Lambda calculus (cont)

Deian Stefan

(adopted from my & Edward Yang’s CSE242 slides)
Logistics

• Assignments:
 ➤ HW 1 is out and due this week (Sunday)
 ➤ There will be one more homework on functions
 ➤ After this: 1 homework / general topic area

• Podcasting: no video while projector is broken
 ➤ Sorry :(

• Come to section and office hours!
Questions

• How are you finding PA1?
 ➤ A: easy, B: okay, C: hard, D: wtf is PA1?
Questions

• How are you finding HW1?
 ➤ A: easy, B: okay, C: hard
Questions

• How are you finding the pace of the lectures?
 ➤ A: too slow, B: it works for me, C: too fast
Today

• Recall syntax of \(\lambda \) calculus

• Semantics of \(\lambda \) calculus
 ➤ Recall free and bound variables
 ➤ Substitution
 ➤ Evaluation order
Review

- λ-calculus syntax: $e ::= x \mid \lambda x. e \mid e_1 e_2$

 ➤ Is $\lambda(x+y).3$ a valid term? (A: yes, B: no)

 ➤ Is $\lambda x. (x \times x)$ a valid term? (A: yes, B: no)

 ➤ Is $\lambda x. (x) y$ a valid term? (A: yes, B: no)
More compact syntax (HW)

• Function application is left associative

\[e_1 \, e_2 \, e_3 \overset{\text{def}}{=} (e_1 \, e_2) \, e_3 \]

• Lambdas binds all the way to right: only stop when you find unmatched closing paren ‘)’

\[\lambda x.\lambda y.\lambda z.e \overset{\text{def}}{=} \lambda x. (\lambda y. (\lambda z.e)) \]
More on syntax

• Write the parens: \(\lambda x. x \ x \)

 > A: \(\lambda x. (x \ x) \)

 > B: \((\lambda x. x) \ x \)
More on syntax

- Write the parens: $\lambda y.\lambda x.x \ x =$
 - A: $\lambda y.(\lambda x.x) \ x$
 - B: $\lambda y.(\lambda x.(x \ x))$
 - C: $(\lambda y.(\lambda x.x)) \ x$
More on syntax

• Is \((\lambda y.\lambda x.x) x = \lambda y.\lambda x.x x\) ?
 - A: yes
 - B: no
How do we compute in \(\lambda \) calculus?
How do we compute in \(\lambda \) calculus?

- Substitution!
 - When do we use substitution?
 - What’s the challenge with substitution?
Example terms

• Reduce \((\lambda x. (2 + x))\) 5

• Reduce \((\lambda x. (\lambda y. 2))\) 3) 5 \rightarrow (\lambda x. 2) 5 \rightarrow 2

• Reduce (board): \((\lambda x. (\lambda y. 2))\) 3) 5 \rightarrow ((\lambda y. 2) 5) \rightarrow 2

• Reduce: \((\lambda x. \lambda y. \lambda z. y+3)\) 4 5 6
Even more compact syntax

• Can always variables left of the .

 ➤ \(\lambda x.\lambda y.\lambda z.e \overset{\text{def}}{=} \lambda x y z.e \)

• This makes the term look like a 3 argument function

 ➤ Can implement multiple-argument function using single-argument functions: called currying (bonus)

• We won’t use this syntax, but you may see in the wild
Why is substitution hard?

- What does this reduce to if we do it blindly?
 - let \(x = a+b \) in
 - let \(a = 7 \) in
 - \(x + a \)

- Recall: let \(x = e_1 \) in \(e_2 \) \(\text{def} \) \((\lambda x. e_2) \ e_1 \)
 - Reduce \((\lambda x. (\lambda a. x + a) 7) \ (a+b) \)
How do we fix this?

• Renaming!
 ➤ A: rename all free variables
 ➤ B: rename all bound variables
Def: free variables (recall)

- If a variable is not bound by a \(\lambda \), we say that it is free

 ➤ e.g., \(y \) is free in \(\lambda x.(x+y) \)

 ➤ e.g., \(x \) is bound in \(\lambda x.(x+y) \)

- We can compute the free variables of any term:

 ➤ \(\text{FV}(x) = \{x\} \)

 ➤ \(\text{FV}(\lambda x.e) = \text{FV}(e) \setminus \{x\} \)

 ➤ \(\text{FV}(e_1 e_2) = \text{FV}(e_1) \cup \text{FV}(e_2) \)
Def: free variables (recall)

• If a variable is not bound by a λ, we say that it is free
 ➢ e.g., y is free in λx.(x+y)

 ➢ e.g., x is bound in λx.(x+y)

• We can compute the free variables of any term:
 ➢ FV(x) = {x}

 ➢ FV(λx.e) = FV(e) \ {x}

 ➢ FV(e₁ e₂) = FV(e₁) \cup FV(e₂)

think: build out!
Def: free variables (recall)

- If a variable is not bound by a λ, we say that it is free

 ➤ e.g., y is free in $\lambda x.(x+y)$

 ➤ e.g., x is bound in $\lambda x.(x+y)$

- We can compute the free variables of any term:

 ➤ $FV(x) = \{x\}$

 ➤ $FV(\lambda x.e) = FV(e) \setminus \{x\}$

 ➤ $FV(e_1 e_2) = FV(e_1) \cup FV(e_2)$

 think: build out!
Capture-avoiding substitution:

- $x[x:=e] = e$
- $y[x:=e] = y$ if $y \neq x$
- $(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])$
- $(\lambda x.e_1)[x := e] = \lambda x.e_1$
- $(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2]$ if $y \neq x$ and $y \not\in \text{FV}(e_2)$
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - \(x[x:=e] = e \)
 - \(y[x:=e] = y \) if \(y \neq x \)
 - \((e_1 \ e_2)[x := e] = (e_1[x := e]) \ (e_2[x:= e]) \)
 - \((\lambda x.e_1)[x := e] = \lambda x.e_1 \)
 - \((\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2] \) if \(y \neq x \) and \(y \not\in \text{FV}(e_2) \)
 - Why the if?
Def: Capture-avoiding substitution

- Capture-avoiding substitution:
 - \[x[x:=e] = e\]
 - \[y[x:=e] = y \text{ if } y \neq x\]
 - \[(e_1 e_2)[x := e] = (e_1[x := e]) (e_2[x := e])\]
 - \[(\lambda x.e_1)[x := e] = \lambda x.e_1\]
 - \[(\lambda y.e_1)[x := e_2] = \lambda y.e_1[x := e_2] \text{ if } y \neq x \text{ and } y \notin \text{FV}(e_2)\]
 - Why the if? If \(y\) is free in \(e_2\) this would capture it!
Lambda calculus: equational theory

- α-renaming or α-conversion
 \[\lambda x. e = \lambda y. e[x:=y] \text{ where } y \notin \text{FV}(e) \]

- β-reduction
 \[(\lambda x. e_1) e_2 = e_1 [x:=e_2] \]

- η-conversion
 \[\lambda x. (e \ x) = e \text{ where } x \notin \text{FV}(e) \]

- We define our \(\rightarrow \) relation using these equations!
Back to old example
Back to old example

• Instead of 1, let’s add x to argument (and do it 2x):

 ➤ \((\lambda f. (\lambda x. f (f x))) (\lambda y. y+x)\)
Back to old example

• Instead of 1, let’s add \(x \) to argument (and do it 2\(x \)):

\[
(\lambda f. (\lambda x. f (f x))) (\lambda y. y + x)
\]

\[
=^\alpha (\lambda f. (\lambda z. f (f z))) (\lambda y. y + x)
\]
• Instead of 1, let’s add x to argument (and do it 2x):

\[
\text{➤ } (\lambda f. (\lambda x. f (f x))) (\lambda y. y+x) \\
=_{\alpha} (\lambda f. (\lambda z. f (f z))) (\lambda y. y+x) \\
=_{\beta} \lambda z. (\lambda y. y+x) ((\lambda y. y+x) z)
\]
Back to old example

• Instead of 1, let’s add x to argument (and do it 2x):

$$\begin{align*}
\lambda f. (\lambda x. f (f x)) (\lambda y. y + x) \\
=_{\alpha} (\lambda f. (\lambda z. f (f z))) (\lambda y. y + x) \\
=_{\beta} \lambda z. (\lambda y. y + x) ((\lambda y. y + x) z) \\
=_{\beta} \lambda z. (\lambda y. y + x) (z + x)
\end{align*}$$
Back to old example

• Instead of 1, let’s add x to argument (and do it 2x):

\[
\begin{align*}
\Rightarrow & \ (\lambda f. (\lambda x. f (f x))) \ (\lambda y. y+x) \\
=\alpha & \ (\lambda f. (\lambda z. f (f z))) \ (\lambda y. y+x) \\
=\beta & \ \lambda z. (\lambda y. y+x) \ ((\lambda y. y+x) \ z) \\
=\beta & \ \lambda z. (\lambda y. y+x) \ (z+x) \\
=\beta & \ \lambda z. z+x+x
\end{align*}
\]
Today

• Recall syntax of λ calculus ✓

• Semantics of λ calculus ✓
 ➤ Recall free and bound variables ✓
 ➤ Substitution ✓
 ➤ Evaluation order
Evaluation order

• What should we reduce first in \((\lambda x.x) \ (\lambda y.y) \ z)\?
 ➤ A: The outer term: \((\lambda y.y) \ z\)
 ➤ B: The inner term: \((\lambda x.x) \ z\)

➤ Does it matter?
 ➤ No! They both reduce to \(z\)!

➤ Church-Rosser Theorem: “If you reduce to a normal form, it doesn’t matter what order you do the reductions.” This is known as confluence.
Evaluation order

• What should we reduce first in \((\lambda x.x)\ (\lambda y.y)\ z\)?

 ➤ A: The outer term: \((\lambda y.y)\ z\)

 ➤ B: The inner term: \((\lambda x.x)\ z\)

• Does it matter?

➤ Church-Rosser Theorem: “If you reduce to a normal form, it doesn’t matter what order you do the reductions.” This is known as confluence.
Evaluation order

• What should we reduce first in \((\lambda x.x) \ ((\lambda y.y) \ z)\)?

 ➤ A: The outer term: \((\lambda y.y) \ z\)

 ➤ B: The inner term: \((\lambda x.x) \ z\)

• Does it matter?

 ➤ No! They both reduce to \(z\)!

➤ **Church-Rosser Theorem**: “If you reduce to a normal form, it doesn’t matter what order you do the reductions.” This is known as confluence.
Does evaluation order really not matter?
Does evaluation order really not matter?

• Consider a curious term called Ω

 $\Omega \overset{\text{def}}{=} (\lambda x . x \; x) \; (\lambda x . x \; x)$
Does evaluation order really not matter?

• Consider a curious term called Ω

\[
\Omega \overset{\text{def}}{=} (\lambda x.x \ x) \ (\lambda x.x \ x)
\]

\[
\overset{\beta}{=} (x \ x)[\ x := (\lambda x.x \ x)]
\]
Does evaluation order really not matter?

• Consider a curious term called Ω

$$
\begin{align*}
\Omega & \overset{\text{def}}{=} (\lambda x. x \ x) \ (\lambda x. x \ x) \\
& =^\beta (x \ x)[x := (\lambda x. x \ x)] \\
& =^\beta (\lambda x. x \ x) \ (\lambda x. x \ x)
\end{align*}
$$
Does evaluation order really not matter?

- Consider a curious term called Ω

 $\Omega \overset{\text{def}}{=} (\lambda x.x \ x) \ (\lambda x.x \ x)$

 $=_{\beta} (x \ x)[\ x:= (\lambda x.x \ x)]$

 $=_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x)$

 $= \Omega$

 Deja vu!
(Ω has no normal form)
Does evaluation order really not matter?

- Consider a function that ignores its argument: (λx.y)

- What happens when we call it on Ω?

(λx.y) Ω
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x. y)\)

- What happens when we call it on \(\Omega\)?

\[(\lambda x. y) \, \Omega\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \(\lambda x. y \)

- What happens when we call it on \(\Omega \)?

\[
\begin{align*}
(\lambda x. y) \Omega &\rightarrow (\lambda x. y) \Omega
\end{align*}
\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x.y) \)

- What happens when we call it on \(\Omega \)?

\[
(\lambda x.y) \Omega \rightarrow (\lambda x.y) \Omega
\]
Does evaluation order really not matter?

• Consider a function that ignores its argument: \((\lambda x.y)\)

• What happens when we call it on \(\Omega\)?

\[
\begin{align*}
(\lambda x. y) \; \Omega &\rightarrow (\lambda x. y) \; \Omega \\
&\rightarrow (\lambda x. y) \; \Omega
\end{align*}
\]
Does evaluation order really not matter?

- Consider a function that ignores its argument: \((\lambda x. y)\)

- What happens when we call it on \(\Omega\)?
Does evaluation order really not matter?

• Nope! Evaluation order does matter!
Call-by-value

• Reduce function, then reduce args, then apply
 ➤ $e_1 e_2$

• JavaScript’s evaluation strategy is call-by-value (ish)
 ➤ What does this program do?
 ➤ $(x \mapsto 33) \ ((x \mapsto x(x)) \ (x \mapsto x(x)))$
Call-by-value

• Reduce function, then reduce args, then apply
 \[e_1 e_2 \rightarrow \cdots \rightarrow (\lambda x.e_1') e_2 \]

• JavaScript’s evaluation strategy is call-by-value (ish)
 \[\text{What does this program do?} \]
 \[(x \mapsto 33) (((x \mapsto x(x)) (x \mapsto x(x)))) \]
Call-by-value

• Reduce function, then reduce args, then apply

 ➤ \[e_1 \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ n \]

• JavaScript’s evaluation strategy is call-by-value (ish)

 ➤ What does this program do?

 ➤ \((x \Rightarrow 33) \ ((x \Rightarrow x(x)) \ (x \Rightarrow x(x)))\)
Call-by-value

• Reduce function, then reduce args, then apply

 \[e_1 \ e_2 \rightarrow \ldots \rightarrow (\lambda x. e_1') \ e_2 \rightarrow \ldots \rightarrow (\lambda x. e_1') \ n \rightarrow e_1'[x:=n] \]

• JavaScript’s evaluation strategy is call-by-value (ish)

 ➤ What does this program do?

 ➤ \((x \Rightarrow 33) ((x \Rightarrow x(x)) (x \Rightarrow x(x)))\)
Call-by-value

- Reduce function, then reduce args, then apply
 \[e_1 \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \ n \rightarrow e_1'[x:=n] \]

- JavaScript’s evaluation strategy is call-by-value (ish)

 - What does this program do?
 \[(x \Rightarrow 33) \ ((x \Rightarrow x(x)) \ (x \Rightarrow x(x))) \]

 - RangeError: Maximum call stack size exceeded
Call-by-name

• Reduce function, then apply
 ➤ \(e_1 \ e_2 \)

• Haskell’s evaluation strategy is call-by-name
 ➤ It only does what is absolutely necessary!
Call-by-name

• Reduce function, then apply

 $\rightarrow \cdots \rightarrow (\lambda x. e_1') \ e_2$

• Haskell’s evaluation strategy is call-by-name

 It only does what is absolutely necessary!
Call-by-name

• Reduce function, then apply

 ➤ \(e_1 \, e_2 \rightarrow \cdots \rightarrow (\lambda x. e_1') \, e_2 \rightarrow e_1'[x:=e_2] \)

• Haskell’s evaluation strategy is call-by-name

 ➤ It only does what is absolutely necessary!
Call-by-name

• Reduce function, then apply

\[
\begin{align*}
& e_1 \ e_2 \rightarrow \cdots \rightarrow \ (\lambda x. e_1') \ e_2 \rightarrow \ e_1'[x:=e_2] \rightarrow \cdots
\end{align*}
\]

• Haskell’s evaluation strategy is call-by-name

\[
\begin{align*}
& \quad \text{It only does what is absolutely necessary!}
\end{align*}
\]
Summary

- A term may have many redexes (subterms can reduce)
 - Evaluation strategy says which redex to evaluate
 - Evaluation not guaranteed to find normal form

- Call-by-value: evaluate function & args before β reduce

- Call-by-name: evaluate function, then β-reduce
Today

• Recall syntax of λ calculus ✓

• Semantics of λ calculus ✓
 ➤ Recall free and bound variables ✓
 ➤ Substitution ✓
 ➤ Evaluation order ✓
Takeaway

• \(\lambda \)-calculus is a formal system
 ➤ “Simplest reasonable programming language” – Ramsey
 ➤ Binders show up everywhere!
 ➤ Know your capture-avoiding substitution!
 ➤ Macros in HW1
 ➤ JavaScript modules in PA1
Bonus: multi-argument λ’s

curry.js