Faster exponential time algorithms for the shortest vector problem

Panagiotis Voulgaris Daniele Micciancio

University of California, San Diego

January 19, 2010, SODA Useful in a number of fields:

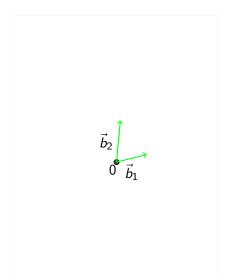
- Combinatorial Problems:
 - Knapsack problems, Integer Programming, ...
- Algebraic Number Theory:
 - Factoring polynomials with rational coefficients, ...
- Cryptanalysis applications
 - Ntru, Special cases of RSA, ...
- Cryptography based directly on Lattices
 - LWE variants, Fully Homomorphic crypto, ...

Foundational problem for lattices:

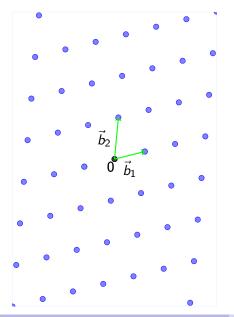
- Exact SVP is known to be NP-complete.
- Although in most applications we need approximations.
- Approximation algorithms utilize SVP-oracles.

Two techniques for exact-SVP:

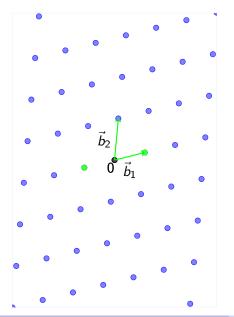
- Enumeration. Time: 2^{O(nlogn)}
- Sieving. Time: $2^{O(n)}$, Space: $2^{O(n)}$



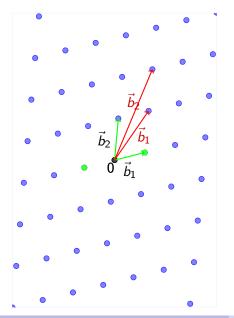
• Given a basis: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$ of m linearly independent vectors in \mathbb{R}^n .



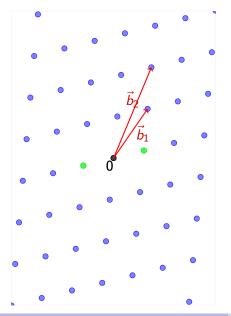
- Given a *basis*: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$ of m linearly independent vectors in \mathbb{R}^n .
- Lattice is: $\mathcal{L}(\mathbf{B}) = \{ \vec{p} = \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}.$



- Given a *basis*: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$ of m linearly independent vectors in \mathbb{R}^n .
- Lattice is: $\mathcal{L}(\mathbf{B}) = \{ \vec{p} = \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}.$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, \|\vec{s}\| \le \|\vec{p}\|$

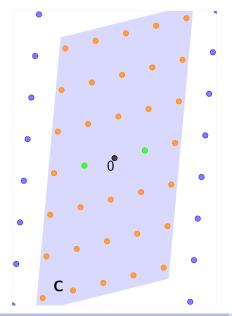


- Given a *basis*: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$ of m linearly independent vectors in \mathbb{R}^n .
- Lattice is: $\mathcal{L}(\mathbf{B}) = \{ \vec{p} = \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}.$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, ||\vec{s}|| \le ||\vec{p}||$
- Notice that the basis is not unique.



- Given a *basis*: $\mathbf{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_m\}$ of m linearly independent vectors in \mathbb{R}^n .
- Lattice is: $\mathcal{L}(\mathbf{B}) = \{ \vec{p} = \sum a_i \cdot \vec{b}_i, a_i \in \mathbb{Z} \}.$
- Shortest lattice point: $\vec{s} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}$ such that: $\forall \vec{p} \in \mathcal{L}(\mathbf{B}) \setminus \vec{0}, ||\vec{s}|| \le ||\vec{p}||$
- Notice that the basis is not unique.
- Shortest Vector Problem: Given a basis B, find a shortest lattice point.

Solving SVP: Enumeration

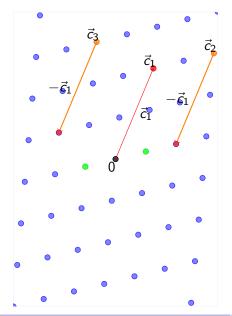


Main idea

Given a basis **B**, determine a region **C**, such that $\vec{s} \in \mathbf{C}$. Enumerate all the points in **C**.

- Advantages:
 - Space requirements.
 - Fast heuristics.
- Disadvantages:
 - #Points can be $2^{O(n \log n)}$

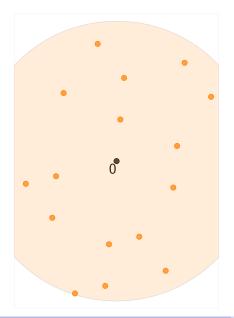
Solving SVP: Sieving - Prelude



Notice that: If $\vec{c}_1, \vec{c}_2 \in \mathcal{L} \Rightarrow \vec{c}_2 - \vec{c}_1 \in \mathcal{L}$.

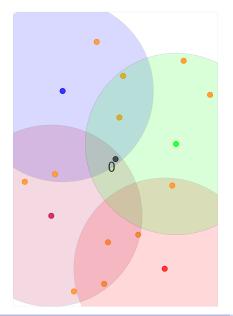
Main idea

Subtract nearby points to get shorter vectors.



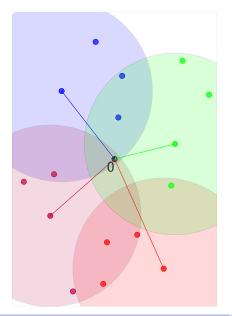
Main idea

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of $2^{O(n)}$
 - Impractical ???



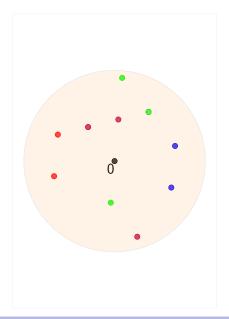
Main idea

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of 2^{O(n)}
 - Impractical ???



Main idea

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of 2^{O(n)}
 - Impractical ???

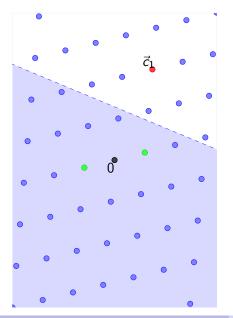


Main idea

- Advantages:
 - #Points bounded by $2^{O(n)}$
- Disadvantages:
 - Space complexity of $2^{O(n)}$
 - Impractical ???

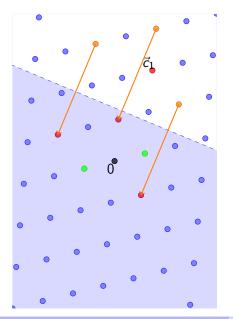
Year, Authors	Time	Space	Practice
2001, AKS	$2^{O(n)}$	$2^{O(n)}$	_
2004, R	2 ¹⁶ⁿ	2 ⁸ⁿ	-
2008, NV	2 ^{5.9n}	2 ^{2.95n}	Practical
2010, MV	2 ^{3.2}	$2^{1.33n}$	$> 10^2$ speed-up
2010, PS	$2^{2.465n}$	$2^{1.233n}$	-

Table: Time-line of Sieving Algorithms



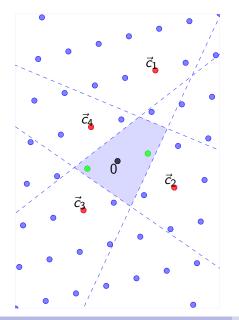
• Every point \vec{c}_i , defines two half-spaces.

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP

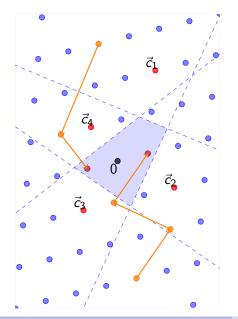


- Every point \vec{c}_i , defines two half-spaces.
- Subtracting \vec{c}_i , brings any point in the $\vec{0}$ halfspace.

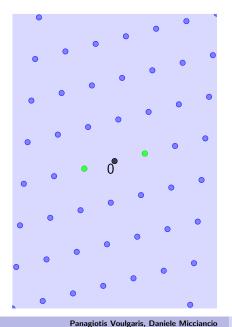
Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



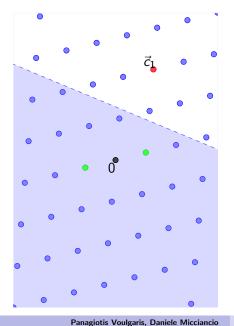
- Every point \vec{c}_i , defines two half-spaces.
- Subtracting \vec{c}_i , brings any point in the $\vec{0}$ halfspace.
- Given a set C of \vec{c}_i , consider the intersection of the $\vec{0}$ halfspaces.

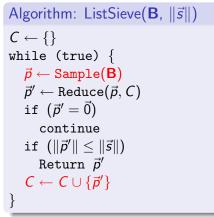


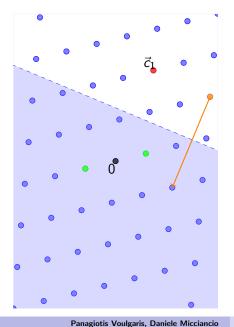
- Every point \vec{c}_i , defines two half-spaces.
- Subtracting \vec{c}_i , brings any point in the $\vec{0}$ halfspace.
- Given a set C of \vec{c}_i , consider the intersection of the $\vec{0}$ halfspaces.
- Subtracting \vec{c}_i , brings any point to this intersection.
- We call this procedure Reduce(\vec{p}, C).

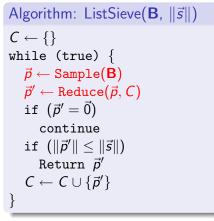


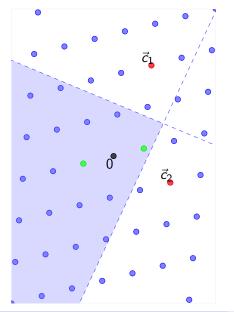




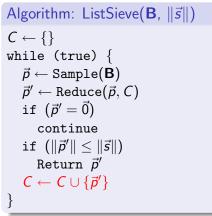


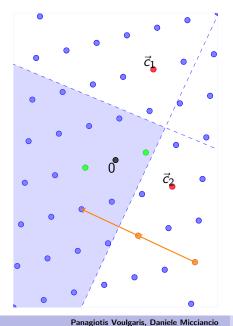


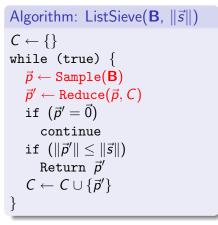


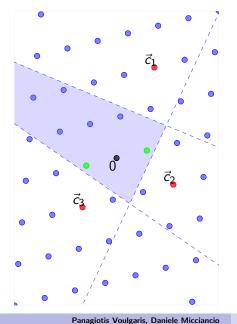


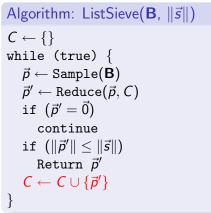
Panagiotis Voulgaris, Daniele Micciancio



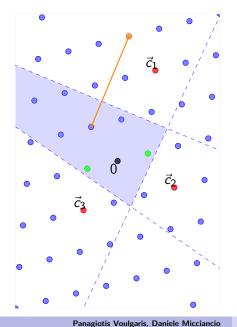


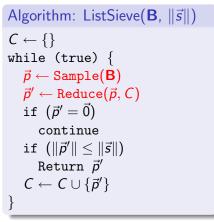


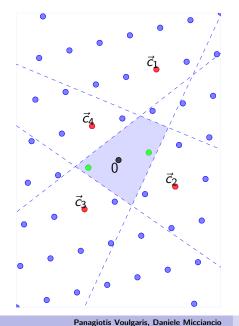


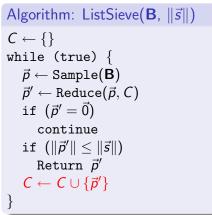


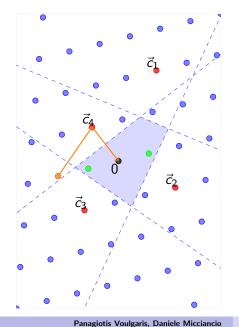
Faster exponential algorithms for SVP

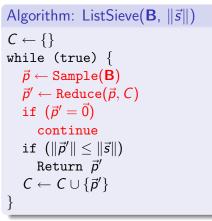




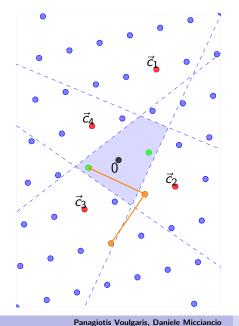


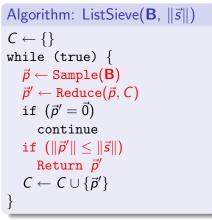






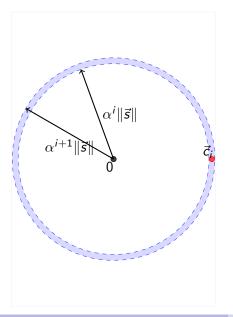
Faster exponential algorithms for SVP





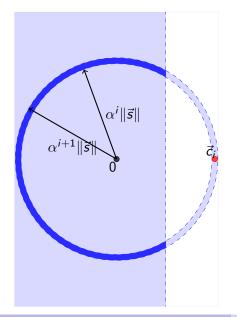
- Bound #Points in C (Space complexity)
- Bound the probability of getting 0
 (Time complexity)

Bounding the angles of points in C



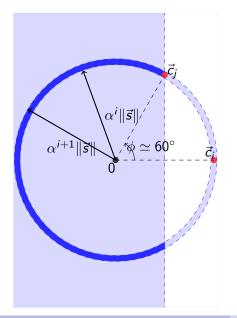
• Consider the points on a thin spherical shell, $S_i = \text{Shell}(\alpha^i ||\vec{s}||, \alpha^{i+1} ||\vec{s}||),$ $\alpha > 1.$

Bounding the angles of points in C



- Consider the points on a thin spherical shell, $S_i = \text{Shell}(\alpha^i ||\vec{s}||, \alpha^{i+1} ||\vec{s}||),$ $\alpha > 1.$
- Notice that *c*_j should be reduced with *c*_j.

Bounding the angles of points in C



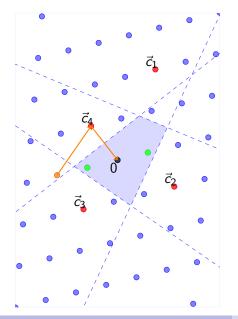
- Consider the points on a thin spherical shell,
 S_i = Shell(αⁱ ||s̄||, αⁱ⁺¹ ||s̄||),
 α > 1.
- Notice that *c_j* should be reduced with *c_i*.
- Therefore the $\phi_{\vec{c}_i,\vec{c}_j}$ angle is lower bounded.
- Can we bound #points, with the lower bound of their angles?

Theorem (Kabatiansky, Levenshtein KL 1978) If $\forall \vec{c}_i, \vec{c}_j \in S$, $\phi_{\vec{c}_i, \vec{c}_j} \ge \phi_0$ then:

$$|S| \leq 2^{kn+o(n)}, \; k = -0.5 log(1 - cos(\phi_0)) - 0.099$$

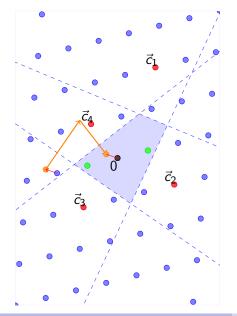
- $|C \cap S_i|$ is bounded, for every S_i .
- Polynomially many S_i to cover C.
- We can bound $|C| = \sum |C \cap S_i|$ by $poly(n) \cdot 2^{O(n)}$.

Connection between a sieving algorithms and spherical codes!

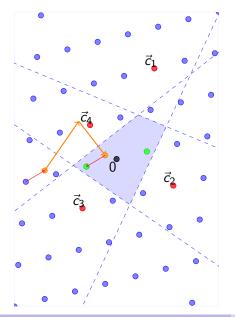


• Instead of sampling a lattice point \vec{p}

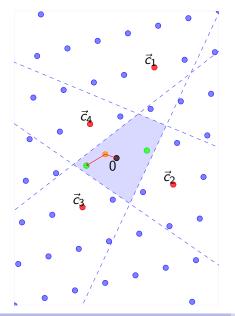
Panagiotis Voulgaris, Daniele Micciancio F



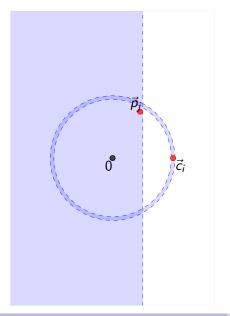
- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} - \vec{\epsilon} \in \mathcal{L}$, with short $\|\vec{s}\| > \|\vec{\epsilon}\| > 0.5 \|\vec{s}\|$.
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$.



- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} - \vec{\epsilon} \in \mathcal{L}$, with short $\|\vec{s}\| > \|\vec{\epsilon}\| > 0.5 \|\vec{s}\|$.
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$.
- The trick is that \vec{p} might correspond to two lattice points.
- Reduce is oblivious of $\vec{\epsilon}$,

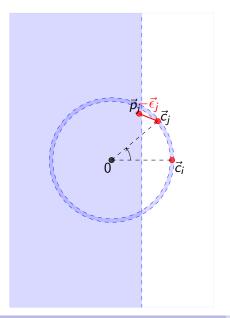


- Instead of sampling a lattice point \vec{p}
- Sample $(\vec{p}, \vec{\epsilon})$, so that $\vec{p} - \vec{\epsilon} \in \mathcal{L}$, with short $\|\vec{s}\| > \|\vec{\epsilon}\| > 0.5 \|\vec{s}\|$.
- Reduce (\vec{p}, C) and consider $\vec{p}' \vec{\epsilon}$.
- The trick is that \vec{p} might correspond to two lattice points.
- Reduce is oblivious of $\vec{\epsilon}$,
- so high probability of colissions ⇒ high probability of finding s.

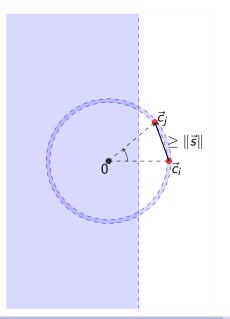


• Perturbations decrease the minimum angles.

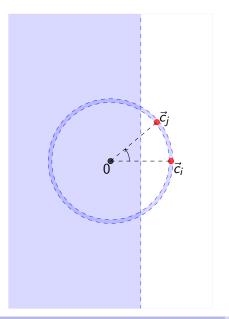
Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



- Perturbations decrease the minimum angles.
- After Reduce we subtract *ϵ*, and the resulting point might be closer.



- Perturbations decrease the minimum angles.
- After Reduce we subtract *ϵ*, and the resulting point might be closer.
- This affects the shells with small radius,
- so we use a different technique: ||c_i − c_j|| ≥ ||s̄||.



- Perturbations decrease the minimum angles.
- After Reduce we subtract *ϵ*, and the resulting point might be closer.
- This affects the shells with small radius,
- so we use a different technique: ||c_i − c_j|| ≥ ||s̄||.
- Perturbations greatly increase space bounds: 2^{0.41n+O(n)} VS 2^{1.33n+o(n)}

Practical implementation – Gauss Sieve:

- No perturbations (Proposed in [NV 2008]).
- List sieving.
- The list *C* is fully reduced: $\forall \vec{c}_i, \vec{c}_j \in C ||\vec{c}_i - \vec{c}_j|| \ge ||\vec{c}_i||.$ Therefore $\phi_{\vec{c}_i, \vec{c}_j} \ge 60^\circ!$

Gauss Sieve

- Connection between kissing number and sieving.
- $\simeq 10^2$ to 10^3 faster, $\simeq 70\times$ less points.
- Proved space bounds of $2^{0.41n+o(n)}$, in practice $2^{0.21n+o(n)}$.
- Faster than NTL for dimensions > 40.
- Bottleneck is time, not space.

The code is at cseweb.ucsd.edu/~pvoulgar/

We improve the work of [AKS 2001] and [NV 2008] with:

- List Sieving.
 - Lower space bounds in theory.
 - Faster implementations in practice.
 - Better algorithmic intuition.
- Connection with spherical codes:
 - Use of powerful theorems for analysis [KL 1978].
- Faster heuristic.
 - 10^2 to 10^3 faster than previous implementation.

Open Problems:

- SVP in 2^{cn} time with poly(n) space.
- Exact CVP, SIVP in 2^{cn} time/space.
- Deterministic variant.

Speciffic to our work:

- Bound time complexity without perturbations.
- Block reduction with higher block sizes?