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1. INTRODUCTION

Computers are often subject to external attacks that aim to control software behavior. Typ-
ically, such attacks arrive as data over a regular communication channel and, once resident
in program memory, trigger pre-existing software flaws. By exploiting such flaws, the at-
tacks can subvert execution and gain control over software behavior. For instance, a buffer
overflow in an application may result in a call to a sensitive system function, possibly a
function that the application was never intended to use. The combined effects of these
attacks make them one of the most pressing challenges in computer security.

In recent years, many ingenious vulnerability mitigations have been proposed for de-
fending against these attacks; these include stack canaries [Cowan et al. 1998], runtime
elimination of buffer overflows [Ruwase and Lam 2004], randomization and artificial het-
erogeneity [PaX Project 2004; Xu et al. 2003], and tainting of suspect data [Suh et al.
2004]. Some of these mitigations are widely used, while others may be impractical, for ex-
ample because they rely on hardware modifications or impose a high performance penalty.
In any case, their security benefits are open to debate: mitigations are usually of lim-
ited scope, and attackers have found ways to circumvent each deployed mitigation mecha-
nism [Pincus and Baker 2004; Shacham et al. 2004; Wilander and Kamkar 2003].

The limitations of these mechanisms stem, in part, from the lack of a realistic attack
model and the reliance on informal reasoning and hidden assumptions. In order to be
trustworthy, mitigation techniques should—given the ingenuity of would-be attackers and
the wealth of current and undiscovered software vulnerabilities—be simple to comprehend
and to enforce, yet provide strong guarantees against powerful adversaries. On the other
hand, in order to be deployable in practice, mitigation techniques should be applicable to
existing code (preferably even to legacy binaries) and incur low overhead.

This paper describes and studies one mitigation technique, the enforcement ofControl-
Flow Integrity(CFI), that aims to meet these standards for trustworthiness and deployabil-
ity. The paper introduces CFI enforcement, presents a formal analysis and an implemen-
tation for Windows on the x86 architecture, gives results from experiments, and suggests
applications.

The CFI security policy dictates that software execution must follow a path of aControl-
Flow Graph (CFG) determined ahead of time. The CFG in question can be defined by
analysis—source-code analysis, binary analysis, or execution profiling. For our experi-
ments, we focus on CFGs derived by a static binary analysis. CFGs can also be defined by
explicit security policies, for example written as security automata [Schneider 2000].

A security policy is of limited value without an attack model. In our design, CFI enforce-
ment provides protection even against powerful adversaries that have full control over the
entire data memory of the executing program. This model of adversaries may seem rather
pessimistic. On the other hand, it has a number of virtues. First, it is clear and amenable to
formal definition and analysis. It also allows for the real possibility that buffer overflows
or other vulnerabilities (e.g., [Govindavajhala and Appel 2003]) would lead to arbitrary
changes in data memory, even before control flow is subverted. Finally, it applies even
when an attacker is in active control of a module or thread within the same address space
as the program being protected.

Whereas CFI enforcement can potentially be done in several ways, we rely on a combi-
nation of lightweight static verification and machine-code rewriting that instruments soft-
ware with runtime checks. The runtime checks dynamically ensure that control flow re-
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mains within a given CFG. Previous work has relied on similar instrumentation for other
security policies (e.g., [Erlingsson and Schneider 1999; Evans and Twyman 1999; Bauer
et al. 2005]). As we demonstrate, machine-code rewriting results in a practical implemen-
tation of CFI enforcement. This implementation applies to existing user-level programs on
commodity systems, and yields efficient code even on irregular architectures with variable-
length instruction encodings. Furthermore, although machine-code rewriting can be rather
elaborate, it is simple to verify the proper use of instrumentation in order to ensure inlined
CFI enforcement.

CFI enforcement is effective against a wide range of common attacks, since abnormal
control-flow modification is an essential step in many exploits—independently of whether
buffer overflows and other vulnerabilities are being exploited [Pincus and Baker 2004;
Wilander and Kamkar 2003]. We have examined many concrete attacks and found that
CFI enforcement prevents most of them. These include both classic, stack-based buffer-
overflow attacks and newer, heap-based “jump-to-libc ” attacks. They also include re-
cently described “pointer subterfuge” attacks, which foil many previous mitigation tech-
niques. Of course, CFI enforcement is not a panacea: exploits within the bounds of the
allowed CFG (e.g., [Chen et al. 2005]) are not prevented. These include, for example, cer-
tain exploits that rely on incorrect argument-string parsing to cause the improper launch of
a dangerous executable.

No matter how the CFG is defined or how permissive it is, CFI can be used as a foun-
dation for the enforcement of more sophisticated security policies, including those that
prevent higher-level attacks. For example, CFI can prevent the circumvention of two well-
known enforcement mechanisms,Inlined Reference Monitors(IRMs) andSoftware Fault
Isolation (SFI) [Erlingsson and Schneider 2000; 1999; Wahbe et al. 1993]. In particular,
CFI can help protect security-relevant information such as a shadow call stack [Frantzen
and Shuey 2001; Nebenzahl and Wool 2004; Prasad and Chiueh 2003], which can be used
for placing tighter restrictions on control flow. Further, CFI can serve as the basis of a gen-
eralized, efficient variant of SFI that we callSoftware Memory Access Control(SMAC),
which is embodied in an inlined reference monitor for access to memory regions. SMAC,
in turn, can serve for eliminating some CFI assumptions.

Concretely, we develop fast, scalable implementations of CFI. We focus on one that
provides strong guarantees and applies to existing x86 Windows binaries. Its performance
on popular programs, including the SPEC benchmark suite, gives evidence of its efficiency.
Building on CFI, we develop an implementation of a protected user-level shadow call stack.
To the best of our knowledge, this implementation is an order-of-magnitude faster than
previous software implementations with the same level of protection. Since SFI for x86
has been relatively slow and complex, we also examine the overhead of a simple CFI-based
method for enforcing the standard SFI policy on x86; again, our measurements indicate an
order-of-magnitude overhead reduction.

We prove the correctness of inlined CFI enforcement for an abstract machine with a
simplified instruction set. This formal treatment of inlined CFI enforcement contributes to
assurance and served as a guide in our design. We also analyze a combination of CFI and
SMAC, similarly.

The next section, Section 2, discusses related work. Section 3 informally explains
CFI and its inlined enforcement. Section 4 describes our main CFI implementation and
gives performance results. It also reports on our security-related experiments. Section 5
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shows how additional security enforcement can be built on CFI; it includes a discussion of
IRMs and three important examples: faster SFI, SMAC, and a protected shadow call stack.
Section 6 presents our formal work. (The Appendix contains the corresponding proofs.)
Finally, Section 7 concludes.

2. RELATED WORK

Our work on CFI is related to many techniques that, either directly or indirectly, constrain
control flow. For the purposes of the present section, we divide those techniques according
to whether they aim to achieve security or fault-tolerance.

2.1 CFI and Security

Constraining control flow for security purposes is not new. For example, computer hard-
ware has long been able to prevent execution of data memory, and the latest x86 pro-
cessors support this feature. At the software level, several existing mitigation techniques
constrain control flow in some way, for example by checking stack integrity and validat-
ing function returns [Cowan et al. 1998; Prasad and Chiueh 2003], by encrypting function
pointers [Cowan et al. 2003; Xu et al. 2003], or even by interpreting software using the
techniques of dynamic machine-code translation [Kiriansky et al. 2002].

Clearly, this a crowded, important research area (e.g., [Avijit et al. 2004; Bhatkar et al.
2003; Brumley and Song 2004; Cowan et al. 2001; Crandall and Chong 2004; Frantzen
and Shuey 2001; Kirovski and Drinic 2004; Larson and Austin 2003; Nebenzahl and Wool
2004; Necula et al. 2002; PaX Project 2004; Ruwase and Lam 2004; Suh et al. 2004; Tuck
et al. 2004]). Next we elaborate on some of the pieces of work most closely related to ours.
In short, we believe that the distinguishing features of CFI are its simplicity, its trustwor-
thiness and amenability to formal analysis, its strong guarantees even in the presence of
a powerful adversary with full control over data memory, and its deployability, efficiency,
and scalability. Like many language-based security techniques, but unlike certain systems
for intrusion detection, CFI enforcement applies even to the inner workings of user-level
programs (not just at the system call boundary).

SFI and Inlined Reference Monitors.IRMs are a general technique for enforcing fine-
grained security policies through inlined checks [Erlingsson and Schneider 2000; 1999].
SFI is an important, special IRM that performs dynamic checks for the purposes of memory
protection [Erlingsson and Schneider 1999; McCamant and Morrisett 2005; Small 1997;
Wahbe et al. 1993]. SFI and other IRMs operate by adding code for security checks into
the programs whose behavior is the subject of security enforcement.

IRM implementations must consider that a subject program may attempt to circumvent
the added checks—for example, by jumping around them. As a result, IRM implementa-
tions typically impose restrictions on control flow [McCamant and Morrisett 2005; Win-
wood and Chakravarty 2005]. The necessary restrictions are weaker than CFI.

Those difficulties are compounded on hardware architectures that use variable-length
sequences of opcode bytes for encoding machine-code instructions. For example, on x86
Linux, the machine code for a system call is encoded using a two-byte opcode sequence,
CD 80, in hexadecimal, while the five-byte opcode sequence25 CD 80 00 00 corresponds
to the arithmetic operationand eax, 80CDh . Therefore, on x86 Linux, if this particular
and instruction is present in a program, then jumping to its second opcode byte is one way
of performing a system call. Similarly, other x86 instructions, such as those that read or
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write memory, may be executed through jumps into the middle of opcode byte sequences.
As a result, existing implementations of IRMs for the x86 architecture restrict control

flow so that it can go only to the start of valid instructions of the subject programs. In
particular, control flow to the middle of checking sequences, or directly to the instructions
that those sequences protect, is prohibited.

The performance of IRMs has been problematic, in large measure because of the need
for control-flow checks, particularly on the x86 architecture [Erlingsson and Schneider
1999; McCamant and Morrisett 2005; Small 1997]. CFI offers an alternative, attractive
implementation strategy; its guarantees, while stronger than strictly necessary for IRMs,
imply the required control-flow properties, and thereby CFI can serve as a foundation for
efficient IRM implementation. We elaborate on some of these points in Section 5.

Vulnerability Mitigation Techniques with Secrets.PointGuard [Cowan et al. 2003] stores
code addresses in an encrypted form in data memory. The intent is that, even if attackers
can change data memory, they cannot ensure that control flows to a code address of their
choice: for this, they would have to know the corresponding decryption key. Several other
techniques [Bhatkar et al. 2003; Cowan et al. 1998; PaX Project 2004; Tuck et al. 2004;
Xu et al. 2003] also rely on secret values that influence the semantics of pointer addresses
stored in memory. For instance, PaX ASLR shuffles the virtual-address-space layout of a
process at the time of its creation, using a random permutation derived from a per-process
secret [PaX Project 2004]. Some of these vulnerability mitigation schemes, such as the
PaX Linux kernel patch, may be applied even to unmodified legacy binaries. Others can
be more difficult to adopt, for example when they require complex source-code analysis.

Unfortunately, the reliance on secret values represents a vulnerability, because the values
may not remain secret. In practice, a lucky, knowledgeable, or determined attacker can
defeat these schemes (see [Shacham et al. 2004; Sovarel et al. 2005; Tuck et al. 2004]).

Secure Machine-Code Interpreters.Program Shepherding employs an efficient machine-
code interpreter for implementing a security enforcement mechanism [Kiriansky et al.
2002], as does Strata [Scott and Davidson 2002]. The apparent complexity of these inter-
preters may affect their trustworthiness and complicate their adoption. Their performance
overhead may be another obstacle to their use (see Section 4.2).

On the other hand, a broad class of security policies can be implemented by a machine-
code interpreter. Program Shepherding has been used, in particular, for enforcing a policy
that includes certain runtime restrictions on control flow. That policy is not CFI, as we de-
fine it, but CFI could be enforced by having the interpreter implement the new instructions
presented below in Section 3.1.

Other Research on Intrusion Detection.CFI is also related to a line of research on in-
trusion detection where a security policy for a program is derived from an inspection of
the program itself or its executions [Basu and Uppuluri 2004; Feng et al. 2004; Feng et al.
2003; Forrest et al. 1996; Giffin et al. 2004; Gopalakrishna et al. 2005; Lam and Chiueh
2004; Sekar et al. 2001; Wagner and Dean 2001; Wagner and Soto 2002]. This security
policy may be enforced at runtime using an isolated operating system mechanism, which
cannot be circumvented or subverted, and which disallows invalid behaviors. Unlike in our
work, the behaviors in question are often limited to sequences of system calls or library
calls. This limitation has been regarded as a troublesome issue (e.g., in [Gopalakrishna
et al. 2005, Section 8]).
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In particular, Dean and Wagner describe an intrusion-detection technique that relies on
a program’s static CFG to achieve “a high degree of automation, protection against a broad
class of attacks based on corrupted code, and the elimination of false alarms” at the system-
call level [Wagner and Dean 2001]. Most recent work in this area aims to make the security
policy more precise, reducing the number of false negatives, both by making use of runtime
information about function calls and returns, and also by operating at the level of library
functions as well as that of system calls.

The desired precision poses efficiency and security challenges. For instance, at the time
of a system call, the information contained in the user-level call stack can enable context-
sensitive policies and therefore can enhance precision, but it is unreliable (as it is under
program control), and maintaining a protected representation of the stack in the kernel is
expensive. In this and other examples, there is a tension between efficiency and security.

CFI enforcement can be regarded as a fine-grained intrusion-detection mechanism based
on a nondeterministic finite automaton. When CFI is coupled with a protected shadow call
stack, the level of precision increases [Feng et al. 2004; Giffin et al. 2004]. Like previ-
ous work, CFI enforcement has difficulty with data-driven impossible paths and mimicry
attacks [Wagner and Soto 2002]. CFI precision is also affected by the degree of fan-in/fan-
out at choice points. (The literature contains several measurements of fan-in/fan-out in
program code, which we do not repeat in this paper.) However, these difficulties are re-
duced because CFI restricts the behavior of every machine code instruction in subject pro-
grams. For instance, CFI ensures that, in the context of an application or library function,
a system call can happen only after proper argument validation, thus eliminating mimicry
attacks that provide malicious arguments to the system call (cf. [Gopalakrishna et al. 2005,
Section 8]).

At the same time, CFI enforcement can be regarded as a basis for other intrusion-
detection machinery. By using CFI and SMAC, one may be able to avoid modifications
to the underlying operating system and the cost of operating-system interactions, while
basically providing the same level of protection to the intrusion-detection machinery.

Language-Based Security.Virtually all high-level languages have execution models that
imply some properties about the expected control flows. Even unsafe high-level languages
are not meant to permit jumps into the middle of a machine-code instruction. Safer high-
level languages, such as Java and C#, provide stronger guarantees. Their type systems,
which aim to ensure memory safety, also constrain what call sequences are possible. Un-
fortunately, such guarantees hold only at the source level. Language implementations may
not enforce them, and native method implementations may not respect them. Furthermore,
it is questionable whether every piece of software will be written or rewritten in these
languages. For instance, media codecs, automatic memory management, and operating-
system interrupt dispatching typically rely on hand-written, optimized machine code; it
seems unlikely that they will enjoy the full benefits of high-level languages, even in new
systems.

Similar guarantees can be obtained at the assembly and binary levels through the use of
proof-carrying code (PCC) [Necula 1997] or typed assembly language (TAL) [Morrisett
et al. 1999]. Again, while PCC and TAL primarily aim to provide memory safety, they
also impose static restrictions on control flow. Their properties have often been analyzed
formally. The analyses focus on a model in which data memory may be modified by the
subject program, but they typically do not give guarantees if another entity or a flaw may
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corrupt data memory (e.g., [Govindavajhala and Appel 2003]).
In the long term, CFI enforcement may have a narrower set of possible benefits than the

use of PCC and TAL. On the other hand, in many circumstances, CFI enforcement may be
easier to adopt. CFI enforcement also addresses the need for mitigations to vulnerabilities
in existing code. Finally, CFI enforcement is significantly simpler (and therefore poten-
tially more trustworthy) than many alternative, language-based techniques, such as TAL
typechecking.

2.2 CFI and Fault-Tolerance

Our work is also related to research on fault-tolerance of computer systems against soft
faults (single-event upsets). Most relevant are methods that attempt to discern program
execution deviation from a prescribed static CFG solely through software-based methods
(e.g., [Oh et al. 2002; Reis et al. 2005; Venkatasubramanian et al. 2003]). Those methods
exhibit many similarities with CFI enforcement, but also significant differences.

The main differences stem from differences in attack and failure models. The fault-
tolerance work is focused on one-time random bit-flipping in program state and, in par-
ticular, on such bit-flipping in registers; other memory is assumed to use error-correcting
codes. CFI, on the other hand, is concerned with a persistent, adversarial attacker that
can arbitrarily change data memory (in particular, by exploiting program vulnerabilities),
but makes certain assumptions on register contents. Most fault-tolerance work provides
probabilistic guarantees whereas CFI entails that even a motivated, powerful adversary can
never execute even one instruction outside the legal CFG. On the other hand, CFI does not
aim to provide fault tolerance.

The method of Oh et al. [2002] is most similar to our CFI instrumentation in how it
restricts control flow through inlined labels and checks. That method, like ours, encodes
the CFG (or an approximation) by embedding a set of static, immediate bit patterns in the
program code. However, in that method, the runtime checks are evaluated at the destina-
tions of all branches and jumps, not at their sources. These checks are therefore ill-suited
for our purposes. For instance, they fail to prevent jumps into the middle of functions, in
particular jumps that may bypass security checks (such as access control checks). These
details are consistent with the probabilistic failure model, but they would be unsatisfactory
for security.

3. INLINED CFI ENFORCEMENT

As noted in the introduction, we rely on dynamic checks for enforcing CFI, and implement
the checks by machine-code rewriting. We also rely on simple static inspection for veri-
fying the correctness of this rewriting, as well for establishing other CFI properties. This
section describes the basics of inlined CFI enforcement and some of its details.

Depending on the context, such as the operating system and software environment, some
security enforcement mechanisms that look attractive may, in practice, be either difficult
to adopt or easy to circumvent. We therefore consider not only the principles but also
practical aspects of CFI enforcement, in this section and the rest of the paper.

3.1 Enforcing CFI by Instrumentation

CFI requires that, during program execution, whenever a machine-code instruction trans-
fers control, it targets a valid destination, as determined by a CFG created ahead of time.
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Since most instructions target a constant destination, this requirement can usually be dis-
charged statically. However, for computed control-flow transfers (those whose destination
is determined at runtime) this requirement must be discharged with a dynamic check.

Machine-code rewriting presents an apparently straightforward strategy for implement-
ing dynamic checks. It is however not without technical wrinkles. In particular, a rewritten
program no longer uses the same code memory, and all memory addresses in the pro-
gram must be adjusted accordingly. Furthermore, changes like that of the memory layout
may not be possible without potentially affecting the semantics of some unconventional
programs. Modern tools for binary instrumentation address these and other wrinkles, of-
ten trading generality and simplicity for efficiency [Srivastava et al. 2001; Srivastava and
Eustace 1994]. In particular, these tools exploit debug information in order to facilitate
analysis and do not process stripped binaries (cf. [Harris and Miller 2005]). As a result,
machine-code rewriting is practical and dependable.

It remains to design the dynamic checks. There are several possible strategies. For in-
stance, CFI may be enforced by dynamic checks that compare the target address of each
computed control-flow transfer to a set of allowed destination addresses. Such a compari-
son may be performed by the machine-code equivalent of a switch statement over a set of
constant addresses. Since the set of allowed destination addresses may be large, this naive
strategy will lead to unacceptable overhead.

Next we explain our preferred alternatives for dynamic checks. Some of the initial ex-
planations are deliberately simplistic, for the purposes of the exposition; variants and elab-
orations appear below. In particular, for these initial explanations, we rely on three new
machine-code instructions, with an immediate operandID : an effect-freelabel ID in-
struction; a call instructioncall ID, DST that transfers control to the code at the address
contained in registerDST only if that code starts withlabel ID ; and a corresponding
return instructionret ID . Such instructions could perhaps be added to common proces-
sors to form the basis for attractive hardware CFI implementations [Budiu et al. 2006].
However, it is unrealistic to expect the deployment of hardware CFI support in the near
future. In the remainder of the paper, we discuss only software CFI implementations. As
we demonstrate, inlined CFI enforcement can be implemented in software on current pro-
cessors, in particular on the x86 processor, with only a modest overhead.

CFI instrumentation modifies—according to a given CFG—eachsourceinstruction and
each possibledestinationinstruction of computed control-flow transfers. Two destinations
areequivalentwhen the CFG contains edges to each from the same set of sources. For the
present purposes, let us assume that if the CFG contains edges to two destinations from
a common source, then the destinations are equivalent; we reconsider this assumption in
Section 3.4. At each destination, instrumentation inserts a bit pattern, or ID, that identifies
an equivalence class of destinations. Instrumentation also inserts, before each source, a
dynamic check, or ID-check, that ensures that the runtime destination has the ID of the
proper equivalence class.

Figure 1 shows a C program fragment where the functionsort2 calls a qsort-like func-
tion sort twice, first withlt and then withgt as the pointer to the comparison function.
The right side of Figure 1 shows an outline of the machine-code blocks for these four
functions and all CFG edges between them. In the figure, edges for direct calls are drawn
as light, dotted arrows; edges from source instructions are drawn as solid arrows, and re-
turn edges as dashed arrows. In this example,sort can return to two different places in
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bool lt(int x, int y) {

return x < y;

}

bool gt(int x, int y) {

return x > y;

}

sort2(int a[ ], int b[ ], int len)

{

sort( a, len, lt );

sort( b, len, gt );

}

lt():

ret 23

label 17

sort2():

call sort

call sort

label 55

sort():

call 17,R

ret 55

label 23

ret …

gt():

ret 23

label 17

label 55

Fig. 1. Example program fragment and an outline of its CFG and CFI instrumentation.

sort2 . Therefore, the CFI instrumentation includes two IDs in the body ofsort2 , and
an ID-check when returning fromsort , arbitrarily using55 as the ID bit pattern. (Here,
we do not specify to which of the two callsitessort must return; Section 5 shows how
to guarantee that each return goes to the most recent callsite, by using a protected shadow
call stack.) Similarly, becausesort can call eitherlt or gt , both comparison functions
start with the ID17 ; and thecall instruction, which uses a function pointer in regis-
ter R, performs an ID-check for17 . Finally, the ID23 identifies the block that follows
the comparison callsite insort , so both comparison functions return with an ID-check
for 23 .

This example exposes patterns that are typical when CFI instrumentation is applied to
software compiled from higher-level programming languages. CFI instrumentation does
not affect direct function calls: only indirect calls require an ID-check, and only func-
tions called indirectly (such as virtual methods) require the addition of an ID. Function
returns account for many ID-checks, and an ID must be inserted after each function call-
site, whether that function is called indirectly or not. The remaining computed control flow
is typically a result of switch statements and exceptions and, in both cases, an ID is needed
at each possible destination and an ID-check at the point of dispatch.

3.2 CFI Instrumentation Code

Refining the basic scheme for CFI instrumentation, we should choose specific machine-
code sequences for ID-checks and IDs. The choice is far from trivial. Those code se-
quences should use instructions of the architecture of interest, and ideally they should be
both correct and efficient.

Figures 2 and 3 show example x86 CFI instrumentation of ID-checks and IDs, respec-
tively. The figures give two alternative forms of ID-checks and IDs, showing both their
actual x86 opcode bytes and x86 assembly code equivalents. The figures use as the ID
the 32-bit hexadecimal value12345678 . The source (shown in Figure 2) is a computed
jump instructionjmp ecx , whose destination (shown in Figure 3) may be amov from the
stack. Here, the destination is already inecx so the ID-checks do not have to move it to
a register—although, in general, ID-checks must do this in order to avoid a race condition
(see Section 4.1). The code sequences for ID-checks overwrite the x86 processor flags
and, in (b), a register is assumed available for use; Section 4 explains why this behavior is
reasonable.

In alternative (a), the ID is inserted as data before the destinationmov instruction, and
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Bytes (opcodes) x86 assembly code Comment

FF E1 jmp ecx ; a computed jump instruction

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; compare data at destination

75 13 jne error_label ; if not ID value, then fail

8D 49 04 lea ecx, [ecx+4] ; skip ID data at destination

FF E1 jmp ecx ; jump to destination code

or, alternatively, instrumented as (b):

B8 77 56 34 12 mov eax, 12345677h ; load ID value minus one

40 inc eax ; increment to get ID value

39 41 04 cmp [ecx+4], eax ; compare to destination opcodes

75 13 jne error_label ; if not ID value, then fail

FF E1 jmp ecx ; jump to destination code

Fig. 2. Example CFI instrumentations of an x86 computed jump instruction.

Bytes (opcodes) x86 assembly code Comment

8B 44 24 04 mov eax, [esp+4] ; first instruction

... ; of destination code

can be instrumented as (a):

78 56 34 12 DD 12345678h ; label ID, as data

8B 44 24 04 mov eax, [esp+4] ; destination instruction

...

or, alternatively, instrumented as (b):

3E 0F 18 05 78 56 34 12 prefetchnta [12345678h] ; label ID, as code

8B 44 24 04 mov eax, [esp+4] ; destination instruction

...

Fig. 3. Example CFI instrumentations of a valid destination for an x86 computed jump.

the ID-check modifies the computed destination using alea instruction to skip over the
four ID bytes. The ID-check directly compares the original destination with the ID value.
Thus, the ID bit pattern is embedded within the ID-checkcmp opcode bytes. As a result,
in (a), an attacker that can somehow affect the value of theecx register might be able to
cause a jump to thejne instruction instead of the intended destination.

Alternative (b) avoids the subtlety of (a), by using ID−1 as the constant in the ID-check
and incrementing it to compute the ID at runtime. Also, alternative (b) does not modify the
computed jump destination but, instead, effectively insertslabel ID at the start of the
destination—using a side-effect-free x86 prefetch instruction to synthesize thelabel ID
instruction.

Section 4 describes machine-code sequences that build on these two alternatives.

3.3 Assumptions

In our design, CFI enforcement provides protection even against powerful adversaries that
control the data memory of the executing program. The machine-code instruction se-
quences that implement ID-checks and IDs do not rely on the integrity of data memory.
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It is however critical that three assumptions hold. These three assumptions are:

UNQ. Unique IDs: After CFI instrumentation, the bit patterns chosen as IDs must not
be present anywhere in the code memory except in IDs and ID-checks. This property
is easily achieved by making the space of IDs large enough (say 32-bit, for software of
reasonable size) and by choosing IDs so that they do not conflict with the opcode bytes in
the rest of the software.

NWC. Non-Writable Code: It must not be possible for the program to modify code
memory at runtime. Otherwise, an attacker might be able to circumvent CFI, for example
by causing the overwriting of an ID-check. NWC is already true on most current systems,
except during the loading of dynamic libraries and runtime code-generation.

NXD. Non-Executable Data: It must not be possible for the program to execute data as
if it were code. Otherwise, an attacker could cause the execution of data that is labeled
with the expected ID. NXD is supported in hardware on the latest x86 processors, and
Windows XP SP2 uses this support to enforce the separation of code and data [Microsoft
Corporation 2004]. NXD can also be implemented in software [PaX Project 2004]. By
itself (without CFI), NXD thwarts some attacks, but not those that exploit pre-existing
code, such as “jump-to-libc ” attacks (see Section 4.3).

Somewhat weaker assumptions may sometimes do. In particular, even without NXD,
inlined CFI enforcement may be successful as long as the IDs are randomly chosen from
a sufficiently large set; then, if attackers do not know the particular IDs chosen, ID-checks
will probably fail whenever data execution is attempted. This “probabilistic” defense is
similar to that provided by StackGuard and other mitigation mechanisms based on se-
crets [Cowan et al. 2003; Cowan et al. 1998; Xu et al. 2003]. Since a lucky, persistent, or
knowledgeable attacker will still succeed [Shacham et al. 2004; Sovarel et al. 2005; Tuck
et al. 2004], we do not favor this CFI variant and do not discuss it further. We believe that
CFI should be supported by either hardware or software NXD; Section 5 shows how CFI
enforcement can be integrated with one particular software implementation of NXD.

The assumptions can be somewhat problematic in the presence of self-modifying code,
runtime code generation, and the unanticipated dynamic loading of code. Fortunately, most
software is rather static—either statically linked or with a statically declared set of dynamic
libraries. For example, although the Apache web server is a complex, extensible software
system, configuration files bound the set of its loadable modules prior to the start of ex-
ecution. Similarly, for the Outlook email client, the Windows registry bounds the set of
loadable components. Nevertheless, we have considered expanding inlined CFI enforce-
ment with the goal of handling runtime code generation and other dynamic additions of
code.

The implementation of IDs and ID-checks relies on a few registers, and requires that
the values contained in those registers are not subject to tampering. This requirement
is compatible with kernel-based multi-threading, since one program thread cannot affect
the registers of other program threads. Furthermore, this requirement is straightforwardly
met, as long as preemptive user-level context switching does not read those register values
from data memory, and as long as the program in question cannot make system calls that
arbitrarily change system state. This restriction on system calls is necessary for excluding
system calls that make data memory executable—in contradiction with NXD—and that
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change code memory—in contradiction with NWC and possibly also in violation of UNQ.1

In general, assumptions are often vulnerabilities. When assumptions are invalidated
somehow, security guarantees are diminished or void. It is therefore important to justify
assumptions (as we do for NXD, for instance) or at the very least to make them explicit,
to the extent possible. Of course, we recognize that, in security, any set of assumptions is
likely to be incomplete. We focus on the assumptions that we consider most relevant on the
basis of analysis and past experience, but for example neglect the possibility that transient
hardware faults might affect instruction semantics in arbitrary ways (e.g., [Oh et al. 2002;
Reis et al. 2005; Venkatasubramanian et al. 2003]).

3.4 On CFG Precision and Destination Equivalence

Preferably, control-flow enforcement should be as precise as possible. However, even the
reliance of CFI on a finite CFG implies a lack of precision. In particular, a finite CFG does
not capture the dynamic execution call stack; we address this limitation in Section 5.4.
Furthermore, without some care, schemes based on IDs and ID-checks may be more per-
missive than necessary.

Section 3.1 assumes that if the CFG contains edges to two destinations from a common
source, then the destinations are equivalent. This assumption need not always hold. For
instance, in a program compiled from a language with subtyping, one may have a typeT
and a supertypeT ′ that both implement a methodtoString ; a toString invocation
onT may have a single destinationm while a toString invocation onT ′ may have the
destinationm but also a second destinationm′. In this case,m andm′ are not equivalent,
but an imprecise CFI enforcement technique may allow control to flow from atoString
invocation onT to m′.

One strategy for increasing precision is code duplication. For instance, two separate
copies of the functionstrcpy can target two different destination sets when they return.
In general, code duplication can be used for eliminating the possibility of overlapping but
different destination sets. (Specifically, we can prove that a simple construction that splits
CFG nodes into multiple nodes always yields graphs in which overlapping destination
sets are identical.) This approach, in the limit, amounts to complete function inlining,
apart from recursive calls; it has been used in several intrusion detection implementations
(e.g., [Gopalakrishna et al. 2005]).

Alternatively, refining the instrumentation is also a good option for increasing precision.
For example, more than one ID can be inserted at certain destinations, or ID-checks can
sometimes compare against only certain bits of the destination IDs. We have implemented
such a scheme as part of an exploration of architectural support for security [Budiu et al.
2006].

Of course, the assumption of Section 3.1 can also be made true by adding edges to the
CFG, thus losing precision. In practice, this alternative can often be satisfactory: even a
coarse CFI instrumentation with only one ID value—or with one ID value for the start of
functions and another ID value for valid destinations for function returns—will yield sig-

1Most software security enforcement mechanisms adopt restrictions of this sort even for single-threaded pro-
grams, since system calls that arbitrarily change system state invalidate many assumptions of those mechanisms,
and can even turn off those mechanisms. Nevertheless, the restrictions are usually left unstated because, in
practice, they are difficult to satisfy without support from the operating system. CFI makes it easier to enforce
the restrictions, by allowing system calls and their arguments to be constrained without any operating system
modification (as discussed further in Section 5).
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nificant guarantees. For instance, that instrumentation will prevent jumps into the middle
of functions, which are necessary for some exploits.

3.5 Phases of Inlined CFI Enforcement

Inlined CFI enforcement can proceed in several distinct phases. The bulk of the CFI in-
strumentation, along with its register liveness analysis and other optimizations, can be
separated from the CFG analysis on which it depends, and from install-time adjustments
and verifications.

The first phase, the construction of the CFGs used for CFI enforcement, may give rise
to tasks that can range from program analysis to the specification of security policies.
Fortunately, a practical implementation may use standard control-flow analysis techniques
(e.g., [Aho et al. 1985; Atkinson 2002; Wagner and Dean 2001]), for instance at com-
pile time. Section 4 describes how our x86 implementation applies these techniques by
analyzing binaries (rather than source code).

After CFI instrumentation (perhaps at installation time), another mechanism can estab-
lish the UNQ assumption. Whenever software is installed or modified, IDs can be updated
to remain unique, as is done with pre-binding information in some operating systems [Ap-
ple Computer 2003].

Finally (for example, when a program is loaded into memory and assembled from com-
ponents and libraries), a CFI verification phase can statically validate direct jumps and sim-
ilar instructions, the proper insertion of IDs and ID-checks, and the UNQ property. This
last verification step has the significant benefit of making the trustworthiness of inlined CFI
enforcement be independent of the complexity of the previous processing phases. The ver-
ification can be seen as a special case of PCC proof-checking, where the instrumentation
obviates the need for explicit logical proofs. Only the verification is required for estab-
lishing CFI; design or implementation flaws in the instrumentation do not compromise
security.

4. A PRACTICAL CFI IMPLEMENTATION

This section reports on our implementation of inlined CFI enforcement, and on measure-
ments and experiments.

4.1 The Implementation

We have implemented inlined CFI enforcement for Windows on the x86 architecture.
Our implementation relies on Vulcan [Srivastava et al. 2001], a mature, state-of-the art
instrumentation system for x86 binaries that requires neither recompilation nor source-
code access. This system addresses the challenges of machine-code rewriting in a prac-
tical fashion—as evidenced by its regular application to software produced by Microsoft.
Thereby, despite being only a prototype, our implementation of inlined CFI enforcement
is both practical and realistic.

Our implementation uses Vulcan for building a CFG of the program being instrumented.
This CFG construction correctly handles x86 instructions that perform computed control-
flow transfers—including function returns, calls through function pointers, and instructions
emitted for switch statements and dynamic dispatch like that of C++ vtables. Our CFG is
conservative in that each computedcall instruction may go to any function whose ad-
dress is taken; we discover those functions with a flow-insensitive analysis of relocation
entries in the binary. (Thus, our implementation can deal even with programs that persist
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Bytes (opcodes) x86 assembly code Comment

FF 53 08 call [ebx+8] ; call a function pointer

is instrumented usingprefetchnta destination IDs, to become:

8B 43 08 mov eax, [ebx+8] ; load pointer into register

3E 81 78 04 78 56 34 12 cmp [eax+4], 12345678h ; compare opcodes at destination

75 13 jne error_label ; if not ID value, then fail

FF D0 call eax ; call function pointer

3E 0F 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID, used upon the return

Fig. 4. Our CFI implementation of a call through a function pointer.

Bytes (opcodes) x86 assembly code Comment

C2 10 00 ret 10h ; return, and pop 16 extra bytes

is instrumented usingprefetchnta destination IDs, to become:

8B 0C 24 mov ecx, [esp] ; load address into register

83 C4 14 add esp, 14h ; pop 20 bytes off the stack

3E 81 79 04 DD CC BB AA cmp [ecx+4], AABBCCDDh ; compare opcodes at destination

75 13 jne error_label ; if not ID value, then fail

FF E1 jmp ecx ; jump to return address

Fig. 5. Our CFI implementation of a function return.

function pointers in files, but cannot deal with programs such as interactive debuggers that
turn arbitrary strings into addresses.) Our implementation is simplified by certain Win-
dows particulars: threads are implemented by the kernel, there are no signals like those of
Unix, and Windows binaries provide a “SafeSEH” static list of all possible runtime excep-
tion handlers. Other CFG intricacies, such assetjmp andlongjmp , are addressed using
techniques from the programming-languages and the intrusion-detection literatures [Atkin-
son 2002; Feng et al. 2003; Gopalakrishna et al. 2005; Wagner and Dean 2001].

Figures 4 and 5 show, respectively, how our CFI implementation rewrites the x86 ma-
chine code for an indirect function call and a corresponding function return. The destina-
tion of thecall instruction is stored in memory at addressebx+8 ; the argument10h
makes theret instruction also pop 16 bytes of parameters off the stack. Next we explain
some of the details of the rewritten code. On x86, CFI instrumentation can implement
IDs in various ways (e.g., by successive opcodes that add and subtract the same constant).
Our prototype, like alternative (b) of Section 3.2, uses prefetch instructions for IDs. Our
ID-checks, however, take after the other alternative of Section 3.2: acmp instruction di-
rectly compares against the destination ID bit pattern—and, hence, an infinite loop of the
ID-check opcode bytes3E...D0 is possible. (We do not regard such loops as a serious
failure of CFI, since an attacker that controls all of memory invariably has many ways
of causing infinite loops.) In order to avoid a time-of-check-to-time-of-use race condi-
tion [Bishop and Dilger 1996], source instructions where the destination address resides in
data memory (such asret ) are changed to ajmp to an address in a register. Without this
precaution, a destination address would be subject to corruption between the time of a suc-
cessful ID-check and that of the corresponding computed control-flow transfer, so control
may flow to a destination address other than the one that has been checked. If an ID-check
fails, our implementation immediately aborts execution by using a Windows mechanism
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Fig. 6. Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

for reporting security violations.
Our CFI instrumentation is crafted to allow low enforcement overheads for most pro-

grams. Because the IDs and ID-checks have the same locality properties as executing
code, they are not penalized by high memory latency. (They may however increase pres-
sure on caches, especially when instruction and data caches are separate.) On the x86,
the ID-check instrumentation can make use of the standard calling conventions for further
performance gain: in almost all cases, theeax andecx registers can be used directly at
function calls and returns, respectively, and the x86 flags do not have to be saved. During
our experiments, we discovered only about a dozen functions—mostly handwritten code
in standard libraries—where state (such as the x86 flags) needs to be preserved.

All CFI optimization, like the above, must be done carefully, since it can lead to a
change in program semantics or to invalid CFI instrumentation. Fortunately, the use of
a final verification phase can ensure that the CFI guarantees will hold during execution
despite any errors in optimizations.

4.2 Measurements

We measured the overhead of our inlined CFI enforcement on some of the common SPEC
computation benchmarks [Standard Performance Evaluation Corporation 2000]. We per-
formed all the experiments in this paper on Windows XP SP2 in “Safe Mode” (where most
daemons and kernel modules are disabled). Our hardware was a Pentium 4 x86 proces-
sor at 1.8GHz with 512MB of RAM. The target programs were compiled with Microsoft
Visual C++ 7.1 using full optimizations. For SPEC, the inputs were the complete refer-
ence datasets and the output was validated as the correct result. We report the average of
three runs; measurement variance was negligible, with standard deviation of less than one
percent.

The CFG construction and CFI instrumentation of each binary took about 10 seconds,
with the size of the binary increasing by an average 8%. Figure 6 gives the normalized over-
head of CFI enforcement, shown as increase in the running time of each CFI-instrumented
benchmark relative to the running time of the original benchmark binaries. On average
the benchmarks took 16% longer to execute, with the measured overhead ranging from
zero to 45%. This overhead results from a number of factors, including increased cache
pressure; the overhead is not simply correlated with the frequency of executed computed
control-flow transfers in these benchmarks (see [Hennessy and Patterson 2006, page B-
41]).

As shown by Figure 6, our prototype inlined CFI enforcement hardly affects the per-
formance of some programs, but it can cause a substantial slowdown of other programs.
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Overall, the measured performance overhead seems tolerable, even though we have not
yet explored most of the optimizations possible in x86 CFI instrumentation. Because of
CFI verification, such further optimization should reduce overhead without making CFI
enforcement less trustworthy.

Moreover, the performance overhead of CFI enforcement is competitive with—or even
better than—the cost of most comparable techniques that aim to mitigate security vulner-
abilities (e.g., [Cowan et al. 2003; Kiriansky et al. 2002; Ruwase and Lam 2004]). For
instance, the overhead of Program Shepherding is more than 100% for the benchmark pro-
gramcrafty on Windows; the corresponding CFI enforcement overhead is 45%, and
this is our highest measured overhead. Similarly, the overhead of Program Shepherding is
more than 660% forgcc on Windows, and can be brought down to 35% only by exposing
the security mechanism itself to attack; the corresponding CFI enforcement overhead is
under 10%.

Note that the SPEC benchmarks focus on CPU-intensive programs with integer arith-
metic. CFI will cause relatively less overhead for I/O-driven server workloads. For exam-
ple, one might expect to see an even smaller performance impact on FTP than on SPEC (as
in [Xu et al. 2002]).

4.3 Security-Related Experiments

It is difficult to quantify the security benefits of any given mitigation technology: the effects
of unexploited vulnerabilities cannot be predicted, and real-world attacks—which tend to
depend on particular system details—can be thwarted, without any security benefits, by
trivial changes to those details.

Even so, in order to assess the effectiveness of CFI, we examined by hand some well-
known security exploits (such as those of the Blaster and Slammer worms) as well as sev-
eral recently reported vulnerabilities (such as the Windows ASN.1 and GDI+ JPEG flaws).
CFI would not have prevented Nimda and some similar exploits that rely on the incorrect
parsing of input strings, such as URLs, to cause the improper launch of thecmd.exe shell
or some other dangerous executable (see also [Chen et al. 2005]). On the other hand, CFI
would have prevented all the other exploits that we studied because, in one way or another,
they all endeavored to deviate from the expected control flow. Many exploits performed a
“jump-to-libc ” control transfer from a program point where this jump was not expected.
Often this invalid control transfer was attempted through heap overflows or some form of
pointer subterfuge (of the kind recently described by Pincus and Baker [2004]).

Pointer subterfuge relies on modifications to data memory, and can result in possibly
arbitrary further modifications to data memory. Hence, thwarting pointer subterfuge calls
for techniques that—like ours—afford protection even when attackers are in full control of
data memory.

As a concrete example, let us consider the published attack on the GDI+ JPEG flaw in
Windows [Florio 2004]. This attack starts by causing a memory corruption, overwriting
a global variable that holds a C++ object pointer. When this pointer is later used for call-
ing a virtual destructor, the attacker has the possibility of executing code of their choice.
A CFI ID-check at this callsite can prevent this exploit, for instance by restricting valid
destinations to the C++ virtual destructor methods of the GDI+ library.

As another concrete example that illustrates the benefits of CFI, we discuss the following
C function, which is intended to return the median value of an array of integers:
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regular_qsort:

...

push ebx

mov eax, esi

call shortsort

add esp, 0Ch

...

push edi ; an attack is

push ebx ; possible by

call [esp+comp_fp] ; going to X

add esp, 8

test eax, eax

jle label_lessthan

...

regular_library_function:

mov edi,edi

push ebx

mov ebx,esp

push ecx

...

pop ebp

X: mov esp,ebx

pop ebx

ret

qsort_with_cfi:

...

push ebx

mov eax, esi

call shortsort

prefetchnta [AABBCCDDh]

add esp, 0Ch

...

push edi

push ebx

mov eax, [esp+comp_fp]

cmp [eax+4], 12345678h ; CFI check

jne error label ; prevents

call eax ; going to X

prefetchnta [AABBCCDDh]

add esp, 8

test eax, eax

jle label_lessthan

...

Fig. 7. Fragments of machine-code for themedian example.

int median( int * data, int len, void * cmp )
{

// must have 0 < len <= MAX_LEN
int tmp[MAX_LEN];
memcpy( tmp, data, len * sizeof(int) );
qsort( tmp, len, sizeof(int), cmp );
return tmp[len/2];

}

This code is vulnerable—and can be exploited by an attacker that controls the inputs—even
on systems that use deployed mitigation techniques such as stack canaries and support for
non-executable data. Specifically, we have constructed actual exploits for this vulnerability
that work even on Windows XP SP2 with x86 hardware NXD support and with the Win-
dows analogue of StackGuard [Cowan et al. 1998]. One exploit is based on a traditional
stack-based buffer overflow; others work via C++ vtables and the heap. CFI enforcement
thwarts all these exploits.

Figure 7 shows the original, vulnerable machine code relevant to the stack-based exploit.
This exploit is enabled when a buffer overflow overwrites the comparison-function pointer
cmp before it is passed toqsort . The exploit is triggered whenqsort tries to call
the corrupted argumentcmp, thereby transferring control to an instruction sequence found
in the middle of an existing function (labeledX in Figure 7). Executing this instruction
sequence sets the stack pointeresp to the address of data chosen by the attacker and uses
that data in a computed control-flow transfer (a return). The exploit subsequently proceeds
through the unwinding of the stack, which holds return addresses and other data chosen by
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the attacker. As each stack frame is popped, the return instruction transfers control to the
start of a particular, existing library function. This sequence of library-code invocations
creates a new, writable page of executable memory, writes code of the attacker’s choice to
that page, and transfers control to that code. As a result, the attacker gains full control over
the system.

Figure 7 also shows the CFI instrumentation ofqsort . As shown in the figure, the in-
strumentation includes IDs at return points and ID-checks before computedcall instruc-
tions, but not before direct calls. (Although not shown in the figure, the instrumentation
also includes IDs at the start of functions whose address is taken, such as the intended
comparison function.) With CFI, the defect in themedian function does not enable ex-
ploits. CFI forbids invalid control transfers into the middle of functions (as well as returns
to the start of functions), and it therefore prevents the necessary first step of the exploits
and would also prevent subsequent steps. This protection is not dependent on how closely
the CFI runtime guarantees correspond to a precise CFG of the program; even a coarse
CFG has the desired effect.

For a final set of experiments, we ported to Windows a suite of 18 tests for dynamic
buffer-overflow prevention developed by Wilander and Kamkar [2003]. (Wilander and
Kamkar were unable to provide us with the source code for two of the 20 tests from their
study.) The tests in the original suite concern whether attackers could directly execute
shellcode of their choosing. We extended the tests to consider also “jump-to-libc ” and
pointer subterfuge attacks. We computed CFGs for these tests, and applied our CFI instru-
mentation. With CFI enforcement, none of the exploits in this test suite were successful,
because they attempted to deviate from the corresponding CFGs. This result is encour-
aging, especially since other mitigation techniques have failed these tests [Wilander and
Kamkar 2003].

5. BUILDING ON CFI

CFI ensures that runtime execution proceeds along a given CFG, guaranteeing, for in-
stance, that the execution of a typical function always starts at the beginning and proceeds
from beginning to end. Thereby, CFI can increase the reliability of any CFG-based tech-
nique (for example, strengthening previous techniques against buffer overflows and for
intrusion detection [Larochelle and Evans 2001; Wagner and Dean 2001]).

This section describes other applications of CFI, as a foundation for Inlined Reference
Monitors (IRMs), for SFI in particular, and for Software Memory Access Control (SMAC),
which we introduce here. It also shows how to tighten CFI enforcement by relying on
either SMAC or standard x86 hardware support. A follow-up paper [Erlingsson et al.
2006] describes a comprehensive protection system, named XFI, based on the material in
this section.

5.1 CFI as a Foundation for IRMs

IRMs enforce security policies by inserting into subject programs the code for validity
checks and also any additional state that is needed for enforcement [Erlingsson and Schnei-
der 2000]. IRMs require that the subject program can neither circumvent the inserted va-
lidity checks nor subvert the added state. By constraining the CFG enforced by CFI, the
first of these requirements is easily satisfied. Further, SMAC (discussed below) supports
isolated data memory regions in which the added IRM state can be safely kept. Thus, CFI
and SMAC greatly facilitate the implementation of IRMs.
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int compute_sum( int a[], int len )

{

int sum = 0;

for(int i = 0; i < len; ++i) {

sum += a[i];

}

return sum;

}

...

mov ecx, 0h ; int i = 0

mov esi, [esp+8] ; a[] base ptr

and esi, 20FFFFFFh ; SFI masking

LOOP: add eax, [esi+ecx*4] ; sum += a[i]

inc ecx ; ++i

cmp ecx, edx ; i < len

jl LOOP

Fig. 8. Leveraging CFI for optimizations: hoisting an SFI check out of a loop.

In particular, CFI can contribute to the IRM enforcement of security policies that restrict
a program’s use of the underlying operating system (for instance, preventing files with
some filenames from being written) [Provos 2003]. Such policies are often necessary;
many of their existing implementations modify operating systems, something that CFI
enables us to avoid. With CFI, it is easy to enumerate those points in a program where
system calls can be made. At each such point, an IRM validity check can be inserted, and
CFI can ensure that the check cannot be circumvented.

5.2 Faster SFI

Software Fault Isolation (SFI) is one particular type of IRM designed to emulate traditional
memory protection. In SFI, code is inserted at each machine-code instruction that accesses
memory to ensure that the target memory address lies within a certain range [Erlingsson
and Schneider 1999; McCamant and Morrisett 2005; Small 1997; Wahbe et al. 1993].

Much as in Section 5.1, CFI makes SFI instrumentation non-circumventable. CFI can
also reduce SFI overhead. For instance, the guarantees about control flow remove the need
to check memory addresses in local variables repeatedly. Figure 8 demonstrates one such
optimization. The figure shows a C function that sums the contents of an array, and the
first two basic blocks of the x86 machine code that a compiler might emit for this function.
(The start of the first basic block is elided.) The machine code includes anand instruction
that masks off the top bits from the base address of the array, constraining the array to
reside at an address whose top eight bits are either00h or 20h . As long as the low
memory (whose addresses start with00h ) is inaccessible, this use of anand instruction
can establish several disjoint, isolated memory regions as demonstrated in PittSFIeld, a
recent, efficient x86 SFI implementation [McCamant and Morrisett 2005].

The SFI literature is full of other optimizations that simplify the inserted checks. For
example, checks can often be eliminated when memory is accessed through a register plus
a small constant offset, as long as inaccessible “guard pages” are placed before and after
permitted memory ranges. This optimization is especially useful for accesses to local, stack
variables, such as reading the value atesp+8 in Figure 8. However, the weak control-flow
guarantees of past SFI implementations make it difficult to reason about program behavior
and, partly as a result, past optimizations have sometimes led to vulnerabilities [Erlingsson
and Schneider 1999; McCamant and Morrisett 2005].

CFI makes optimizations more robust and enables many new ones. For the code in
Figure 8, CFI allows theand instruction to be hoisted out of the loop; thus, at runtime,
a single masking operation suffices for checking all memory accesses into the array. Past
implementations of SFI require a masking operation to accompany each execution of the
add instruction, because a computed jump might result in that instruction executing with
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arbitrary values in registersesi andecx . CFI precludes such computed jumps, and with
CFI it is easy to see that loop execution does not changeesi and incrementsecx from a
base of zero.

These optimizations can result in a striking overhead reduction. The SFI literature in-
cludes measurements of three systems for x86: Vino’s MiSFIT [Small 1997], x86 SASI
[Erlingsson and Schneider 1999], and PittSFIeld [McCamant and Morrisett 2005]. For
comparison, we applied CFI and SFI, with the optimizations of Figure 8, to two benchmark
programs,hotlist and the C reference implementation of MD5. Thehotlist bench-
mark searches a linked list of integers for a particular value [Small 1997]. Forhotlist ,
MiSFIT and SASI produce 140% and 260% overheads, respectively, when both memory
reads and writes are restricted. Our corresponding measurement shows only 22% overhead.
For MD5, the reported performance overheads for PittSFIeld and MiSFIT range from 23%
to 50% [McCamant and Morrisett 2005; Small 1997]. Our corresponding measurement
shows only 4.7% overhead.

For this preliminary investigation of SFI, we performed some of the machine-code
rewriting by hand on the two benchmark programs. As is common in previous work on
SFI, we also made several simplifying assumptions about memory layouts, for example
that low memory is inaccessible. In many existing systems, those assumptions cannot be
fully satisfied. For useful, realistic memory protection, the rewriting process should be
fully automated, and those assumptions should be removed. The SFI policy should also
be revisited. We have addressed these concerns in the XFI protection system [Erlingsson
et al. 2006].

5.3 SMAC: Generalized SFI

SMAC is an extension of SFI that allows different access checks to be inserted at different
instructions in the program being constrained. Therefore, SMAC can enforce policies
other than those of traditional memory protection. In particular, SMAC can create isolated
data memory regions that are accessible from only specific pieces of program code, for
instance, from a library function or even individual instructions. Thus, SMAC can be used
to implement security-relevant state for IRMs that cannot be subverted. For instance, the
names of files about to be opened can first be copied to memory only accessible from the
file-open functionfopen , and then checked against a security policy.

CFI can help with SMAC optimizations, much as it does for SFI optimizations; con-
versely, SMAC can help in eliminating CFI assumptions. SMAC can remove the need
for NWC, by disallowing writes to certain memory addresses, and for NXD, by prevent-
ing control flow outside those addresses. This synergy between CFI and SMAC is not a
circular-reasoning fallacy, as we demonstrate in the formal treatment of CFI with SMAC
(see Section 6.5).

Figure 9 shows SMAC instrumentation that can guarantee that only code is executed.
As in Figure 8, anand instruction masks off the top bits of the destination addresses of
computed x86 function calls and returns. Thus, code memory is restricted to addresses
whose top eight bits are40h (provided that addresses that start with00h are invalid). To
ensure NWC and NXD for simple regions of code, stack, and data, the SMAC checks can
be as straightforward as this singleand instruction.

Alternatively, the SMAC checks might embody elaborate policies, and allow arbitrary
layouts of data and code memory regions, although the code for such checks is likely to be
more complex and less efficient than that of Figure 9. In this paper, since it suffices for our
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call eax ; call a function pointer (destination address)

with CFI, and SMAC discharging the NXD requirement, can become:

and eax, 40FFFFFFh ; mask to ensure address is in code memory

cmp [eax+4], 12345678h ; compare opcodes at destination

jne error_label ; if not ID value, then fail

call eax ; call function pointer

prefetchnta [AABBCCDDh] ; label ID, used upon the return

ret ; return (popping address off the stack)

with CFI, and SMAC discharging the NXD requirement, can become:

mov ecx, [esp] ; load return address into a register

and ecx, 40FFFFFFh ; mask to ensure it is a code memory address

cmp [ecx+4], AABBCCDDh ; compare opcodes at destination

jne error_label ; if not ID value, then fail

add esp, 4h ; discard return address value off the stack

jmp ecx ; jump to return address in the register

Fig. 9. Instrumentation of x86call andret , with CFI and SMAC.

immediate purposes, we follow the SFI literature and focus on coarser-grained memory
protection.

5.4 A Protected Shadow Call Stack

Because CFI concerns a finite, static CFG, it cannot ensure that a function call returns
to the callsite most recently used for invoking the function. Complementing CFI with the
runtime call stack (see [Chiueh and Hsu 2001; Frantzen and Shuey 2001; Giffin et al. 2002;
2004; Nebenzahl and Wool 2004; Prasad and Chiueh 2003]) can guarantee this property
and increase the precision of CFI enforcement. However, if CFI is to rely on runtime
information such as a call stack, the information should not be maintained in unprotected
memory, as the ordinary call stack usually is, since the attacker may corrupt or control
unprotected memory. Therefore, a protected shadow call stack is required. The assumption
that attackers cannot modify this stack directly is necessary, but not sufficient. It is also
crucial to guard the stack against corruption that may result from program execution.

One possible strategy for implementing a protected shadow call stack employs CFI and
SMAC. Specifically, the shadow call stack may be maintained in a memory region whose
addresses start with a specific prefix (e.g.,10h ), and protected by SMAC checks such as
those of Section 5.3. Static verification can then ensure that only SMAC instrumentation
code at call and return instructions can modify this memory region, and only by correctly
pushing and popping the correct values.

In this section we focus on an alternative implementation strategy. The resulting imple-
mentation is even simpler and more efficient than one that employs SMAC. It leverages the
CFI guarantees and standard x86 hardware support. Specifically, we maintain the shadow
call stack in an isolated x86 segment2. With CFI, static verification can ensure that a par-

2The x86 architecture allows multiplesegmentsto exist simultaneously within an application. A segment is a
specified region of memory, named using an ordinalselector. A segment is adopted by loading its ordinal into
a segment register; there are six such registers, of which some are rarely, if ever, used in modern application
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call eax ; call a function pointer (destination address)

with a CFI-based implementation of a protected shadow call stack using hardware segments, can become:

add gs:[0h], 4h ; add 4 to the index to the top of the shadow call stack

mov ecx, gs:[0h] ; load the index into a register

mov gs:[ecx], LRET ; store the return address at the top

cmp [eax+4], 12345678h ; compare opcodes at destination

jne error_label ; if not ID value, then fail

call eax ; call function pointer

LRET: ...

ret ; return (popping address off the stack)

with a CFI-based implementation of a protected shadow call stack using hardware segments, can become:

mov ecx, gs:[0h] ; get the index to the top of the shadow call stack

mov ecx, gs:[ecx] ; load the return address from the top into a register

sub gs:[0h], 4h ; subtract 4 from the index

add esp, 4h ; discard redundant return address from the normal stack

jmp ecx ; jump to return address in the register

Fig. 10. Instrumentation of x86call and ret , with CFI and a protected shadow call
stack.

ticular segment register, or segment selector, is used properly by the instrumentation code
for call and return instructions, and that only this instrumentation code accesses the cor-
responding segment. Without CFI, on the other hand, it is extremely difficult to trust the
use of segments in an x86 machine-code sequence of non-trivial size. For instance, the
opcodes for loading an improper segment selector might be found within basic blocks in
system library code, or even within the opcodes of a long, multi-byte instruction; without
CFI, an attacker might be able to direct execution to those places.

Figure 10 shows how we use segments in our instrumentation. The segment register
gs always points to the memory segment that holds the shadow call stack and which has
been created to be isolated and disjoint from other accessible memory segments. On Win-
dows,gs is unused in application code; therefore, without limitation, CFI verification can
statically preclude its use outside this instrumentation code. As shown in the figure, the
instrumentation code maintains (in memory locationgs:[0h] ) an offset into this seg-
ment that always points to the top of the stack. The use of the protected shadow call stack
implies that each return goes to the correct destination, so no ID-checks are required on
returns in this instrumentation code.

The isolated memory segment for the shadow call stack can be created by user-mode ap-
plication code, as long as this activity happens before all other code executes, and only this
code loads new selectors into segment registers. For each thread of execution, this initial
code can truncate the existing code and data segments and specify that the new, isolated
segment lies within the freed-up address region. CFI can guarantee that the machine code
for this setup activity will remain inaccessible once it has executed.

code. All memory accesses are performed relative to a segment specified by a segment register; the instructions
determine which segment register is to be used, either implicitly or explicitly. On most popular operating systems,
user-level code can specify memory regions for its own local segments, which are then context-switched with the
application.
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Fig. 11. Execution overhead of inlined CFI enforcement with a protected shadow call stack
on SPEC2000 benchmarks.

Alternatively, the isolated memory segment might be created by the operating system.
Support from the operating system could provide other benefits, such as reduced resource
consumption by fast detection of overflows in the shadow call stack (for example, using
“guard pages”) and dynamic increases in the segment size. We do not assume this support
from the operating system, as it is not standard at present. We depend only on current
Windows features.

We have implemented a protected shadow call stack for Windows on the x86 architec-
ture, relying on segments and CFI, as outlined above. Figure 11 shows detailed perfor-
mance measurements for the SPEC benchmarks. We observed only a modest performance
overhead for our CFI-protected shadow call stack instrumentation: on average 21%, with
5% for gzip and 11% forgcc . The overhead includes that of CFI enforcement without
the unnecessary ID-checks on returns. These measurements are consistent with the over-
head reported in the literature forunprotectedshadow call stacks (whose integrity could
be subverted by attackers) [Prasad and Chiueh 2003]. In contrast, the overhead reported
in the literature forprotectedshadow call stacks ranges from 729% (forgzip ) to 1900%
(for gcc ) [Chiueh and Hsu 2001; Giffin et al. 2002]. While the dramatic improvement
that we obtain is partly due to the use of segments, this use of segments is possible only
because of CFI.

Once we have a protected shadow call stack, further restrictions on control flow become
possible. For example, the control-flow policy could require that every call from a certain
functiong to another functionh be immediately preceded by a call from a third function
f to g. (Analogous restrictions often appear in the literature on intrusion detection.) Even
further restrictions become possible if we keep a protected computation history that records
all control transfers. For example, the control-flow policy could then require that a certain
function f is called at most as often as another functiong. Such restrictions may some-
times be desirable; for instance, they might prevent some “confused deputy” attacks [Hardy
1988]. On the other hand, we believe that even the simplest kind of CFI enforcement is
quite effective at thwarting external attacks that aim to control software behavior.

6. FORMAL STUDY

In this section we present our formal study of CFI. We view this study as central to our
work, as a major difference with literature on previous mitigation tools, and as an important
similarity with research on type-safe languages. We have found it helpful for clarifying
hypotheses and guarantees. We have also found it helpful as a guide: in our research,
we rejected several techniques that were based on unclear assumptions or that would have
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provided hard-to-define protections.
This section begins with a high-level overview of our formal models and results (Sec-

tion 6.1). This overview should be sufficient for casual readers. Sections 6.2 and 6.3 give
details of our models of programs and attackers. Section 6.4 concerns CFI, and Section 6.5
further considers CFI with SMAC. The Appendix contains the corresponding proofs.

6.1 Overview

Our formal study includes a semantics for programs, definitions for program instrumenta-
tion, and results about the behavior of instrumented programs. The semantics allows for
the possibility that an attacker controls data memory. The program instrumentation has
two variants, with and without SMAC; the latter addresses a machine model with weaker
assumptions. In this subsection, we focus on the variant without SMAC, except where
otherwise noted. Our main theorems establish that CFI holds for instrumented programs.

The machine model and the programs that we employ are typical of research on the
principles of programming languages. They enable us to consider CFI but exclude vir-
tual memory, dynamic linking, threading, and other sophisticated features found in actual
systems. In the machine model, an execution state consists of a code memoryMc, a data
memoryMd, an assignment of values to registersR, and a program counterpc. Here,Mc

andMd map addresses to words,R maps register numbers to words, andpc is a word.
Essentially, our language is a minor variant of that of Hamid et al. [2002]. We add only an
instruction in which an immediate value can be embedded, as a label, and which behaves
like a no-op. It is directly analogous to thelabel ID instruction of Section 3.1.

We give a formal operational semantics for the instructions of our language. For each of
the instructions, the semantics says how the instruction affects memory, the registers, and
the program counter. For example, for the instructionadd rd , rs , rt , the semantics says:

If Mc(pc) contains the encoding ofadd rd , rs , rt , and the current state has
code memoryMc, data memoryMd, program counter valuepc, and register
valuesR, and if pc + 1 is within the domain ofMc, then in the next state
the code memory and data memory are stillMc andMd, respectively,pc is
incremented, andR is updated so that it mapsrd to R(rs) + R(rt).

We consider SMAC with a variant of this semantics that includes fewer built-in checks. In
the example of theadd rd , rs , rt instruction, the variant does not include the precondition
that pc + 1 is within the domain ofMc. In other words, the machine model allows the
possibility thatpc points outside code memory, and the instrumentation aims to ensure that
this possibility is harmless.

We depart significantly from the work of Hamid et al. and other previous work by in-
cluding a representation of the attacker in our model. Despite its simplicity, we regard
this departure as one of our main formal contributions. Since the attacker that we have
in mind is quite powerful, one might imagine that it could be difficult to capture all its
capabilities. Fortunately, we can adopt an economical representation of the attacker. This
representation consists in introducing one more rule into our operational semantics. The
new rule expresses attacker steps, and says that at any time the attacker may modify data
memory and most registers. It excludes the small number of distinguished registers on
which the instrumentation relies; it also excludes code memory, consistently with our as-
sumption NWC.

As usual in programming-language theory, the operational semantics describes state
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transitions by precise rules. For the instructionadd rd , rs , rt , for example, we have that:

(Mc |Md ,R, pc) →n (Mc |Md ,R{rd 7→ R(rs) + R(rt)}, pc + 1)

whenMc(pc) holdsadd rd , rs , rt andpc + 1 is in the domain ofMc . The relation→n is
a binary relation on states that expresses normal execution steps. For the attacker, we have
a rule that enables the following transitions, for allMc , Md , Md

′, R, andpc:

(Mc |Md ,R, pc) →a (Mc |Md
′,R, pc)

The relation→a is a binary relation on states, andMd
′ is the arbitrary new value of the

data memory. We do not show the modifications to registers, for simplicity—our actual
rule is more general in this respect. The next-state relation→ is the union of→n and→a.

In our formal study, instrumentation is treated as a series of precise checks on programs.
The checks capture the conditions that well-instrumented code should satisfy, and do not
address how the instrumentation happens. Only the former concern is directly relevant
to security. We writeI(Mc) when code memoryMc is well-instrumented according to
our criteria. These criteria include, for example, that every computed jump instruction is
preceded by a particular sequence of instructions, which depends on a given CFG. When
we consider SMAC, we also require that every memory operation is preceded by a par-
ticular sequence of instructions. Those sequences are analogous to the ones used in our
actual implementation and described in detail in this paper. There are however differences
in specifics, largely because of the differences between the simple machine model of our
formal study and the x86 architecture.

With these definitions, we obtain formal results about our instrumentation methods.
Those results express the integrity of control flow despite memory modifications by an
attacker. Our main theorems say that every execution step of an instrumented program is
either an attack step in which the program counter does not change, or a normal step to a
state with a valid successor program counter. That is:

Let S0 be a state with code memoryMc such thatI(Mc) andpc = 0, and
let S1, . . . , Sn be states such thatS0 → S1 → ... → Sn. Then, for alli ∈
0..(n−1), eitherSi →a Si+1 or thepc atSi+1 is one of the allowed successors
for thepc atSi according to the given CFG.

Thus, despite attack steps, the program counter always follows the CFG.
Although this theorem is fairly easy to state, it has strong consequences. In partic-

ular, it implies that the attacker cannot cause the execution of code that would appear
unreachable according to the CFG. For example, if a certainlibc routine should not
be reachable, then executing the code memory will never result in running that routine.
Thus, “jump-to-libc ” attacks that target dangerous routines (such assystem in Unix
andShellExecute in Windows) can be effectively thwarted.

We have yet to pursue a similar formal study for the x86 architecture. Such a study
may well be viable (as suggested by recent work [McCamant and Morrisett 2005]), but it
may produce diminishing returns, and it would be arduous, not least because of the current
absence of a complete formal specification for the x86 architecture.

6.2 The Formal Setting: Programs and their Semantics

Next we define the setting for our formal work.
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Instr ::= instructions
label w label (with embedded constant)
add rd , rs , rt add registers
addi rd , rs ,w add register and word
movi rd ,w move word into register
bgt rs , rt ,w branch-greater-than
jd w jump
jmp rs computed jump
ld rd , rs(w) load
st rd(w), rs store
illegal illegal

Fig. 12. Instructions.

6.2.1 Machine Model.For our machine model, we define words, memories, register
files, and states as follows:

Word = {0, 1, ...}
Mem = Word → Word

Regnum = {0, 1, ..., 31}
Regfile = Regnum → Word
State = Mem × Regfile ×Word

We often adopt the notationsw andpc for elements ofWord , andM , R, andS for ele-
ments ofMem, Regfile, andState, respectively. WhenS is a state, we may writeS.M ,
S.R, andS.pc for theMem component, theRegfile component, and thepc in S, respec-
tively.

We further distinguish between code memory (Mc) and data memory (Md), so we split
memories into two functions with disjoint domains, each of them contiguous. We assume
that a statically defined program that comprisesn > 0 instructions always occupies mem-
ory locations 0 ton − 1, with the first instruction of the program located at address 0.
When we split a memoryM into Mc andMd , we writeM = Mc |Md , providedMc con-
tainsn > 0 instructions and the following constraints hold:dom(Mc) = {0..(n − 1)},
anddom(Md) = dom(M) − dom(Mc), andMc(a) = M(a) for all a ∈ dom(Mc), and
Md(a) = M(a) for all a ∈ dom(Md). We consider only states whose memory is parti-
tioned in this way. We writeS.Mc to indicate the code memory of stateS, andS.Md for
the data memory.

Similarly, we split register files into distinguished and general registers. When we split
R into R0−2 andR3−31 , we writeR = R0−2 |R3−31 provided the following constraints
hold: dom(R0−2 ) = {r0, r1, r2} anddom(R3−31 ) = {r3..r31}, andR0−2 (r) = R(r)
for all r ∈ dom(R0−2 ) andR3−31 (r) = R(r) for all r ∈ dom(R3−31 ). We distinguish
the registersr0, r1, andr2 because we assume that they are used only in CFI enforcement
code.

6.2.2 Instructions.Our language is that of Hamid et al. [2002] plus alabel instruction
in which an immediate value can be embedded and which behaves like a no-op. The set of
instructions is given in Figure 12. In the figure,w is a word andrs , rt , andrd are registers.
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If Dc(Mc(pc))= then(Mc |Md ,R, pc) →n

label w (Mc |Md ,R, pc + 1), whenpc + 1 ∈ dom(Mc)

add rd , rs , rt (Mc |Md ,R{rd 7→ R(rs) + R(rt)}, pc + 1),
whenpc + 1 ∈ dom(Mc)

addi rd , rs ,w (Mc |Md ,R{rd 7→ R(rs) + w}, pc + 1),
whenpc + 1 ∈ dom(Mc)

movi rd ,w (Mc |Md ,R{rd 7→ w}, pc + 1), whenpc + 1 ∈ dom(Mc)

bgt rs , rt ,w (Mc |Md ,R,w), whenR(rs) > R(rt) ∧ w ∈ dom(Mc)
(Mc |Md ,R, pc + 1),
whenR(rs) ≤ R(rt) ∧ pc + 1 ∈ dom(Mc)

jd w (Mc |Md ,R,w), whenw ∈ dom(Mc)

jmp rs (Mc |Md ,R,R(rs)), whenR(rs) ∈ dom(Mc)

ld rd , rs(w) (Mc |Md ,R{rd 7→ M (R(rs) + w)}, pc + 1),
whenpc + 1 ∈ dom(Mc)

st rd(w), rs (Mc |Md{R(rd) + w 7→ R(rs)},R, pc + 1),
whenR(rd) + w ∈ dom(Md) ∧ pc + 1 ∈ dom(Mc)

Fig. 13. Normal steps.

(Mc |Md ,R0−2 |R3−31 , pc) →a (Mc |Md
′,R0−2 |R3−31

′, pc)

Fig. 14. Attacker steps.

Thus, instructions may contain words. Like Hamid et al., we omit the routine details of
instruction storage and decoding. We assume a functionDc : Word → Instr that decodes
words into instructions.

6.2.3 A Semantics of Programs under Attack.In this subsection we give a first seman-
tics for instructions. Figures 13 and 14 define two binary relations on states,→n and→a.

—The relation→n models normal small steps of execution, that is, those steps that may
occur in the absence of an attacker. This relation is deliberately incomplete: many states
are “stuck”, including those whereDc(Mc(pc)) = illegal .

—The relation→a models attack steps. In such a step, an attacker may unconditionally
and arbitrarily perturb data memory and non-distinguished registers. For example, the
attacker may modify a part of memory to contain a bit pattern that appears elsewhere in
memory. Thus, intuitively, the attacker can read all of memory.
An attack step is quite similar to the possible effect of a computation step in another
execution thread (which our model does not represent). In particular, another thread can
access all of memory, and can arbitrarily modify data memory. Moreover, registers are
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specific to a thread, and the values of the registers of one thread might be affected by
another thread only if those values are read from memory (possibly after being “spilled”
into memory). An attack step therefore corresponds to a computation step in another
thread if the values of general registers may be read from memory but those of distin-
guished registers are not. On the other hand, for simplicity, an attack step need not be
restricted to computable functions.

The relation→, defined below, is the union of→n and→a. Thus, this relation represents
a computation step in general, either a normal state transition or one caused by an attacker.

S →n S ′

S → S ′
S →a S ′

S → S ′

In security, it is important to identify and to support assumptions, as mentioned in Sec-
tion 3.3. Our definitions embody several assumptions, which we discuss next:

(1) The definition of→n implies NXD (that is, that data cannot be executed as code).
Similarly, the definitions of→n and→a imply NWC (that is, that code memory can-
not be modified at runtime). As indicated in Section 3.3, NXD and NWC are often
reasonable assumptions.

(2) The definition of→a allows for the possibility that the attacker is in control of data
memory. As indicated in the introduction, this aspect of the model of the attacker is
conservative but unfortunately close to reality.

(3) The definition of→a implies that the attacker cannot modify the distinguished reg-
istersr0, r1, andr2. Our proofs require only a weaker assumption, namely that the
attacker cannot modifyr0, r1, andr2 during the execution of CFI enforcement code.
Section 3.3 argues the practicality of such assumptions on registers.

(4) The machine model and the definition of→n exclude the possibility that a jump would
land in the middle of an instruction. In practice, many architectures (RISC architec-
tures, in particular) exclude this possibility, and our x86 CFI implementation prevents
it. For simplicity, we do not address this feature in the formal analysis.

6.2.4 A More Permissive Semantics of Programs under Attack.Assumptions NXD
and NWC do not hold in some settings, for example on architectures without memory-
protection facilities. We should therefore consider an alternative to the program semantics
of Section 6.2.3. For brevity, and since there is no risk of ambiguity below, we reuse the
symbols→n,→a, and→.

The resulting, relaxed definition of normal execution steps is in Figure 15. These normal
steps can arbitrarily violate NXD and NWC, possibly under the indirect influence of an
attacker. On the other hand, the rules for attack steps and general steps remain those
of Section 6.2.3. In particular, we still require that an attack step cannot directly alter
code memory, the distinguished registers, or the program counter. We believe that these
restrictions often hold in practice. Moreover, they are necessary: without them, an attacker
could trivially create new code (outside the original CFG) and trigger its execution.

6.3 The CFG

Our instrumentation of a program relies on a CFG for the program, as specification of a
CFI policy. Next we discuss this CFG.
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If Dc(M(pc))= then(M,R, pc) →n

label w (M,R, pc + 1)

add rd , rs , rt (M,R{rd 7→ R(rs) + R(rt)}, pc + 1)

addi rd , rs ,w (M,R{rd 7→ R(rs) + w}, pc + 1)

movi rd ,w (M,R{rd 7→ w}, pc + 1)

bgt rs , rt ,w (M,R,w), whenR(rs) > R(rt)
(M,R, pc + 1), whenR(rs) ≤ R(rt)

jd w (M,R,w)

jmp rs (M,R,R(rs))

ld rd , rs(w) (M,R{rd 7→ M (R(rs) + w)}, pc + 1)

st rd(w), rs (M{R(rd) + w 7→ R(rs)},R, pc + 1)

Fig. 15. Normal steps (assuming less memory protection).

The nodes of the CFG are words that represent program addresses. Given a graphG
for Mc, andw ∈ dom(Mc), we letsucc(w) be the set of wordsw′ ∈ dom(Mc) such that
G has an edge fromw to w′. We say thatw′ is a destination if there existsw such that
Dc(Mc(w)) is a computed jump instruction (jmp rs ) andw′ ∈ succ(w).

We need not constrain how the CFG is obtained, or how it matches the executions of the
program before instrumentation. We do require:

(1) If Dc(Mc(w0)) = label w , or add rd , rs , rt , or addi rd , rs ,w , or movi rd ,w , or
ld rd , rs(w), or st rd(w), rs , thensucc(w0) = {w0 + 1} ∩ dom(Mc).

(2) If Dc(Mc(w0)) = bgt rs , rt ,w thensucc(w0) = {w0 + 1,w} ∩ dom(Mc).

(3) If Dc(Mc(w0)) = jd w thensucc(w0) = {w} ∩ dom(Mc).

(4) If Dc(Mc(w0)) = jmp rs thensucc(w0) 6= ∅.

(5) Dc(Mc(w0)) = illegal thensucc(w0) = ∅.

(6) If w0, w1 ∈ dom(Mc), thensucc(w0) ∩ succ(w1) = ∅ or succ(w0) = succ(w1).

When these properties hold, we say that the graph in question is a CFG forMc . These
properties hold by definition for many graphs that arise from code analysis. Only the last
one (6) is non-trivial; its significance is discussed in Section 3.4.

Because of property 6, we can put destinations into equivalence classes. We give each
equivalence class an identifier, called an ID. We represent these IDs by words. For ajmp
instruction at addressw in Mc, we let dst(w) be the ID of all successors ofw. Thus,
dst(w) is the ID of any element ofsucc(w).

We write succ(Mc, G,w) anddst(Mc, G,w), instead ofsucc(w) anddst(w) respec-
tively, when we wish to be explicit onMc andG.
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6.4 CFI Enforcement (without SMAC)

In this subsection we present and analyze a basic technique for CFI enforcement (without
SMAC), using the semantics of Section 6.2.3.

6.4.1 CFI Enforcement by Instrumentation.For the sake of trustworthiness, as sug-
gested in Section 3.5, CFI enforcement should preferably depend only on simple, final,
static verification steps that check that instrumentation has produced an acceptable result.
These steps, but not the machine-code rewriting, will be part of the “trusted computing
base”.

For the present purposes, the verification steps consist in ensuring that a code memory
Mc and a CFGG for Mc satisfy the following conditions:

(1) If n is the length ofdom(Mc), then the instruction atn− 1 is illegal . (In other words,
the final instruction isillegal .)

(2) If w0 ∈ dom(Mc) is a destination, then the instruction atw0 is label w, wherew
is w0’s ID. Conversely, ifw0 ∈ dom(Mc) holds alabel instruction, thenw0 is a
destination. (In other words,label instructions can be used only for inline tagging
with IDs. This requirement applies to code memory, but not to data memory. In fact,
the attacker may, at any time, writelabel w into any location in data memory.)

(3) If w0 ∈ dom(Mc) holds ajmp instruction, then this instruction isjmp r0 and it is
preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

wherers is some register,HALT is the address of theillegal instruction specified in
condition (1), andIMM is the wordw such thatDc(w) = label dst(w0). This code
compares the dynamic target of a jump, which is initially in registerrs, to thelabel
instruction that is expected to be the target statically. When the comparison succeeds,
the jump proceeds. When it fails, the program halts.

(4) If bgt rs , rt ,w or jd w appear anywhere inMc, then the target addressw does not
hold ajmp instruction or the occurrences of the instructions

ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT

that precede ajmp instruction according to condition (3). The target address may hold
addi r0, rs, 0. (Note that (2) removes the possibility that ajmp instruction can jump
to anotherjmp instruction or to any of the preceding instructions considered here.)

We let the predicateI(Mc, G) mean thatMc and its CFGG satisfy the conjunction of the
conditions above.
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6.4.2 A Theorem about CFI.With these definitions, and under the semantics of Sec-
tion 6.2.3, we can obtain formal results about our instrumentation method.

Here we give a simple but fundamental result that expresses integrity of control flow. The
following theorem states that every execution step of an instrumented program is either an
attack step in which the program counter does not change, or a normal step to a state with
a valid successor program counter. Thus, despite attack steps, the program counter always
follows the CFG.

Theorem 1
Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and I(Mc , G), where G is a CFG
for Mc , and let S1, . . . , Sn be states such that S0 → S1 → ... → Sn. Then, for all i ∈
0..(n−1), either Si →a Si+1 and Si+1.pc = Si.pc, or Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem, which we present in Appendix A.1, consists in a fairly classical
induction on executions, with an invariant. In particular, the proof constrains the values of
the distinguished registers within the instrumentation sequences, but puts no restrictions
on the use of these registers elsewhere in the program.

The basic technique for CFI enforcement described in this section depends on NXD.
More specifically, Theorem 1 depends on the formal version of NXD, which says that,
during execution, the targets of code transfers are always in the domain of code memory.
Without this property, the theorem would fail, since data memory may well containlabel w
instructions that look like the expected destinations ofjmp instructions.

6.5 CFI Enforcement with SMAC

CFI enforcement with SMAC eliminates the need for NXD and allows program execution
steps to modify code memory, with the semantics of Section 6.2.4. While it may be viewed
as a refinement of our basic technique (perhaps via a simulation relation), in this subsection
we present it and study it on its own, as a complete and separate mechanism.

6.5.1 CFI Enforcement by Instrumentation with SMAC.We assume that the minimum
and maximum addresses of code and data memory are known at instrumentation time, and
let min(M) andmax(M) respectively return the minimum and maximum addresses in the
domain of memoryM .

The SMAC-based verification steps consist in ensuring that a code memoryMc and a
CFGG for Mc satisfy the following conditions:

(1) If n is the length ofdom(Mc), then the instruction atn− 1 is illegal .
(2) If w0 ∈ dom(Mc) is a destination, then the instruction atw0 is label w, wherew

is w0’s ID. Conversely, ifw0 ∈ dom(Mc) holds alabel instruction, thenw0 is a
destination.

(3) If w0 ∈ dom(Mc) holds at ast instruction, then this instruction isst r0(0), rs and it
is preceded by a specific sequence of instructions, as follows:

addi r0, rd, w
movi r1,max(Md)
movi r2,min(Md)
bgt r0, r1,HALT
bgt r2, r0,HALT
st r0(0), rs
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whererd is some register,w is some offset (a word), andHALT is the address of the
illegal instruction specified in condition (1). This code constrains a store to memory,
with address initially given byR(rd) + w, to be betweenmin(Md) andmax(Md).
This constraint is imposed by two dynamic comparisons. When these two comparisons
succeed, the store proceeds; otherwise, the program halts.

(4) If w0 ∈ dom(Mc) holds ajmp instruction, then this instruction isjmp r0 and it is
preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
movi r1,max(Mc)
movi r2,min(Mc)
bgt r0, r1,HALT
bgt r2, r0,HALT
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

wherers is some register,HALT is the address of theillegal instruction specified in
condition (1), andIMM is the wordw such thatDc(w) = label dst(w0). This code
is a combination of the code forjmp described in Section 6.4 with an analogue of the
code forst described above. As in the code forst , an address is constrained to be
within a range; here the range is the domain of code memory, and the address is the
dynamic target of a jump, held inrs. Then, as in the code forjmp in Section 6.4, that
dynamic target is compared with thelabel instruction expected statically. The program
halts unless all checks succeed.

(5) If bgt rs , rt ,w or jd w appear anywhere inMc, then the target addressw is in code
memory (that is,w ∈ dom(Mc)), andw does not holdst instructions or any of the
preceding instructions listed in (3), orjmp instructions or any of the preceding instruc-
tions listed in (4), except possibly the first of these instructions, namelyaddi r0, rd, w
andaddi r0, rs, 0, respectively.

We let the predicateIs(Mc, G) mean thatMc and its CFGG satisfy the conjunction of the
conditions above.

6.5.2 A Theorem about CFI with SMAC.With the relaxed semantics of Section 6.2.4
and the instrumentation of Section 6.5, we obtain a direct analogue to Theorem 1.

Theorem 2
Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and Is(Mc , G), where G is a CFG
for Mc , and let S1, . . . , Sn be states such that S0 → S1 → ... → Sn. Then, for all i ∈
0..(n−1), either Si →a Si+1 and Si+1.pc = Si.pc, or Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem, which we present in Appendix A.2, is analogous to that of
Theorem 1.

Because SMAC is implemented by inline checks, it could be circumvented by computed
control-flow transfers into or around the code sequences that perform the checks. There-
fore, SMAC is intimately tied to CFI, which prevents such subversive flows of control.
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Accordingly, our theorem is not about SMAC in isolation, but rather about the combina-
tion of SMAC and CFI.

7. CONCLUSION

The use of high-level programming languages has, for a long time, implied that only certain
control flow should be expected during software execution. Even so, at the machine-code
level, relatively little effort has been spent on guaranteeing that control actually flows as
expected. The absence of runtime control-flow guarantees has a pervasive impact on all
software analysis, processing, and optimization—and it enables many of today’s exploits.

CFI instrumentation aims to change this situation by embedding within software exe-
cutables both a control-flow policy to be enforced at runtime and the mechanism for that
enforcement. Indeed, CFI can align low-level behavior with high-level intent, as speci-
fied in a CFG. In this respect, CFI is reminiscent of the use of typed low-level languages,
such as TAL [Morrisett et al. 1999], and of efforts to bridge the gaps between high-level
languages and actual behavior (e.g., [Abadi 1998; Kennedy 2005]).

CFI is simple, verifiable, and amenable to formal analysis, yielding strong guarantees
even in the presence of a powerful adversary. Moreover, inlined CFI enforcement is practi-
cal on modern processors, is compatible with most existing software, and has little perfor-
mance overhead. Finally, CFI provides a useful foundation for the efficient enforcement of
security policies.
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A. APPENDIX: PROOFS

This Appendix contains proofs for the main claims of Section 6.

A.1 Proof of CFI Enforcement (without SMAC)

First we state a simple proposition about the effects of the sequence of instructions that
precede eachjmp instruction in instrumented programs.

Proposition 3
Let S0, S1, S2, S3, S4, and S5 be states with code memory Mc such that

Dc(Mc(S0.pc)) = addi r0, rs, 0
Dc(Mc(S1.pc)) = ld r1, r0(0)
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Dc(Mc(S2.pc)) = movi r2, IMM
Dc(Mc(S3.pc)) = bgt r1, r2,HALT
Dc(Mc(S4.pc)) = bgt r2, r1,HALT
Dc(Mc(S5.pc)) = jmp r0

and

S0 →n→∗
a S1 →n→∗

a S2 →n→∗
a S3 →n→∗

a S4 →n→∗
a S5

where →∗
a is the reflexive transitive closure of →a. Assume that S5.R(r0) ∈ dom(Mc)

and let w = S5.R(r0). Then we have that Mc(w) = IMM and, if I(Mc, G), then
Dc(Mc(w)) = label dst(Mc, G, S5.pc).

The proposition says what the instructions in question do, when executed from beginning
to end in a straight line. It allows for the possibility of attack steps between normal steps.
The first part of the conclusion,Mc(S5.R(r0)) = IMM , is an immediate consequence
of the operational semantics, which ensures that attack steps do not affect distinguished
registers. In caseI(Mc, G), the definition of the instrumentation predicateI yields the
second part of the conclusion,Dc(Mc(S5.R(r0))) = label dst(Mc, G, S5.pc).

Using this proposition, we establish the following lemma, of which Theorem 1 is an
obvious corollary:

Lemma 4
Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and I(Mc , G), where G is a CFG for
Mc , and let S1, . . . , Sn be states such that S0 → S1 → ... → Sn, with n ≥ 0. Then:

(1 ) Sn.Mc = S0.Mc;
(2 ) Sn.pc ∈ dom(S0.Mc);

and, if n > 0,

(3 ) either Sn−1 →a Sn and Sn.pc = Sn−1.pc, or Sn.pc ∈ succ(S0.Mc, G, Sn−1.pc);
(4 ) if there exists k ∈ {0..4} such that Dc(Mc(Sn.pc + k)) holds a jmp instruction, then

Sn−1.pc = Sn.pc or Sn−1.pc + 1 = Sn.pc.

The hypotheses are those of Theorem 1, and so is conjunct (3) of the conclusion except
that we focus on the last execution stepSn−1 → Sn rather than on an arbitrary execution
stepSi → Si+1. Conjunct (1) means that code memory does not change in the course of
execution; it immediately implies thatI(Sn.Mc, G). Conjunct (2) means that execution
does not leave code memory. Conjunct (4) basically forbids jumps past or into the middle
of the checking sequences that precedejmp instructions.

We establish the lemma by complete induction onn (that is, we prove that it holds for a
value ofn assuming that it holds for all smaller values). Forn = 0, all conjuncts are either
trivially or vacuously true. Forn > 0, we argue by cases on whetherSn−1 → Sn is an
attack step or a normal step. The former case is trivial, since attack steps cannot modify
code memory or the program counter, by definition. The latter case is itself by cases on the
instruction atSn−1.pc. In each of the cases, we verify the four conjuncts of the conclusion.
Conjuncts (1) and (2) always follow immediately from the definition of the operational
semantics. In the following argument, we rely on conjuncts (1) and (2), writingMc instead
of Si.Mc (for i ∈ {0..n}), and using thatI(Mc, G) and thatSn.pc ∈ dom(Mc). We
consider conjuncts (3) and (4):
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—For label , add , addi , movi , ld , andst instructions, we have thatSn.pc = Sn−1.pc + 1
(by the operational semantics), so conjunct (4) holds. AsSn.pc ∈ dom(Mc), we have
thatsucc(Mc, G, Sn−1.pc) = {Sn.pc} (by the requirements on CFGs), so conjunct (3)
holds as well.

—For a jd w instruction, we have thatSn.pc = w (by the operational semantics) and
Sn.pc ∈ dom(Mc), and thereforesucc(Mc, G, Sn−1.pc) = {Sn.pc} (by the require-
ments on CFGs), so conjunct (3) holds. Moreover, fork ∈ {0..4}, Dc(Mc(w + k))
cannot be ajmp instruction, by the definition of the instrumentation predicateI, so
conjunct (4) holds vacuously.

—For abgt rs , rt , w instruction, we have thatSn.pc ∈ {Sn−1.pc + 1, w} (by the opera-
tional semantics) andSn.pc ∈ dom(Mc), and thereforeSn.pc ∈ succ(Mc, G, Sn−1.pc)
(by the requirements on CFGs), so conjunct (3) holds. IfSn.pc = Sn−1.pc + 1, then
conjunct (4) holds immediately. On the other hand, for the case whereSn.pc = w, we
have thatDc(Mc(w + k)) cannot be ajmp instruction fork ∈ {0..4}, by the definition
of the instrumentation predicateI, so conjunct (4) holds vacuously.

—For ajmp rs instruction, we first observe thatrs must ber0 and that the instruction must
be immediately preceded by

addi r0, rs, 0
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT

according to the definition of the instrumentation predicateI. With the exception of
the first of these instructions, none could be at location0, so none could be the starting
point for the execution; similarly, thejmp instruction could not be the starting point
for the execution either. Moreover, by induction hypothesis (conjunct (4)), the exe-
cution could not have jumped past or into the middle of these instructions. From the
operational semantics and conjuncts (1) and (2) we have thatSn.pc ∈ dom(Mc) and
I(Mc, G). Therefore, Proposition 3 applies, and yields thatDc(Mc(Sn−1.R(r0))) =
label dst(Mc, G, Sn−1.pc). From the operational semantics we also haveSn.pc =
Sn−1.R(r0), so Dc(Mc(Sn.pc)) = label dst(Mc, G, Sn−1.pc), which implies that
Sn.pc is a destination and thatdst(Mc, G, Sn−1.pc) is its ID. Since the instruction
at Sn−1.pc is a jmp instruction, dst(Mc, G, Sn−1.pc) is the ID of the elements of
succ(Mc, G, Sn−1.pc). Hence, we conclude thatSn.pc ∈ succ(Mc, G, Sn−1.pc), so
conjunct (3) holds. SinceSn.pc contains alabel instruction, and sincelabel instructions
do not appear in checking sequences beforejmp instructions, conjunct (4) also follows,
vacuously.

—The case ofillegal instructions is vacuous, sinceSn−1 → Sn can be only an attack step
in this case.

A.2 Proof of CFI Enforcement with SMAC

The proof is similar to that of Appendix A.1.
First we state an analogue of Proposition 3:
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Proposition 5
Let S0, . . . , S9 be states with code memory Mc such that

Dc(Mc(S0.pc)) = addi r0, rs, 0
Dc(Mc(S1.pc)) = movi r1,max(Mc)
Dc(Mc(S2.pc)) = movi r2,min(Mc)
Dc(Mc(S3.pc)) = bgt r0, r1,HALT
Dc(Mc(S4.pc)) = bgt r2, r0,HALT
Dc(Mc(S5.pc)) = ld r1, r0(0)
Dc(Mc(S6.pc)) = movi r2, IMM
Dc(Mc(S7.pc)) = bgt r1, r2,HALT
Dc(Mc(S8.pc)) = bgt r2, r1,HALT
Dc(Mc(S9.pc)) = jmp r0

and

S0 →n→∗
a S1 →n→∗

a . . . S8 →n→∗
a S9

where →∗
a is the reflexive transitive closure of →a. Let w = S9.R(r0). Then we have that

w ∈ dom(Mc) and Mc(w) = IMM . If Is(Mc, G) and S9.pc ∈ dom(Mc), then we also
have that Dc(Mc(w)) = label dst(Mc, G, S9.pc).

Much like Proposition 3, this proposition says what the instructions in question do,
when executed from beginning to end in a straight line. The first part of the conclusion,
S9.R(r0) ∈ dom(Mc) andMc(S9.R(r0)) = IMM , is an immediate consequence of the
operational semantics. In caseIs(Mc, G) andS9.pc ∈ dom(Mc), the definition of the in-
strumentation predicateIs yields the second part of the conclusion,Dc(Mc(S9.R(r0))) =
label dst(Mc, G, S9.pc).

A similar but even simpler proposition concernsst instructions:

Proposition 6
Let S0, . . . , S5 be states with code memory Mc such that

Dc(Mc(S0.pc)) = addi r0, rd, w

Dc(Mc(S1.pc)) = movi r1,max(Md)
Dc(Mc(S2.pc)) = movi r2,min(Md)
Dc(Mc(S3.pc)) = bgt r0, r1,HALT
Dc(Mc(S4.pc)) = bgt r2, r0,HALT
Dc(Mc(S5.pc)) = st r0(0), rs

and

S0 →n→∗
a S1 →n→∗

a S2 →n→∗
a S3 →n→∗

a S4 →n→∗
a S5

where →∗
a is the reflexive transitive closure of →a. Then we have that S5.R(r0) ∈

dom(Md), and therefore that S5.R(r0) 6∈ dom(Mc).

Using these two propositions, we establish the following lemma, which is analogous to
Lemma 4 and of which Theorem 2 is an obvious corollary:
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Lemma 7
Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and Is(Mc , G), where G is a CFG for
Mc , and let S1, . . . , Sn be states such that S0 → S1 → ... → Sn, with n ≥ 0. Then:

(1 ) Sn.Mc = S0.Mc;
(2 ) Sn.pc ∈ dom(S0.Mc);

and, if n > 0,

(3 ) either Sn−1 →a Sn and Sn.pc = Sn−1.pc, or Sn.pc ∈ succ(S0.Mc, G, Sn−1.pc);
(4 ) if there exists k ∈ {0..8} such that Dc(Mc(Sn.pc + k)) holds a jmp instruction, then

Sn−1.pc = Sn.pc or Sn−1.pc + 1 = Sn.pc;
(5 ) if there exists k ∈ {0..4} such that Dc(Mc(Sn.pc + k)) holds a st instruction, then

Sn−1.pc = Sn.pc or Sn−1.pc + 1 = Sn.pc.

The only substantial novelty with respect to Lemma 4 is conjunct (5). This conjunct
basically forbids jumps past or into the middle of the checking sequences that precedest
instructions.

Again, we establish the lemma by complete induction onn and, forn > 0, we argue by
cases on whetherSn−1 → Sn is an attack step or a normal step. The former case is trivial,
since attack steps still cannot modify code memory or the program counter, by definition.
The latter case is itself by cases on the instruction atSn−1.pc. In each of the cases, we
verify the five conjuncts of the conclusion.

—For label , add , addi , movi , and ld instructions, we have thatSn.Mc = S0.Mc and
Sn.pc = Sn−1.pc + 1 (by the operational semantics and the induction hypothesis), so
conjuncts (1), (4), and (5) hold. By the definition of the instrumentation predicateIs,
the last instruction indom(S0.Mc) is illegal , so it cannot be one of those under con-
sideration; moreover, by induction hypothesis,Sn−1.pc ∈ dom(S0.Mc). Therefore,
we have thatSn.pc ∈ dom(S0.Mc), so conjunct (2) holds. AsSn.pc ∈ dom(S0.Mc),
we have thatsucc(S0.Mc, G, Sn−1.pc) = {Sn.pc} (by the requirements on CFGs), so
conjunct (3) holds as well.

—For ast rd(w), rs instruction, we first observe thatrd(w) must ber0(0), and that the
instruction must be immediately preceded by

addi r0, rd, w
movi r1,max(Md)
movi r2,min(Md)
bgt r0, r1,HALT
bgt r2, r0,HALT

according to the definition of the instrumentation predicateIs and by the induction hy-
pothesis, which implies thatSn−1.Mc = S0.Mc. With the exception of the first of these
instructions, none could be at location0, so none could be the starting point for the
execution; similarly, thest instruction could not be the starting point for the execution
either. Moreover, by induction hypothesis (conjunct (5)), the execution could not have
jumped past or into the middle of these instructions. Therefore, Proposition 6 applies,
and yields thatS5.R(r0) 6∈ dom(Mc), soSn.Mc = Sn−1.Mc by the operational se-
mantics of thest instruction. Hence, by induction hypothesis, conjunct (1) holds. The
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argument for the other conjuncts is as in the case oflabel , add , addi , movi , and ld
instructions.

—For ajd w instruction, we have thatSn.Mc = S0.Mc (by the operational semantics and
the induction hypothesis), so conjunct (1) holds. In addition, we haveSn.pc = w (by the
operational semantics), andw ∈ dom(S0.Mc), by the definition of the instrumentation
predicateIs, so conjunct (2) holds as well. The argument for the other conjuncts is
analogous to the corresponding argument forjd instructions in Lemma 4.

—For abgt rs , rt , w instruction, we have thatSn.Mc = S0.Mc (by the operational se-
mantics and the induction hypothesis), so conjunct (1) holds. In addition, we have
Sn.pc ∈ {Sn−1.pc + 1, w} (by the operational semantics). By the definition of the
instrumentation predicateIs, Sn−1.pc + 1 ∈ dom(S0.Mc) (because thebgt instruc-
tion cannot be the last instruction indom(S0.Mc)) andw ∈ dom(S0.Mc). Therefore,
conjunct (2) holds as well. The argument for the other conjuncts is analogous to the
corresponding argument forbgt instructions in Lemma 4.

—For a jmp rs instruction, the argument is exactly analogous to that in Lemma 4, with
the following refinements. First, conjunct (1) follows from the operational semantics
and the induction hypothesis, as in the other cases of this proof. More interestingly,
conjunct (2) follows from Proposition 5.

—The case ofillegal instructions is vacuous, sinceSn−1 → Sn can be only an attack step
in this case.
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