \mid \lambda x.e \mid e_1 e_2 \)

 ➤ Variables: \(x \)

 ➤ Functions or \(\lambda \) abstractions: \(\lambda x.e \)

 ➤ This is the same as \(x \Rightarrow e \) in JavaScript!

 ➤ Function application: \(e_1 e_2 \)

 ➤ This is the same as \(e_1 (e_2) \) in JavaScript!
Example terms

- $\lambda x. (2 + x)$
 - Same as: $x \Rightarrow (2 + x)$

- $(\lambda x. (2 + x)) \ 5$
 - Same as: $(x \Rightarrow (2 + x)) \ (5)$

- $(\lambda f. (f \ 3)) \ (\lambda x. (x + 1))$
 - Same as: $(f \Rightarrow (f \ (3))) \ (x \Rightarrow (x+1))$
Example terms

➤ $\lambda x.(2+x)$

LIES! What is this “2” and “+”? (Sugar.)

➤ Same as: $x \Rightarrow (2 + x)$

➤ $(\lambda x.(2 + x))\ 5$

➤ Same as: $(x \Rightarrow (2 + x))(5)$

➤ $(\lambda f.(f\ 3))\ (\lambda x.(x + 1))$

➤ Same as: $(f \Rightarrow (f\ (3)))(x \Rightarrow (x+1))$
Example terms

- $\lambda x.(2+x)$
 - Same as: $x => (2 + x)$

- $(\lambda x.(2 + x)) 5$
 - Same as: $(x => (2 + x)) (5)$

- $(\lambda f.(f 3)) (\lambda x.(x + 1))$
 - Same as: $(f => (f (3))) (x => (x+1))$
Example terms

- \(\lambda x.(2+x) \)
 - Same as: \(x \Rightarrow (2 + x) \)

- \((\lambda x.(2 + x)) \ 5 \)
 - Same as: \((x \Rightarrow (2 + x)) \ (5) \)

- \((\lambda f .(f \ 3)) \ (\lambda x .(x + 1)) \)
 - Same as: \((f \Rightarrow (f \ (3))) \ (x \Rightarrow (x+1)) \)
Example terms

- $\lambda x.(2+x)$
 - Same as: $x \Rightarrow (2 + x)$

- $(\lambda x.(2 + x)) \ 5$
 - Same as: $(x \Rightarrow (2 + x)) \ 5$

- $(\lambda f. (f \ 3)) \ (\lambda x. (x + 1))$
 - Same as: $(f \Rightarrow (f \ (3))) \ (x \Rightarrow (x+1))$
JavaScript to λ calculus

• Let’s look at function composition: $(f \circ f)(x)$

• In JavaScript:

 ➤ $f => (x => f(f(x)))$

 ➤ $((f => (x => f(f(x)))) (x => x+1)) (4)$

• In λ:

 ➤ $(\lambda f.(\lambda x. f(f(x))))$
JavaScript to λ calculus

• Let’s look at function composition: $(f \circ f)(x)$

• In JavaScript:
 ➤ $f \Rightarrow (x \Rightarrow f (f (x)))$
 ➤ $((f \Rightarrow (x \Rightarrow f (f (x)))) (x \Rightarrow x+1)) (4)$

• In λ:
 ➤ $\lambda f. (\lambda x. f (f x))$
Let’s look at function composition: \((f \circ f)(x)\)

In JavaScript:

- \(f \mapsto (x \mapsto f(f(x)))\)
- \(((f \mapsto (x \mapsto f(f(x)))) \mapsto (x \mapsto x+1)) (4)\)

In \(\lambda\):

- \(\lambda f. (\lambda x. f(f(x)))\)
- \(((\lambda f. (\lambda x. f(f(x))) \mapsto (\lambda x. x+1)) 4\)
Today

- Syntax of λ calculus ✓
- Semantics of λ calculus
 - Free and bound variables
 - Substitution
 - Evaluation order
Semantics of \(\lambda \) calculus

• Reduce a term to another as much as we can
 ➤ If we can’t reduce it any further, the term is said to be in \textit{normal form}

• How? Rewrite terms!
Example terms

• Example: \((\lambda x.(2 + x)) 5\)
 ▶ In JavaScript: \((x => (2 + x))\) \((5)\)

• Example: \((\lambda f.(f 3)) (\lambda x.(x + 1))\)
 ▶ In JavaScript: \((f => (f (3)))\) \((x => (x+1))\)
Example terms

• Example: \((\lambda x.(2 + x)) \, 5\)

 ➤ In JavaScript: \((x => (2 + x)) \, (5) \rightarrow (2 + 5)\)

• Example: \((\lambda f.(f \, 3)) \, (\lambda x.(x + 1))\)

 ➤ In JavaScript: \((f \Rightarrow (f \, (3))) \, (x => (x+1))\)
Example terms

- Example: \((\lambda x.(2 + x))\) 5

 In JavaScript: \((x \Rightarrow (2 + x))\) \(\Rightarrow (2 + 5) \Rightarrow 7\)

- Example: \((\lambda f.(f 3))\) \((\lambda x.(x + 1))\)

 In JavaScript: \((f \Rightarrow (f (3)))\) \((x \Rightarrow (x+1))\)
Example terms

- Example: \((\lambda x. (2 + x))\) 5 \rightarrow (2 + 5)

 ➤ In JavaScript: \((x \Rightarrow (2 + x))(5) \rightarrow (2 + 5) \rightarrow 7\)

- Example: \((\lambda f. (f 3))(\lambda x. (x + 1))\)

 ➤ In JavaScript: \((f \Rightarrow (f (3)))(x \Rightarrow (x+1))\)
Example terms

• Example: \((\lambda x.(2 + x))\) 5 \(\rightarrow\) \((2 + 5)\) \(\rightarrow\) 7

 ➤ In JavaScript: \((x => (2 + x))\) (5) \(\rightarrow\) \((2 + 5)\) \(\rightarrow\) 7

• Example: \((\lambda f.(f\ 3))\) \((\lambda x.(x + 1))\)

 ➤ In JavaScript: \((f => (f\ (3)))\) \((x => (x+1))\)
Example terms

• Example: \((\lambda x.(2 + x))\) \(5 \rightarrow (2 + 5) \rightarrow 7\)

 ➤ In JavaScript: \((x => (2 + x))(5) \rightarrow (2 + 5) \rightarrow 7\)

• Example: \((\lambda f.(f 3))(\lambda x.(x + 1))\)

 ➤ In JavaScript: \((f => (f (3)))(x => (x + 1)) \rightarrow (((x => (x + 1))(3))\)
Example terms

• Example: \((\lambda x.(2 + x))\) \(5 \rightarrow (2 + 5) \rightarrow 7\)

 ➤ In JavaScript: \((x \Rightarrow (2 + x))) (5) \rightarrow (2 + 5) \rightarrow 7\)

• Example: \((\lambda f.(f \, 3))\) \((\lambda x.(x + 1)))\)

 ➤ In JavaScript: \((f \Rightarrow (f \, 3))) (x \Rightarrow (x+1))\)

 \(\rightarrow (((x \Rightarrow (x+1)) \, 3)\)

 \(\rightarrow (3+1) \rightarrow 4\)
Example terms

• Example: \((\lambda x.(2 + x)) \ 5 \rightarrow (2 + 5) \rightarrow 7\)

 ➤ In JavaScript: \((x => (2 + x)) \ (5) \rightarrow (2 + 5) \rightarrow 7\)

• Example: \((\lambda f.(f \ 3)) \ (\lambda x.(x + 1)) \rightarrow ((\lambda x.(x + 1)) \ 3) \rightarrow (3 + 1) \rightarrow 4\)

 ➤ In JavaScript: \((f => (f \ (3))) \ (x => (x+1)) \rightarrow (((x => (x+1)) \ 3) \rightarrow (3+1) \rightarrow 4\)
Example terms

• Example: \((\lambda x.(2 + x)) \ 5 \rightarrow (2 + 5) \rightarrow 7\)

 ➤ In JavaScript: \((x \Rightarrow (2 + x)) \ (5) \rightarrow (2 + 5) \rightarrow 7\)

• Example: \((\lambda f.(f \ 3)) \ (\lambda x.(x + 1))\)
 \rightarrow ((\lambda x.(x + 1)) \ 3)
 \rightarrow (3 + 1) \rightarrow 4

 ➤ In JavaScript: \((f \Rightarrow (f \ (3))) \ (x \Rightarrow (x+1))\)
 \rightarrow (((x \Rightarrow (x+1)) \ (3))
 \rightarrow (3+1) \rightarrow 4
Easy! Pattern: for function application substitute the term you are applying the function to for the argument variable
Substitution (not right)

• Substitution: $e_1 [x := e_2]$
 ➤ Replace every occurrence of x in e_1 with e_2

• General reduction rule for λ calculus:
 ➤ $(\lambda x.e_1) e_2 \rightarrow e_1 [x := e_2]$
 ➤ Function application rewritten to e_1 (the function body) with every x in e_1 substituted with e_2 (argument)
A more complicated example
A more complicated example

• Compose function that adds 1 to arg & apply it to 4

\[((\lambda f. (\lambda x. f (f x)) (\lambda x. x+1)) 4 \]
A more complicated example

• Compose function that adds 1 to arg & apply it to 4

➤ \((\lambda f. (\lambda x. f (f x)) (\lambda x. x + 1))\) 4

➤ \((\lambda x. (\lambda x. x + 1) ((\lambda x. x + 1) x))\) 4
A more complicated example

• Compose function that adds 1 to arg & apply it to 4

➤ \((\lambda f. (\lambda x. f (f x)) (\lambda x. x+1))\) 4

➤ \((\lambda x. (\lambda x. x+1) ((\lambda x. x+1) x))\) 4

➤ \((\lambda x. x+1) ((\lambda x. x+1) 4)\)
A more complicated example

- Compose function that adds 1 to arg & apply it to 4

\[
\begin{align*}
\Rightarrow & \quad ((\lambda f.(\lambda x. f (f x)) (\lambda x.x+1)) 4 \\
\Rightarrow & \quad (\lambda x. (\lambda x.x+1) ((\lambda x.x+1) x)) 4 \\
\Rightarrow & \quad (\lambda x.x+1) ((\lambda x.x+1) 4) \\
\Rightarrow & \quad (\lambda x.x+1) (4+1)
\end{align*}
\]
A more complicated example

• Compose function that adds 1 to arg & apply it to 4

➤ \(((\lambda f. (\lambda x. f (f x)) \ (\lambda x. x+1)) \ 4)\)

➤ \((\lambda x. (\lambda x. x+1) \ ((\lambda x. x+1) \ x)) \ 4)\)

➤ \((\lambda x. x+1) \ ((\lambda x. x+1) \ 4)\)

➤ \((\lambda x. x+1) \ (4+1)\)

➤ \(4+1+1\)
A more complicated example

* Compose function that adds 1 to arg & apply it to 4

\[
\begin{align*}
& ((\lambda f. (\lambda x. f (f x)) (\lambda x. x+1)) 4 \\
& (\lambda x. (\lambda x. x+1) ((\lambda x. x+1) x)) 4 \\
& (\lambda x. x+1) ((\lambda x. x+1) 4) \\
& (\lambda x. x+1) (4+1) \\
& 4+1+1 \\
& 6
\end{align*}
\]
Let’s make this even more fun!
Let’s make this even more fun!

• Instead of 1, let’s add x to argument (& do it 2 times):

 ➤ \((\lambda f. (\lambda x. f (f x)) (\lambda y. y+x))\)
Let’s make this even more fun!

• Instead of 1, let’s add \(x \) to argument (\& do it 2 times):

\[
(\lambda f. (\lambda x. f (f x)) (\lambda y. y+x)) \rightarrow \\
(\lambda x. (\lambda y. y+x) ((\lambda y. y+x) x))
\]
Let’s make this even more fun!

• Instead of 1, let’s add x to argument (& do it 2 times):

> \((\lambda f. (\lambda x. f (f x)) (\lambda y. y+x))\)

> \(\lambda x. (\lambda y. y+x) (\lambda y. y+x) x\)

> \(\lambda x. (\lambda y. y+x) (x+x)\)
Let’s make this even more fun!

• Instead of 1, let’s add x to argument (& do it 2 times):

> \((\lambda f. (\lambda x. f (f x)) \ (\lambda y. y+x))\)

> \(\lambda x. \ (\lambda y. y+x) \ ((\lambda y. y+x) \ x)\)

> \(\lambda x. \ (\lambda y. y+x) \ (x+x)\)

> \(\lambda x. \ (x+x+x)\)
Let’s make this even more fun!

• Instead of 1, let’s add x to argument (& do it 2 times):

➤ \((\lambda f. (\lambda x. f (f x)) (\lambda y. y+x))\)

➤ \(\lambda x. (\lambda y. y+x) ((\lambda y. y+x) x)\)

➤ \(\lambda x. (\lambda y. y+x) (x+x)\)

➤ \(\lambda x. (x+x+x)\)

that’s not a function that adds x to argument two times
Substitution is surprisingly complex

• Recall our reduction rule for application:

 ➤ \((\lambda x. e_1) \ e_2 \rightarrow e_1 \ [x := e_2]\)

 ➤ This function application reduces to \(e_1\) (the function body) where every \(x\) in \(e_1\) is substituted with \(e_2\) (value we’re applying func to)

 ➤ Where did we go wrong? When we substituted:

 ➤ \((\lambda f. (\lambda x. f (f \ x)) \ (\lambda y. y+x))\)

 ➤ \((\lambda x. (\lambda y. y+x) \ ((\lambda y. y+x) \ x))\) the \(x\) is captured!
Another way to see the problem

- Syntactic sugar: let $x = e_1$ in $e_2 \overset{\text{def}}{=} (\lambda x. e_2) \ e_1$

- Let syntax makes this easy to see:

 - let $x = a+b$ in
 - let $a = 7$ in
 - $x + a$
 →
 - let $a = 7$ in
 - $(a+b) + a$
Another way to see the problem

• Syntactic sugar: \(\text{let } x = e_1 \text{ in } e_2 \overset{\text{def}}{=} (\lambda x. e_2) \ e_1 \)

• Let syntax makes this easy to see:

 \[
 \begin{align*}
 \text{let } x & = a + b \text{ in} \\
 & \quad \text{let } a = 7 \text{ in} \\
 & \quad \text{let } a = 7 \text{ in} \\
 x + a & \rightarrow (a + b) + a
 \end{align*}
 \]

 ➤ Very obviously wrong!

➤ But, guess what: your C macro preprocessor does this!
Fixing the problem

• How can we fix this?

1. Rename variables!

 ➤ let x = a+b in
 let a = 7 in
 x + a

2. Do the “dumb” substitution!
Fixing the problem

• How can we fix this?

1. Rename variables!

 ➤ let x = a+b in let x = a+b in let x = a+b in

 let a = 7 in let a123 = 7 in

 x + a x + a123

2. Do the “dumb” substitution!
Fixing the problem

• How can we fix this?

1. Rename variables!

 - let x = a+b in
 - let a = 7 in
 - x + a

 ➤ let x = a+b in
 ➤ let a123 = 7 in
 ➤ x + a123

2. Do the “dumb” substitution!
Why is this the way to go?

• We can always rename bound variables!
 ➤ **Def:** variable \(x \) is bound in \(\lambda x.(x+y) \)

• Bound variables are just “placeholders”
 ➤ Above: \(x \) is not special, we could have used \(z \)
 ➤ We say they are equivalent: \(\lambda x.(x+y) =_\alpha \lambda z.(z+y) \)

• Renaming amounts to converting bound variable names to avoid capture: e.g., \(\lambda x.(x+y) \) to \(\lambda z.(z+y) \)
Can we rename everything?

- Can we rename y in \(\lambda x. (x+y) \)? (A: yes, B: no)

- Intuition:

 ➤ E.g., \(\forall x. P(x, y) \) or \(\sum_{i\in\{1,\ldots,10\}} x_i + y \)
Can we rename everything?

• Can we rename y in $\lambda x. (x+y)$? (A: yes, B: no)

 ➤ No! We don’t know what y may be, so we must keep it as is!

• Intuition:

 ➤ E.g., $\forall x. \, P(x, \, y)$ or $\sum_{i \in \{1, \ldots, 10\}} x_i + y$
Can we rename everything?

• Can we rename \(y \) in \(\lambda x. (x+y) \)? (A: yes, B: no)

 ➤ No! We don’t know what \(y \) may be, so we must keep it as is!

• Intuition:

 ➤ Can change the name of your function argument variables but not of variables from the outer scope

 ➤ E.g., \(\forall x. P(x, y) \) or \(\sum_{i \in \{1, \ldots, 10\}} x_i + y \)
Let’s think about this more formally
Def: free variables

• If a variable is not bound by a λ, we say that it is free
 ➤ e.g., y is free in $\lambda x.(x+y)$
 ➤ is x free?

• We can compute the free variables of any term:
 ➤ $FV(x) = \{x\}$
 ➤ $FV(\lambda x. e) = FV(e) \setminus \{x\}$
 ➤ $FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$
Def: free variables

- If a variable is not bound by a λ, we say that it is **free**
 - e.g., y is free in $\lambda x. (x+y)$
 - is x free?

- We can compute the free variables of any term:
 - $\text{FV}(x) = \{x\}$
 - $\text{FV}(\lambda x. e) = \text{FV}(e) \setminus \{x\}$
 - $\text{FV}(e_1 \ e_2) = \text{FV}(e_1) \cup \text{FV}(e_2)$
Def: free variables

- If a variable is not bound by a λ, we say that it is free.
 - e.g., \(y \) is free in \(\lambda x.(x+y) \)
 - is \(x \) free?

- We can compute the free variables of any term:
 - \(FV(x) = \{x\} \)
 - \(FV(\lambda x.e) = FV(e) \setminus \{x\} \)
 - \(FV(e_1 e_2) = FV(e_1) \cup FV(e_2) \)
Def: free variables

• If a variable is not bound by a λ, we say that it is **free**
 ➤ e.g., y is free in $\lambda x. (x+y)$
 ➤ is x free? No! We say x is bound in $\lambda x. (x+y)$

• We can compute the free variables of any term:
 ➤ $\text{FV}(x) = \{x\}$
 ➤ $\text{FV}(\lambda x. e) = \text{FV}(e) \setminus \{x\}$
 ➤ $\text{FV}(e_1 e_2) = \text{FV}(e_1) \cup \text{FV}(e_2)$
Def: Capture-avoiding substitution

• Capture-avoiding substitution:

 ➤ $x[x:=e] = e$

 ➤ $y[x:=e] = y$ if $y \neq x$

 ➤ $(e_1 e_2)[x := e] = (e_1)[x := e] (e_2)[x := e]$

 ➤ $(\lambda x.e_1)[x := e] = \lambda x.(e_1)[x := e]$

 ➤ $(\lambda y.e_1)[x := e_2] = (\lambda y.e_1)[x := e_2]$ if $y \neq x$ and $y \not\in \text{FV}(e_2)$

 Why the if? If y is free in e_2 this would capture it!
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - $(\lambda y.e_1)[x := e_2] =$
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] =$
 - $(\lambda x.e_1)[x := e] =$
 - $(\lambda y.e_1)[x := e_2] =$
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 \ e_2)[x := e] = (e_1[x := e]) \ (e_2[x := e])$
 - $(\lambda x. e_1)[x := e] = \lambda x. e_1[x := e]$ if $y \notin \text{FV}(e_2)$
 - $(\lambda y. e_1)[x := e_2] = \lambda y. e_1[x := e_2]$
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - $(\lambda y.e_1)[x := e_2] = .$. Why the if? If y is free in e_2 this would capture it!
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
 - $(\lambda x . e_1)[x := e] = \lambda x . e_1$
 - $(\lambda y . e_1)[x := e_2] = \lambda y . e_1[x := e_2]$ if $y \neq x$ and $y \notin \text{FV}(e_2)$

Why the if? If y is free in e_2 this would capture it!
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x:= e])$
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if $y \neq x$ and $y \not\in \text{FV}(e_2)$

- Why the if?
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - $x[x:=e] = e$
 - $y[x:=e] = y$ if $y \neq x$
 - $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
 - $(\lambda x.e_1)[x := e] = \lambda x.e_1$
 - $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if $y \neq x$ and $y \not\in \text{FV}(e_2)$

- Why the if? If y is free in e_2 this would capture it!
Lambda calculus: equational theory

• α-renaming or α-conversion
 $\lambda x.e = \lambda y.e[x:=y]$ where $y \not\in \text{FV}(e)$

• β-reduction
 $(\lambda x.e_1) e_2 = e_1 [x:=e_2]$

• η-conversion
 $\lambda x.(e \; x) = e$ where $x \not\in \text{FV}(e)$

• We define our \rightarrow relation using these equations!
Back to our example (what we should’ve done)
Back to our example (what we should’ve done)

• Instead of 1, let’s add x to argument (and do it 2x):

> (λf.(λx. f (f x)) (λy.y+x)
Back to our example (what we should’ve done)

• Instead of 1, let’s add x to argument (and do it 2x):

$$(\lambda f. (\lambda x. f (f x)) \ (\lambda y. y + x))$$

$$=^\alpha (\lambda f. (\lambda z. f (f z)) \ (\lambda y. y + x))$$
Back to our example (what we should’ve done)

• Instead of 1, let’s add x to argument (and do it 2x):

\[(\lambda f. (\lambda x. f (f x)) \ (\lambda y. y+x)) =^\alpha (\lambda f. (\lambda z. f (f z)) \ (\lambda y. y+x)) =^\beta \lambda z. (\lambda y. y+x) \ ((\lambda y. y+x) \ z) \]
• Instead of 1, let’s add x to argument (and do it 2x):

\[
(\lambda f. (\lambda x. f (f x)) (\lambda y. y+x)
\]

=\(\alpha\) \(\lambda f. (\lambda z. f (f z)) (\lambda y. y+x)\)

=\(\beta\) \(\lambda z. (\lambda y. y+x) ((\lambda y. y+x) z)\)

=\(\beta\) \(\lambda z. (\lambda y. y+x) (z+x)\)
Back to our example (what we should’ve done)

- Instead of 1, let’s add x to argument (and do it 2x):

\[
(\lambda f. (\lambda x. f (f x)) (\lambda y. y+x)
\]

\[=\alpha (\lambda f. (\lambda z. f (f z)) (\lambda y. y+x)
\]

\[=\beta \lambda z. (\lambda y. y+x) ((\lambda y. y+x) z)
\]

\[=\beta \lambda z. (\lambda y. y+x) (z+x)
\]

\[=\beta \lambda z. z+x+x
\]
Today

• Syntax of \(\lambda \) calculus ✓

• Semantics of \(\lambda \) calculus ✓

➤ Free and bound variables ✓

➤ Substitution ✓

➤ Evaluation order
Evaluation order

• What should we reduce first in \((\lambda x.x) ((\lambda y.y) z)\)?

➤ A: The outer term: \((\lambda y.y) z\)

➤ B: The inner term: \((\lambda x.x) z\)

➤ No! They both reduce to \(z\)!

Church-Rosser Theorem: "If you reduce to a normal form, it doesn't matter what order you do the reductions." This is known as confluence.
Evaluation order

• What should we reduce first in \((\lambda x.x) \ ((\lambda y.y) \ z)\)?
 ➤ A: The outer term: \((\lambda y.y) \ z\)
 ➤ B: The inner term: \((\lambda x.x) \ z\)

• Does it matter?

➤ No! They both reduce to \(z\)!

Church-Rosser Theorem: "If you reduce to a normal form, it doesn't matter what order you do the reductions." This is known as confluence.
Evaluation order

• What should we reduce first in \((\lambda x.x) \ ((\lambda y.y) z)\)?

 ➤ A: The outer term: \((\lambda y.y) z\)

 ➤ B: The inner term: \((\lambda x.x) z\)

• Does it matter?

 ➤ No! They both reduce to \(z\)!

 ➤ Church-Rosser Theorem: “If you reduce to a normal form, it doesn’t matter what order you do the reductions.” This is known as confluence.
Does evaluation order really not matter?
Does evaluation order really not matter?

- Consider a curious term called Ω

$$\Omega \overset{\text{def}}{=} (\lambda x. x \ x) \ (\lambda x. x \ x)$$
Does evaluation order really not matter?

- Consider a curious term called Ω

 $\Omega \overset{\text{def}}{=} (\lambda x . x \ x) \ (\lambda x . x \ x)$

 $=\beta \ (x \ x)[x := (\lambda x . x \ x)]$
Does evaluation order really not matter?

- Consider a curious term called Ω

 \[
 \Omega \overset{\text{def}}{=} (\lambda x. x\ x)\ (\lambda x. x\ x)
 \]

 \[
 =^\beta (x\ x)[\ x:= (\lambda x. x\ x)]
 \]

 \[
 =^\beta (\lambda x. x\ x)\ (\lambda x. x\ x)
 \]
Does evaluation order really not matter?

- Consider a curious term called Ω

$$\Omega \overset{\text{def}}{=} (\lambda x.x \ x) \ (\lambda x.x \ x)$$

$$=_{\beta} \ (x \ x)[\ x:= (\lambda x.x \ x)]$$

$$=_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x)$$

$$= \ \Omega \quad \text{Deja vu!}$$
(Ω has no normal form)
Does evaluation order really not matter?

• Consider a function that ignores its argument: \((\lambda x.y)\)

• What happens when we call it on \(\Omega\)?

\((\lambda x.y) \Omega\)
Does evaluation order really not matter?

• Consider a function that ignores its argument: \((\lambda x. y)\)

• What happens when we call it on \(\Omega\)?

\[(\lambda x. y) \ Ω\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x. y)\)
- What happens when we call it on \(\Omega\)?

\[
\begin{align*}
\text{y} \\
(\lambda x. y) \; \Omega & \rightarrow (\lambda x. y) \; \Omega
\end{align*}
\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x. y)\)

- What happens when we call it on \(\Omega\)?

\[
(\lambda x. y) \Omega \rightarrow (\lambda x. y) \Omega
\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x.y)\)

- What happens when we call it on \(\Omega\)?

\[
(\lambda x.y) \Omega \rightarrow (\lambda x.y) \Omega \rightarrow (\lambda x.y) \Omega
\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x. y)\)
- What happens when we call it on \(\Omega\)?

\[
\begin{align*}
(\lambda x. y) \, \Omega &\rightarrow (\lambda x. y) \, \Omega \\
&\rightarrow (\lambda x. y) \, \Omega
\end{align*}
\]
Does evaluation order really not matter?

• Nope! Evaluation order does matter!
Call-by-value

• Reduce function, then reduce args, then apply
 ➤ $e_1 \ e_2$

• JavaScript’s evaluation strategy is call-by-value (ish)
 ➤ What does this program do?
 ➤ $(x \Rightarrow 33) \ ((x \Rightarrow x(x)) \ (x \Rightarrow x(x)))$
Call-by-value

• Reduce function, then reduce args, then apply

➤ \(e_1 \; e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \; e_2 \)

• JavaScript’s evaluation strategy is call-by-value (ish)

➤ What does this program do?

➤ \((x \Rightarrow 33) \; ((x \Rightarrow x(x)) \; (x \Rightarrow x(x)))\)
Call-by-value

• Reduce function, then reduce args, then apply

 ➤ $e_1 \, e_2 \rightarrow \ldots \rightarrow (\lambda x. e_1') \, e_2 \rightarrow \ldots \rightarrow (\lambda x. e_1') \, n$

• JavaScript’s evaluation strategy is call-by-value (ish)

 ➤ What does this program do?

 ➤ $(x \rightarrow 33) \, ((x \rightarrow x(x)) \, (x \rightarrow x(x)))$
Call-by-value

• Reduce function, then reduce args, then apply

\[
\text{e}_1 \, \text{e}_2 \rightarrow \cdots \rightarrow (\lambda x.\, \text{e}_1') \, \text{e}_2 \rightarrow \cdots \rightarrow (\lambda x.\, \text{e}_1') \, n \rightarrow \text{e}_1'[x:=n]
\]

• JavaScript’s evaluation strategy is call-by-value (ish)

➤ What does this program do?

➤ \((x \Rightarrow 33) \, ((x \Rightarrow x(x)) \, (x \Rightarrow x(x)))\)
Call-by-value

• Reduce function, then reduce args, then apply

 $e_1 \ e_2 \to \cdots \to (\lambda x. e_1') \ e_2 \to \cdots \to (\lambda x. e_1') \ n \to e_1'[x:=n]$

• JavaScript’s evaluation strategy is call-by-value (ish)

 ➤ What does this program do?

 ➤ $(x \Rightarrow 33) \ ((x \Rightarrow x(x)) \ (x \Rightarrow x(x)))$

 ➤ RangeError: Maximum call stack size exceeded
Call-by-name

- Reduce function, then reduce args, then apply
 \[e_1 \ e_2 \]

- Haskell’s evaluation strategy is call-by-name
 \[\text{It only does what is absolutely necessary!} \]
Call-by-name

• Reduce function, then reduce args, then apply
 \[e_1 \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2 \]

• Haskell’s evaluation strategy is call-by-name
 \[\rightarrow \text{It only does what is absolutely necessary!} \]
Call-by-name

- Reduce function, then reduce args, then apply

 \[e_1 \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2 \rightarrow e_1'[x:=e_2] \]

- Haskell’s evaluation strategy is call-by-name

 \[\text{It only does what is absolutely necessary!} \]
Call-by-name

• Reduce function, then reduce args, then apply
 \[e_1 \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2 \rightarrow e_1'[x:=e_2] \rightarrow \cdots \]

• Haskell’s evaluation strategy is call-by-name
 \[\text{It only does what is absolutely necessary!} \]
Summary

• A term may have many redexes (subterms can reduce)
 ➤ Evaluation strategy says which redex to evaluate
 ➤ Evaluation not guaranteed to find normal form

• Call-by-value: evaluate function & args before β reduce

• Call-by-name: evaluate function, then β-reduce
Today

• Syntax of λ calculus ✓

• Semantics of λ calculus ✓
 ➤ Free and bound variables ✓
 ➤ Substitution ✓
 ➤ Evaluation order ✓
Takeaway

• λ-calculus is a forma system
 ➤ “Simplest reasonable programming language” – Ramsey
 ➤ Binders show up everywhere!
 ➤ Know your capture-avoiding substitution!