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Applications of lattice algorithms

Useful in a number of fields:

Combinatorial Problems:

Knapsack problems, Integer Programming, . . .

Algebraic Number Theory:

Factoring polynomials with rational coefficients, . . .

Cryptanalysis applications

Ntru, Special cases of RSA, . . .

Cryptography based directly on Lattices

LWE variants, Fully Homomorphic crypto, . . .
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Signifficance of Shortest Vector Problem

Foundational problem for lattices:

Exact SVP is known to be NP-complete.

Although in most applications we need approximations.

Approximation algorithms utilize SVP-oracles.

Two techniques for exact-SVP:

Enumeration. Time: 2O(nlogn)

Sieving. Time: 2O(n), Space: 2O(n)
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Lattices - Shortest Vector Problem (SVP)

0 ~b1

~b2

Given a basis:
B = {~b1,~b2, . . . ,~bm}
of m linearly independent
vectors in Rn.

Lattice is: L(B) =
{~p =

∑
ai · ~bi , ai ∈ Z}.

Shortest lattice point:
~s ∈ L(B) \~0 such that:
∀~p ∈ L(B) \~0, ‖~s‖ ≤ ‖~p‖
Notice that the basis
is not unique.

Shortest Vector Problem:
Given a basis B,
find a shortest lattice point.
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Solving SVP: Enumeration

0

C

0

Main idea

Given a basis B,
determine a region C,
such that ~s ∈ C.

Enumerate all the points in C.

Advantages:

Space requirements.
Fast heuristics.

Disadvantages:

#Points can be 2O(nlogn)
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Solving SVP: Sieving – Prelude

0

~c1

~c1

~c2

−~c1

~c3

−~c1

Notice that:
If ~c1,~c2 ∈ L ⇒ ~c2 − ~c1 ∈ L.

Main idea

Subtract nearby points to get
shorter vectors.
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Solving SVP: Sieving

0

Main idea

Sample 2cn points.
Use “centers” to decrease the
norms of near-by points.

Advantages:

#Points bounded by 2O(n)

Disadvantages:

Space complexity of 2O(n)

Impractical ???
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Time-line: Sieving Algorithms

Year, Authors Time Space Practice

2001, AKS 2O(n) 2O(n) –
2004, R 216n 28n –
2008, NV 25.9n 22.95n Practical
2010, MV 23.2n 21.33n > 102 speed-up
2010, PS 22.465n 21.233n –

Table: Time-line of Sieving Algorithms
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Optimal use of centers

0

~c1

Every point ~ci , defines two
half-spaces.

Subtracting ~ci , brings any
point in the ~0 halfspace.

Given a set C of ~ci , consider
the intersection of the ~0
halfspaces.

Subtracting ~ci , brings any
point to this intersection.

We call this procedure
Reduce(~p,C ).
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Optimal use of centers
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List Sieve - Example

00

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

~c3

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



List Sieve - Example

00

~c1

~c2

~c3

~c4

Algorithm: ListSieve(B, ‖~s‖)
C ← {}
while (true) {
~p ← Sample(B)
~p′ ← Reduce(~p,C )
if (~p′ = ~0)
continue

if (‖~p′‖ ≤ ‖~s‖)
Return ~p′

C ← C ∪ {~p′}
}

Panagiotis Voulgaris, Daniele Micciancio Faster exponential algorithms for SVP



Sieving: Main questions.

Bound #Points in C
(Space complexity)

Bound the probability of getting ~0
(Time complexity)
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Bounding the angles of points in C

0
~ci

αi‖~s‖

αi+1‖~s‖

Consider the points on a
thin spherical shell,
Si = Shell(αi‖~s‖, αi+1‖~s‖),
α > 1.

Notice that ~cj should be
reduced with ~ci .

Therefore the φ~ci ,~cj
angle is

lower bounded.

Can we bound #points,
with the lower bound of
their angles?
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Bounding the angles of points in C

0
~ci

αi‖~s‖

αi+1‖~s‖

~cj

φ ' 60◦
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Spherical Codes

Theorem (Kabatiansky, Levenshtein KL 1978)

If ∀~ci ,~cj ∈ S, φ~ci ,~cj
≥ φ0 then:

|S | ≤ 2kn+o(n), k = −0.5log(1− cos(φ0))− 0.099

|C ∩ Si | is bounded, for every Si .

Polynomially many Si to cover C .

We can bound |C | =
∑
|C ∩ Si | by poly(n) · 2O(n).

Connection between a sieving algorithms and spherical codes!
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Bounding Collisions, Technique of AKS

0

~c1

~c2

~c3

~c4

Instead of sampling a lattice
point ~p

Sample (~p,~ε), so that
~p − ~ε ∈ L, with short
‖~s‖ > ‖~ε‖ > 0.5‖~s‖.
Reduce(~p, C ) and consider
~p′ − ~ε.
The trick is that ~p might
correspond to two lattice
points.

Reduce is oblivious of ~ε,

so high probability of
colissions ⇒ high probability
of finding ~s.
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Disadvantages of Perturbations

0 ~ci

~pj

Perturbations decrease the
minimum angles.

After Reduce
we subtract ~ε, and the
resulting point might be
closer.

This affects the shells with
small radius,

so we use a different
technique: ‖ci − cj‖ ≥ ‖~s‖.
Perturbations greatly
increase space bounds:
20.41n+O(n) VS 21.33n+o(n)
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Practical variant Gauss Sieve

Practical implementation – Gauss Sieve:

No perturbations (Proposed in [NV 2008]).

List sieving.

The list C is fully reduced:
∀~ci ,~cj ∈ C ‖~ci − ~cj‖ ≥ ‖~ci‖.
Therefore φ~ci ,~cj

≥ 60◦!
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Gauss Sieve

Connection between kissing number and sieving.

' 102 to 103 faster, ' 70× less points.

Proved space bounds of 20.41n+o(n), in practice 20.21n+o(n).

Faster than NTL for dimensions > 40.

Bottleneck is time, not space.

The code is at cseweb.ucsd.edu/~pvoulgar/
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Summary

We improve the work of [AKS 2001] and [NV 2008] with:

List Sieving.

Lower space bounds in theory.
Faster implementations in practice.
Better algorithmic intuition.

Connection with spherical codes:

Use of powerful theorems for analysis [KL 1978].

Faster heuristic.

102 to 103 faster than previous implementation.
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Open Problems

Open Problems:

SVP in 2cn time with poly(n) space.

Exact CVP, SIVP in 2cn time/space.

Deterministic variant.

Speciffic to our work:

Bound time complexity without perturbations.

Block reduction with higher block sizes?
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