
Faster exponential time algorithms
for the shortest vector problem

Panagiotis Voulgaris Daniele Micciancio

University of California, San Diego

January 19, 2010,
SODA

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Applications of lattice algorithms

Useful in a number of fields:

Combinatorial Problems:

Knapsack problems, Integer Programming, . . .

Algebraic Number Theory:

Factoring polynomials with rational coefficients, . . .

Cryptanalysis applications

Ntru, Special cases of RSA, . . .

Cryptography based directly on Lattices

LWE variants, Fully Homomorphic crypto, . . .

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Signifficance of Shortest Vector Problem

Foundational problem for lattices:

Exact SVP is known to be NP-complete.

Although in most applications we need approximations.

Approximation algorithms utilize SVP-oracles.

Two techniques for exact-SVP:

Enumeration. Time: 2O(nlogn)

Sieving. Time: 2O(n), Space: 2O(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lattices - Shortest Vector Problem (SVP)

0 ~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lattices - Shortest Vector Problem (SVP)

00 ~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lattices - Shortest Vector Problem (SVP)

00 ~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖

Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lattices - Shortest Vector Problem (SVP)

00 ~b1

~b2
~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Lattices - Shortest Vector Problem (SVP)

00

~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Enumeration

0

C

0

Main idea

Given a basis B,
determine a region C,
such that ~s ∈ C.

Enumerate all the points in C.

Advantages:

Space requirements.
Fast heuristics.

Disadvantages:

#Points can be 2O(nlogn)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Sieving – Prelude

0

~c1

~c1

~c2

−~c1

~c3

−~c1

Notice that:
If ~c1,~c2 ∈ L ⇒ ~c2 − ~c1 ∈ L.

Main idea

Subtract nearby points to get
shorter vectors.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Sieving

0

Main idea

Sample 2cn points.
Use “centers” to decrease the
norms of near-by points.

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical ???

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Sieving

0

Main idea

Sample 2cn points.
Use “centers” to decrease the
norms of near-by points.

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical ???

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Sieving

0

Main idea

Sample 2cn points.
Use “centers” to decrease the
norms of near-by points.

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical ???

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Solving SVP: Sieving

0

Main idea

Sample 2cn points.
Use “centers” to decrease the
norms of near-by points.

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical ???

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, AKS 2O(n) 2O(n) –
2004, R 216n 28n –
2008, NV 25.9n 22.95n Practical
2010, MV 23.2n 21.33n > 102 speed-up
2010, PS 22.465n 21.233n –

Table: Time-line of Sieving Algorithms

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Optimal use of centers

0

~c1

Every point ~ci , defines two
half-spaces.

Subtracting ~ci , brings any
point in the ~0 halfspace.

Given a set C of ~ci , consider
the intersection of the ~0
halfspaces.

Subtracting ~ci , brings any
point to this intersection.

We call this procedure
Reduce(~p,C).

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Optimal use of centers

0

~c1

Every point ~ci , defines two
half-spaces.

Subtracting ~ci , brings any
point in the ~0 halfspace.

Given a set C of ~ci , consider
the intersection of the ~0
halfspaces.

Subtracting ~ci , brings any
point to this intersection.

We call this procedure
Reduce(~p,C).

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Optimal use of centers

0

~c1

~c2

~c3

~c4

Every point ~ci , defines two
half-spaces.

Subtracting ~ci , brings any
point in the ~0 halfspace.

Given a set C of ~ci , consider
the intersection of the ~0
halfspaces.

Subtracting ~ci , brings any
point to this intersection.

We call this procedure
Reduce(~p,C).

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Optimal use of centers

0

~c1

~c2

~c3

~c4

Every point ~ci , defines two
half-spaces.

Subtracting ~ci , brings any
point in the ~0 halfspace.

Given a set C of ~ci , consider
the intersection of the ~0
halfspaces.

Subtracting ~ci , brings any
point to this intersection.

We call this procedure
Reduce(~p,C).

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C)
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Sieving: Main questions.

Bound #Points in C
(Space complexity)

Bound the probability of getting ~0
(Time complexity)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0
~ci

αi‖~s‖

αi+1‖~s‖

Consider the points on a
thin spherical shell,
Si = Shell(αi‖~s‖, αi+1‖~s‖),
α > 1.

Notice that ~cj should be
reduced with ~ci .

Therefore the φ~ci ,~cj
angle is

lower bounded.

Can we bound #points,
with the lower bound of
their angles?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0
~ci

αi‖~s‖

αi+1‖~s‖

Consider the points on a
thin spherical shell,
Si = Shell(αi‖~s‖, αi+1‖~s‖),
α > 1.

Notice that ~cj should be
reduced with ~ci .

Therefore the φ~ci ,~cj
angle is

lower bounded.

Can we bound #points,
with the lower bound of
their angles?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding the angles of points in C

0
~ci

αi‖~s‖

αi+1‖~s‖

~cj

φ ' 60◦

Consider the points on a
thin spherical shell,
Si = Shell(αi‖~s‖, αi+1‖~s‖),
α > 1.

Notice that ~cj should be
reduced with ~ci .

Therefore the φ~ci ,~cj
angle is

lower bounded.

Can we bound #points,
with the lower bound of
their angles?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Spherical Codes

Theorem (Kabatiansky, Levenshtein KL 1978)

If ∀~ci ,~cj ∈ S, φ~ci ,~cj
≥ φ0 then:

|S | ≤ 2kn+o(n), k = −0.5log(1− cos(φ0))− 0.099

|C ∩ Si | is bounded, for every Si .

Polynomially many Si to cover C .

We can bound |C | =
∑
|C ∩ Si | by poly(n) · 2O(n).

Connection between a sieving algorithms and spherical codes!

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding Collisions, Technique of AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L, with short
‖~s‖ > ‖~ε‖ > 0.5‖~s‖.
Reduce(~p, C) and consider
~p′ − ~ε.
The trick is that ~p might
correspond to two lattice
points.

Reduce is oblivious of ~ε,

so high probability of
colissions ⇒ high probability
of finding ~s.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding Collisions, Technique of AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L, with short
‖~s‖ > ‖~ε‖ > 0.5‖~s‖.
Reduce(~p, C) and consider
~p′ − ~ε.

The trick is that ~p might
correspond to two lattice
points.

Reduce is oblivious of ~ε,

so high probability of
colissions ⇒ high probability
of finding ~s.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding Collisions, Technique of AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L, with short
‖~s‖ > ‖~ε‖ > 0.5‖~s‖.
Reduce(~p, C) and consider
~p′ − ~ε.
The trick is that ~p might
correspond to two lattice
points.

Reduce is oblivious of ~ε,

so high probability of
colissions ⇒ high probability
of finding ~s.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Bounding Collisions, Technique of AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L, with short
‖~s‖ > ‖~ε‖ > 0.5‖~s‖.
Reduce(~p, C) and consider
~p′ − ~ε.
The trick is that ~p might
correspond to two lattice
points.

Reduce is oblivious of ~ε,

so high probability of
colissions ⇒ high probability
of finding ~s.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~pj

Perturbations decrease the
minimum angles.

After Reduce
we subtract ~ε, and the
resulting point might be
closer.

This affects the shells with
small radius,

so we use a different
technique: ‖ci − cj‖ ≥ ‖~s‖.
Perturbations greatly
increase space bounds:
20.41n+O(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~pj
~cj

−~εj

Perturbations decrease the
minimum angles.

After Reduce
we subtract ~ε, and the
resulting point might be
closer.

This affects the shells with
small radius,

so we use a different
technique: ‖ci − cj‖ ≥ ‖~s‖.
Perturbations greatly
increase space bounds:
20.41n+O(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~cj

≥ ‖~s‖

Perturbations decrease the
minimum angles.

After Reduce
we subtract ~ε, and the
resulting point might be
closer.

This affects the shells with
small radius,

so we use a different
technique: ‖ci − cj‖ ≥ ‖~s‖.

Perturbations greatly
increase space bounds:
20.41n+O(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Disadvantages of Perturbations

0 ~ci

~cj

Perturbations decrease the
minimum angles.

After Reduce
we subtract ~ε, and the
resulting point might be
closer.

This affects the shells with
small radius,

so we use a different
technique: ‖ci − cj‖ ≥ ‖~s‖.
Perturbations greatly
increase space bounds:
20.41n+O(n) VS 21.33n+o(n)

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Practical variant Gauss Sieve

Practical implementation – Gauss Sieve:

No perturbations (Proposed in [NV 2008]).

List sieving.

The list C is fully reduced:
∀~ci ,~cj ∈ C ‖~ci − ~cj‖ ≥ ‖~ci‖.
Therefore φ~ci ,~cj

≥ 60◦!

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Gauss Sieve

Connection between kissing number and sieving.

' 102 to 103 faster, ' 70× less points.

Proved space bounds of 20.41n+o(n), in practice 20.21n+o(n).

Faster than NTL for dimensions > 40.

Bottleneck is time, not space.

The code is at cseweb.ucsd.edu/~pvoulgar/

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Summary

We improve the work of [AKS 2001] and [NV 2008] with:

List Sieving.

Lower space bounds in theory.
Faster implementations in practice.
Better algorithmic intuition.

Connection with spherical codes:

Use of powerful theorems for analysis [KL 1978].

Faster heuristic.

102 to 103 faster than previous implementation.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

Open Problems

Open Problems:

SVP in 2cn time with poly(n) space.

Exact CVP, SIVP in 2cn time/space.

Deterministic variant.

Speciffic to our work:

Bound time complexity without perturbations.

Block reduction with higher block sizes?

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

