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Abstract. Our main result establishes Andrews' conjecture for the asymptotic of the gen-
erating function for the number of integer partitions of n without k consecutive parts. The
methods we develop are applicable in obtaining asymptotics for stochastic processes that
avoid patterns, as a result they yield asymptotics for the number of partitions that avoid
patterns.

Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models,
introduced the study of partitions without k consecutive parts. Andrews showed that when
k = 2 the generating function for these partitions is a mixed-mock modular form, and, thus
has modularity properties which can be utilized in the study of this generating function. For
k > 2 the asymptotic properties of the generating functions have proved more di�cult to
obtain. Using q-series identities and the k = 2 case as evidence, Andrews stated a conjecture
for the asymptotic behavior. We improve upon previous approaches to this problem by
identifying and overcoming two sources of error.

1. Introduction and Statement of Results

Studying a generalization of bootstrap percolation (see [1, 12, 14] for examples), Holroyd,
Liggett, and Romik [15] introduced the following probability models: Let 0 < s < 1 and
C1, C2, · · · be independent events with probabilities

Ps(Cn) := 1− e−ns

under a probability measure Ps. Let Ak be the event

Ak =
∞⋂
i=1

(Ci ∪ Ci+1 ∪ · · · ∪ Ci+k−1)

that there is no sequence of k consecutive Ci values that do not occur. The relevant question
in [15] is to understand the behavior as s ↓ 0. Theorem 2 of Holroyd, Liggett, and Romik
[15] gives

log (Ps(Ak)) ∼ −
Lk
s

where

(1.1) Lk :=
π2

3k(k + 1)
.

Obtaining an estimate for Ps(Ak) with polynomial relative error has proven to be a chal-
lenging problem. Bringmann and Mahlburg [8] re�ned the result of Holroyd, Liggett, and
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Romik by proving non-logarithmic lower and upper bounds that di�ered by a polynomial
factor of s−

1
k . Precisely, they give (Theorem 1.2 [8])

exp

(
−λk
s

)
�k Ps(Ak)�k s

− 2k−1
2k exp

(
−λk
s

)
.

With Mellit, Bringmann and Malburg [9] developed a general method for establishing similar
bounds for natural families of pattern-avoiding sequences. Underlying all of the above results
are estimates for the eigenvalues of an associated (Markov-type) stochastic process.
Andrews [3] established a surprising connection between Ps(A2) and one of Ramanujan's

mock theta functions. Precisely, he showed

(1.2) Ps(A2) =
∞∏
n=1

1 + q3n

1 + qn
· χ(q)

where q := e−s and χ(q) =
∑∞

n=0 q
n2∏n

m=1
1+qm

1+q3m
is a mock theta function. Zwegers' Ph.D.

thesis [22] yields the modular properties of Ramanujan's mock theta functions (see [20]
or [19] for details). Consequentially, Andrews [3], using (1.2) and additional identities for
Ramanujan's mock theta functions proved that

Ps(A2) ∼
√
π

2
s−

1
2 exp

(
− π2

18s

)
as s ↓ 0.

Using additional q-series identities when k > 2, he made the following conjecture.

Conjecture 1.1 (Andrews [3]). For each k ≥ 2, there exists a positive constant Dk such
that

Ps(Ak) ∼ Dks
− 1

2 exp

(
−λk
s

)
as s ↓ 0.

We prove the following precise version of Andrews's Conjecture.

Theorem 1.2. Andrews's conjecture is true with Dk =
√

2π
k
. More speci�cally, we have

Ps(Ak) =

√
2π

k
s−

1
2 exp

(
− π2

3k(k + 1)s
+Ok

(
s

1
2k+3

))
.

Remark 1.3. We expect that our techniques can be improved to give a full asymptotic ex-
pansion for Ps(Ak) with relative error O(sN), for any N .

1.1. More on partitions and additional applications. There is an unexpected and
beautiful connection between these models and partitions, Ramanujan's mock theta func-
tions, and the Rogers-Ramanujan identities.
A partition µ of n has a k-sequence if there are k parts of consecutive sizes. Let pk(n)

denote the number of partitions of n with no k-sequences and Gk(q) :=
∑∞

n=0 pk(n)qn the
generating function. Set pk(0) = 1. In Section 4 of [15] it is shown that

(1.3) Ps(Ak) =
Gk(q)

P (q)
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when q := e−s and P (q) =
∑∞

n=0 p(n)qn =
∏∞

n=1
1

1−qn , where p(n) is the number of partitions
of n.
Asymptotics for P (q) are well known, namely

P (q) =
1√
2π
s

1
2 exp

(
π2

6s
− s

24
+O(sN)

)
for any N . Thus, by (1.3), determination of the asymptotics of Gk(q) is equivalent to
the determination of the asymptotic of Ps(Ak). We prove the following theorem, which is
equivalent to Theorem 1.2.

Theorem 1.4. For each k ≥ 2 we have

Gk(e
−s) =

1

k
exp

(
π2

6s

(
1− 2

k(k + 1)

)
+Ok

(
s

1
2k+3

))
as s ↓ 0.

Remark 1.5. A slight modi�cation of the arguments presented establish Theorem 1.4 with
a relative error that is o(1) for non-real s satisfying |=(s)| = o (<(s)).

Numerical calculations lead to the following conjecture for real s.

Conjecture 1.6. For s real and s ↓ 0

Gk(e
−s) =

1

k
exp

(
π2

6s

(
1− 2

k(k + 1)

)
+ αks

1
k +O

(
s

2
k

))
for some constant αk.

Remark 1.7. Classical results on the mock theta functions [3] easily yield this conjecture

for k = 2 with α2 =
√

2
9π
. Using a numerical technique, Zagier [21] has calculated that

α3 ≈ 0.26627104041 . . ., which appears to equal 31/3

4Γ(2/3)
. It is amusing to note that α2 =√

2
9π

= 0.265961520 . . . agrees with α3 to two digits.

This conjecture implies that for k > 2 the generating function Gk(q) is not a usual modular
form. Indeed, if Gk(q) is a half integral weight modular form or mixed mock modular form,

we would expect an asymptotic expansion that contains only powers of s
1
2 . In fact, the

asymptotic expansion in powers of s1/k is very exotic.

It is well known that the asymptotic behavior of generating functions leads to asymptotics
for the coe�cients. We obtain the following theorem for the asymptotic of pk(n).

Theorem 1.8. As n→∞ we have

pk(n) ∼ 1

2k

(
1

6

(
1− 2

k(k + 1)

)) 1
4 1

n
3
4

exp

(
π

√
2

3

(
1− 2

k(k + 1)

)
n

)
.

Remark 1.9. Bringmann and Mahlburg [7] use the connection with Ramanujan's mock theta
function and an extension of the circle method to prove a nearly exact formula for p2(n).
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While the study of partitions without k-sequences for k > 2 is relatively new, there are
several classical results on partitions without 2-sequences. The Rogers-Ramanujan identities
state that

∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−4)(1− q5n−1)
,(1.4)

∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=1

1

(1− q5n−3)(1− q5n−2)
.(1.5)

MacMahon [18] found a combinatorial interpretation of Rogers-Ramanujan identities as a
way of counting partitions without 2-sequences with some particular constraints. In partic-
ular, he shows that they imply:

(1.4)* The partitions of n into distinct parts with no parts of consecutive size are equinu-
merous with the number of partitions of n into parts of the form 5n− 4 and 5n− 1.

(1.5)* The partitions of n into distinct parts with no parts of consecutive size and no parts
of size 1 are equinumerous with the number of partitions of n into parts of the form
5n− 3 and 5n− 2.

This combinatorial interpretation is important in the hard hexagon model studied by Baxter
[6]. Another use of these identities is that the product expansions reveal that these series
in question are essentially modular forms and thus their analytic nature is well understood.
For example, with q = e−s, for any A, the series in (1.4) satis�es

∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=

√
2

5−
√

5
exp

(
π2

15s
− s

60

)
+O(sN) as s ↓ 0.

It is surprising that the generating functions for partitions without consecutive parts often
have product expansions resembling those of the Rogers-Ramanujan identities. Let pk,r,>B(n)
be the number of partitions of n with no k parts of consecutive sizes, no part occurring more
than r times, and no parts of size ≤ B. Then (1.4) and (1.5) are identities for the generating
functions

∑∞
n=0 p2,1,>0(n)qn and

∑∞
n=0 p2,1,>1(n)qn. We have the following partition identities:

∞∑
n=0

p2,2,>1(n)qn =
∞∏
n=1

1

(1− q6n−2)(1− q6n−3)(1− q6n−4)

∞∑
n=0

p2,2,>0(n)qn =
∞∏
n=1

(1− q6n−3)2(1− q6n)

(1− qn)

∞∑
n=0

p2,∞,>1(n)qn =
∞∏
n=1

1

(1− q6n)(1− q6n−2)(1− q6n−3)(1− q6n−4)

The �rst identity is due to Andrews [2], the second identity is due to MacMahon [18] and the
�nal identity is due to Andrews and Lewis [5]. The above identities along with modular form
techniques allow for very precise asymptotics for the generating functions of partitions that
avoid 2-sequences in addition to satisfying some additional constraints. Unfortunately, these
techniques have failed for partitions with no k-sequences for k > 2. This may be because,
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as remarked above, Conjecture 1.6 would imply that the corresponding generating functions
are not modular.
Due to (1.3) studying Gk(q) is equivalent to studying Ps(Ak) when q = e−s. This equiv-

alence provides two equivalent languages in which to discuss our results, that of partitions
and that of probability. Throughout most of this paper we will use the former language to
discuss our techniques. There are three reasons for this somewhat arbitrary choice. Firstly,
the discussion of the behavior of the small parts of the partition (or equivalently the Ci for
small i) �ts slightly more naturally into this language. Secondly, our own backgrounds are
in combinatorics. Finally, numerical calculations suggest the asymptotics of the function
Gk(e

−s) is given purely in powers of s
1
k , whereas the asymptotics of Ps(Ak) will have an

extra s
1
2 multiplying all terms.

1.2. The Approach. In this section, we sketch the proof of Andrews's conjecture. The
fundamental idea is to compute Gk(q) as the limiting value of a recurrence relation. In
particular, one can imagine building a partition by adding parts of one size at a time: �rst
determining the number of parts of size one, then the number of parts of size two and so
on. In order to ensure that the partition constructed has no k-sequences, one would need to
keep track of how many of the recent part sizes have been used and ensure that no k sizes in
a row are employed. In order to keep track of the necessary generating functions, we de�ne

(1.6) ṽki (N, q) :=
∑

µ a partition with parts ≤N
µ has no k parts with consecutive sizes

µ has parts of size N,N − 1, · · · , N − i+ 1
µ has no part of size N − i

q|µ|.

In particular, we note that for N = 0 we have that

ṽki (0, q) =

{
1 if i = 0

0 otherwise
.

We have the following recursion


ṽk0(N, q)
ṽk1(N, q)

...
ṽkk−1(N, q)

 =


1 1 · · · 1

z(qN) 0 · · · 0
0 z(qN) · · · 0

0
... 0

0 · · · z(qN) 0




ṽk0(N − 1, q)
ṽk1(N − 1, q)

...
ṽkk−1(N − 1, q)


where z(x) := x

1−x . For convenience set

(1.7) m(x) :=


1 1 · · · 1

z(x) 0 · · · 0
0 z(x) · · · 0

0
... 0

0 · · · z(x) 0

 ,
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and

(1.8) vk(N, q) :=


ṽk0(N, q)
ṽk1(N, q)

...
ṽkk−1(N, q)

 .

Thus, we have the recursion

vk(N, q) = m(qN)vk(N − 1, q).

Furthermore, it is not hard to see that

Gk(q) = lim
N→∞

ṽk0(N, q).

Thus, we have a linear, homogeneous recurrence relation with non-constant coe�cients
whose limiting value yields Gk(q). The main idea for evaluating this quantity is as follows.
If the matrices, m(qN), were constant (or even merely simultaneously diagonalizeable), the
product would be easy to evaluate and Gk(q) would be approximately equal to the product of
the largest eigenvalues. This is not the case, but fortunately, the matrices m(qn) vary slowly
with n. The di�culty in approximating Gk(q) comes in �guring out how to take advantage
of this.
This basic approach is not new to this problem. Holroyd, Liggett, and Romik [15] im-

plicitly employ a similar recurrence relation to obtain Ps(Ak). Since the m(qn) are slowly
varying in n, they approximate products of roughly s−1/2 of these matrices by making the
approximation that all of the matrices in the block are the same. Within each of these blocks,
standard eigenvalue techniques are used to evaluate the product. This technique allows for
asymptotic approximation of log(Ps(Ak)), yielding a term coming from the product of the
largest eigenvalues of m(qn), but has two major sources of error. The �rst of these errors
comes from the approximation that each of the m(qn) within a block are constant. This is
especially problematic for the early blocks, for which m(qn) is rapidly varying with n. The
second source of error comes from having poor control over the transitions between blocks.
Our technique avoids these di�culties, but requires new ideas to approximate this product
of non-commuting matrices.
Our main idea is to write the vectors vk(N, q) in terms of the slowly varying eigenbasis of

the matrices m(qn). In particular, we may diagonalize each matrix as

m(qn) = A(qn)D(qn)A(qn)−1

where D(qn) is the diagonal matrix with λ1(qn), the primary eigenvalue of m(qn), in the
upper-left hand corner of the matrix. Thus, in the appropriate basis, multiplying by m,
corresponds to multiplication by the diagonal matrix D. Unfortunately, in order to rewrite
vk(n, q) in terms of the appropriate eigenbasis for m(qn+1), we must also multiply by the
transition matrix

T (n, q) = A(qn+1)−1A(qn).

Since, the coe�cients of A(qn) are slowly varying, T (n, q) ≈ Ik, where Ik is the k×k identity
matrix. In particular, with q = e−s we establish T (n, q) = Ik + O(n−1 + s). As n becomes
large, the primary eigenvalue becomes much larger than the others and so multiplying by
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D(qn) decreases the sizes of the other coordinates relative to the �rst coordinate. Conse-
quentially, the vector of interest is well approximated by the �rst coordinate. Ignoring the
o�-diagonal entries of the T (n, q), we �nd that G(q) is roughly∏

n

λ1(qn)
∏
n

T (n, q)1,1,

where T (n, q)1,1 is the upper-left hand entry of T (n, q). The product
∏

n λ1(qn) is handled
through an analysis of the characteristic polynomial ofm(qn) by Holroyd, Liggett, and Romik
[15]. However, we require a re�nement of their calculations to obtain su�cient errors (see
Theorem 5.1). The product of the transition matrix entries is similar to, but more delicate
than, the analysis used to compute

∏
λ1(qn) (see Theorem 4.4).

A second new idea is needed to deal with the contribution of matrices with N small. For
small n the main eigenvector of m(qn) is not a good approximation for the contribution
to the generating function. In fact, the non-primary eigenvalues contribute to the asymp-
totic approximation. To overcome this di�culty we use a direct combinatorial analysis to
approximate vk(n, q) for small n. This analysis appears in Section 3.
We note some similarities between this technique and the adiabatic approximation in

quantum mechanics (see, for example, Chapter 10 of [13]). In each case, we are sequentially
applying a sequence of slowly-varying matrices to a given initial vector (though in the adi-
abatic process, this is done continuously rather than discretely). In each case, we write our
vectors in terms of the (slowly changing) eigenbasis. The �nal outcome is approximated by
taking the product (or integral) of the eigenvalues, with a correction term due to the change
of basis (known as Berry's phase in the case of quantum mechanics). The justi�cations for
this approximation are di�erent in the two cases, for while the adiabatic approximation holds
due to cancelation of cross terms due to rapid oscillation, in our case the approximation holds
because the contribution from the non-primary eigenvectors may be safely neglected.
It should be noted that our underlying ideas have far more general applicability than

simply to the problem at hand. In particular, we expect that they can be used to calculate
the asymptotics of the number of partitions that locally �avoid patterns� of various types
(for example, not having any k parts of consecutive sizes). For example, we believe that our
techniques should be able to prove asymptotics for pk,r,>B(n) for all k, r, B. As an additional
example, Knopfmacher and Munagi [17] consider the problem of counting the number of
partitions λ = (λ1, · · · , λ`) of n such that there is no j with λj − λj+1 = p for any �xed
p > 0. The methods in this paper should also be su�cient to approximate the number of
partitions of these types, although the constants showing up in the asymptotic formulae may
well not have closed forms.
Bringmann, Mahlburg, and Mellit introduced a family of directed, multi-state bootstrap

percolation models [9]. Their study led to the following: Let {Ej}nj=1 be a sequence of
random variables taking values in {A,B,C,D} such that

Ps(Ej = A) = (1−e−js)2, Ps(Ej = B) = Ps(Ej = C) = e−js(1−e−js), Ps(Ej = D) = e−2js.

They are interested in the behavior of

Ps

(
{Ej}nj=1 has no D,CB, or Ck

)
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where Ck denotes a sequence of k consecutive Cs, as s ↓ 0. Surprisingly, similar to Andrews
identity (1.2), they found a connection with a mock theta function in the case k = 2. Again,
our methods should yield an asymptotic for this probability as s ↓ 0 with a relative error
which is polynomial in s1/k.

1.3. Structure of the paper. As discussed above, our argument splits into two main
pieces. On the one hand, we need a direct way of computing vk(n, q) for small values of n.
Then, once we have gotten to the point where vk(n, q) is well approximated by the primary
eigenvector of m(qn), we can use the recurrence relation described above.
In Section 2, we perform some preliminary calculations involving the m(qn) and their

eigenvalues that will be used throughout. Section 3 gives a direct computation for the

generating functions vk(N, q) for N of size s−
1
k+1
−ε. In Section 4, we analyze the recurrence

relation in order to compute Gk(q). Section 5 contains an estimate for the product over the
largest eigenvalues. Section 6 gives the proof of Theorem 1.4 and thus Theorem 1.2. Section
7 gives the proof of Theorem 1.8.

2. Calculations on the Diagonalization of m(qn)

In this section, we collect some results on the eigenvalues and diagonalization of the
matrices m(qn). In this section, k is �xed and s is assumed to be small. Errors are often
written in big-O notation. In almost all cases the constants depend on k. We often suppress
this dependence inside of the proofs.
Observe that the characteristic polynomial of 1

z(qn)
m(qn) is

λk − z(qn)−1
(
λk−1 + · · ·+ λ+ 1

)
.

We begin by proving some basic results about the sizes of the eigenvalues of this polynomial
when z(qn) is either very large or very small.

Lemma 2.1. For z ∈ R, let λi(z) be the roots of λk − z−1
(
λk−1 + · · ·+ λ+ 1

)
= 0. Then

for z large,

λi(z) =ωiz
−1/k

(
1 +

ωi
k
z−1/k +Ok

(
z−

2
k

))

where the ωi are the distinct kth roots of unity. Furthermore, for z small one root satis�es

λi = z−1(1 +Ok(z)),

and all other roots satisfy

λi = ωi(1 +Ok(z)),

where the ωi here are distinct kth roots of unity other than 1.

Proof. For the �rst statement, note that we only need to show this for z � 1. We claim that
p(λ) = λk−z−1(λk−1+· · ·+1) has a root within O(z−2/k) of z−1/kω for every kth root of unity
ω. This follows easily noting that p(z−1/kω) = O(z−(k+1)/k), |p′(z−1/kω)| = Θ(z−(k−1)/k) and
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that |p(`)(z−1/kω)| = O(z−(k−`)/k). This gives λi = ωiz
− 1
k

(
1 +O(z−

1
k )
)
. The stronger claim

follows from
λki = z−1

(
1 + λi +O

(
z

2
k

))
.

For the later two claims, we note that it su�ces to consider z � 1. For the second claim
we note that |p(z−1)| = O(z−k+1), |p′(z−1)| = Θ(z−k+1) and |p(`)(z−1)| = O(z−k+`). For the
�nal claim, note that if ω is a root of xk−1 + . . .+ 1 that |p(ω)| = O(1), |p′(ω)| = Θ(z−1) and
|p(`)(ω)| = O(z−1). �

Lemma 2.2. For every positive real z, the polynomial p(λ) = λk − z−1
(
λk−1 + · · ·+ λ+ 1

)
has no repeated roots.

Proof. Note that if λ is a double root of p then it is a double root of p(x)(x − 1) =
xk+1 − (1 + z−1)xk + z−1 = 0 and therefore a root of the derivative of this, namely,
((k + 1)x− (1 + z−1)k)xk−1. Since x = 0 is clearly not a root of p, we have that the double
root must be x = k(1 + z−1)/(k+ 1). On the other hand, it is clear from the form of p, that
there is a unique, non-repeated positive real root.

�

De�nition 2.3. By Lemma 2.2, the roots of λk − z(qn)−1
(
λk−1 + · · ·+ λ+ 1

)
are distinct

for any n and s. Therefore, the eigenvalues can be analytically continued to functions of

n ∈ R+. By Lemma 2.1, as s→ 0, the various eigenvalues are asymptotic to e
2πij
k z−

1
k . We let

λj(q
n) denote the root whose analytic continuation is asymptotic to e2πi

(j−1)
k z(qn)−

1
k . Thus

λ1(qn) is the unique positive real root of this polynomial. We note that λj(q
n)z(qn) are the

eigenvalues of m(qn) and we call λ1(qn)z(qn) the primary eigenvalue of the matrix m(qn).

Remark 2.4. This notation di�ers slightly from that of Section 1.2. It is convenient for us
to separate out the factor of z(qn) from the eigenvalue.

Since there are no repeated roots of the characteristic polynomial of m(qn) for each eigen-

value zλj = z(qn)λj(q
n) of m(qn) we have the eigenvector V j

n :=


1
λ−1
j
...

λ−k+1
j

 . So we have

(2.1) m(qn) = A(qn)D(qn)A(qn)−1

with

(2.2) D = D(qn) =


zλ1 0 · · · 0
0 zλ2 · · · 0

...
0 0 · · · zλk


and

(2.3) A = A(qn) =


1 1 · · · 1
λ−1

1 λ−1
2 · · · λ−1

k
...

...
λ−k+1

1 λ−k+1
2 · · · λ−k+1

k

 .
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Next we turn to the transition matrices A(qn+1)−1A(qn).

Lemma 2.5. Let λi = λi(q
n+1) and µi = λi(q

n), then A(qn+1) =
(
λ1−i
j

)
i,j

and A(qn) =(
µ1−i
j

)
i,j

and

(2.4) T (n, q) = (T (n, q)i,j)i,j := A(qn+1)−1A(qn) =

(∏
m6=i

(
µj − λm
λi − λm

· λi
µj

))
i,j

where i = 1, 2, · · · , k indexes the row and j = 1, 2, · · · , k indexes the column of T (n, q).

Proof. Note that

(A(qn+1)−1A(qn))T = A(qn)T (A(qn+1)−1)T .

Furthermore,

A(qn)T


a0

a1
...

ak−1

 =


p(µ−1

1 )
p(µ−1

2 )
...

p(µ−1
k−1)


where p(x) = a0 + a1x+ . . .+ ak−1x

k−1. Similarly,

A(qn+1)T


a0

a1
...

ak−1

 =


p(λ−1

1 )
p(λ−1

2 )
...

p(λ−1
k−1)

 .

Therefore, the (i, j) entry of A(qn+1)−1A(qn) is

eTj A(qn)T (A(qn+1)−1)Tei

where ei is the vector with a 1 in the ith position and zeroes in all others. This, in turn, is
the value at λ−1

j of unique degree (k − 1) polynomial p(x) so that p(λ−1
` ) = δ`,i. Therefore,

p(x) =
∏
m6=i

x− λ−1
m

λ−1
i − λ−1

m

.

Thus the (i, j) entry is

p(µ−1
j ) =

∏
m 6=i

µ−1
j − λ−1

m

λ−1
i − λ−1

m

=
∏
m 6=i

((
µj − λm
λi − λm

)(
λi
µj

))
.

�

We will require some lemmas when dealing with transition matrices.

Lemma 2.6. If λ1, · · · , λk are the roots of λk − z−1(λk−1 + · · ·+ λ+ 1) = 0 then we have

|λi − λj| �k |λj| .
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Proof. By Lemma 2.1 for |z| � 1, the λi are proportional to distinct kth roots of unity, and
thus the result follows for z > C for some constant C.
By Lemma 2.1 for |z| � 1, all but λ1, are near distinct k

th roots of unity, and λ1 is roughly
z−1. Thus if i = 1 or j = 1, then |λi − λj| � z−1 � |λj|. Otherwise, |λi − λj| � 1 � |λj|.
Thus the result holds for z < c for some constant c.
For c ≤ z ≤ C, we note that

λj
λi−λj is a continuous function of z, and thus has some

absolute upper bound. Thus the Lemma holds in this range as well. �

Lemma 2.7. In the notation of Lemma 2.5, for any i and n we have |µi−λi| = Ok(|λi|(s+
n−1)). Moreover, we have

∂

∂z
λ1(z)� λ1(z)

(
1 +

1

z

)
and

∂2

∂z2
λ1(z)� λ1(z)

(
1 +

1

z

)2

.

Proof. The �rst result follows from the claim that

∂ log(λi(z))

∂z
= O(1 + z−1).

This follows from the above bounds on λi and the identity

(2.5)
∂

∂z
λi(z) = − z−2(λk−1

i + . . .+ 1)

kλk−1
i − z−1((k − 1)λk−2

i + . . .+ 1)
.

In particular, the above allows us to check our claim for z � 1 and for z � 1. As in Lemma
2.6, the claim follows for intermediate z by a compactness argument. The bound on the
second derivative follows similarly. We note that by di�erentiating λk+1

1 −λk1−z−1
(
λk1 − 1

)
=

0 we have the identity(
(k + 1)λk1 − kλk−1

1 − z−1kλk−1
1

)∂2λ1

∂z2

=2z−3(λk1 − 1)− ∂λ1

∂z
· 2z−2kλk−1

1(2.6)

−
(
∂λ1

∂z

)2 (
(k + 1)kλk−1 − k(k − 1)(1 + z−1)λk−2

1

)
�

Lemma 2.8. In the notation of Lemma 2.5 for j 6= m∣∣∣∣µi − λmλj − λm
· λj
µi

∣∣∣∣
is bounded by some constant depending only on k.

Proof. This lemma follows from Lemmas 2.6 and 2.7. In particular, in the case when neither
i nor j is 1 then

|λj − λm| � |λm| � |µi − λm| .

Thus
∣∣∣µi−λmλj−λm

∣∣∣ is bounded above as is
∣∣∣λjµi ∣∣∣.
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If i = 1, the quantity in question is

O

(∣∣∣∣ λj
λj − λm

∣∣∣∣) = O(1).

Similarly, the result follows for j = 1. �

Proposition 2.9. The transition matrix A(qn+1)−1A(qn) = Ik +Ok

(
s+ 1

n

)
where Ik is the

k × k identity matrix.

Proof. We claim that

T (n, q)i,j = [A(qn+1)−1A(qn)]j,i =
∏
m6=i

µj − λm
λi − λm

· λi
µj

= δi,j +O(s+ n−1).

If i 6= j, by Lemma 2.7 the m = j term of the product is

µj − λj
λi − λj

· λi
µj

= O(s+ n−1) · λi
λi − λj

= O(s+ n−1).

and the remaining terms are O(1) by Lemma 2.8. This proves our bound for the o�-diagonal
coe�cients.
For i = j, by Lemma 2.7 each m-term in the above product equals

λi − λm +O(s+ n−1) |λi|
λi − λm

= 1 +O(s+ n−1).

Taking a product over m yields 1 +O(s+ n−1), which proves our claim. �

We conclude this section with one additional lemma dealing with the ratio of eigenvalues.

Lemma 2.10. If i 6= 1 and ns� 1 then

|λi(qn)|
|λ1(qn)|

≤ exp
(
−c(ns)

1
k

)
for some positive constant c.

Proof. This follows easily from the �rst case of Lemma 2.1. Namely, for i 6= 1

|λi|
|λ1|

= exp(−Ω(z
1
k )) = exp(−Ω((ns)

1
k )).

�

3. Calculations of the early matrices

In this section, we construct an approximation for the vector

Ṽ (N, q) :=
(
ṽka(N, q)

)k−1

a=0
=

N∏
n=1

m(qn)e1

with s−1/2 � N � s−
1
k+1 log(s−1)

k
k+1 .
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Theorem 3.1. Assume that k | N for some integer N with s−
2
k+2 > N and N greater than

a su�ciently large multiple of s−
1
k+1 log(s−1)

k
k+1 , then

ṽka(N, q) = (sN)−
a
k
−N k−1

k e−
N
k

1

k
3
2

exp
(
s

1
kN

k+1
k (k + 1)−1 +Ok

(
sN2 + s

2
kN

k+2
k

))
Before proving Theorem 3.1 we introduce some notation. Each entry of the vector is the

generating function for the number of partitions with no k-sequence, no parts larger than
N , and the largest missing part size is −a (mod k). In this section we use the phrase �run�
to refer to the gap between missing parts. Given a partition µ with parts of size at most N
and no k-sequence, we let

` = `(µ) =
∑
�runs�

(k − �length of run�).

It is clear that ` ≤ (k − 1)N . Note that the length of the run must be less than k and that
` ≡ a (mod k). Let nj = nj(µ) be the parts not appearing in µ satisfying

0 < n1 < n2 < · · · < nbN+`
k
c.

We have
nj = kj −

∑
�runs� before nj

(k − �length of run�).

We let {tj} be the shortenings of the runs. Namely, the length of the run before ni is equal
to

k − |{j : tj = i}|
and we have

(3.1) ni = ki− |{j : tj ≤ i}| .
So we have

0 ≤ t1 ≤ t2 ≤ · · · ≤ t` ≤
⌊
N + `

k

⌋
.

Note that a sequence of missing parts {nj} determines the sequence {tj} and vice versa. We
set

M :=

⌊
N + `

k

⌋
=
N

k
+
`− a
k

.

So we have

(3.2) ṽka(N, q) :=
N∏
n=1

z(qn) ·
∑

`≡a (mod k)

∑
t1≤···≤t`

∏
i

z(qni)−1,

where the sum on ` runs over ` ≤ (k − 1)N . For now we ignore the term
∏N

n=1 z(qn) as
this term can be dealt with separately. The idea for analyzing the remaining sum is that for
N about this size runs are likely to be of size k − 1 or k − 2. One might interpret this as
saying that all the smallest parts want to appear subject to the constraint that every kth
part cannot appear. This agrees with Fristedt's probabilistic model of random partitions
[11].
Next we give a lemma which says we can ignore large ` values.
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Lemma 3.2. In the notation above,∑
`≡a (mod k)

2keN
k+1
k s

1
k<`≤(k−1)N

∑
t1≤···≤t`

∏
i

z(qni)−1 = (sN)
N
k O(s2).

Proof. We note that∏
i

z(qni)−1 ≤
∏
i

z(qN)−1 = z(qN)−b
N+`
k c ≤ (sN)

N+`
k
−1qO(N2) ≤ (sN)

N
k (sN)

`
k s−1.

The number of choices for t's is ≤
(
N+`−1

`

)
≤
(
kN
`

)
. Thus

∑
t1≤···≤t`

∏
i

z(qni)−1 = O

(
s−1

(
kN

`

)
(sN)

N
k (Ns)

`
k

)
.

Noting that (
kN

`

)
≤
(
kNe

`

)`
,

this is at most

O

(
s−1(sN)

N
k

(
keN

k+1
k s

1
k `−1

)`)
≤ O(s−1)(sN)

N
k 2−`.

We note that ifN is at least a su�ciently large multiple of s−
1
k+1 log(s−1)

k
k+1 , then 2` = O(s3).

Summing on `, yields the result. �

Proof of Theorem 3.1. We apply Lemma 3.2 to the summation in (3.2) and, unless otherwise

stated, in the remainder of this proof we assume the sum on ` is truncated by ` < 2keN
k+1
k s

1
k

at a cost of a negligible error.
We will use the following calculations throughout the proof. We have z(qn)−1 = 1−qn

qn
, but

qn = e−ns, so 1 − qn = ns (1 +O (ns)). Moreover,
∏
qni = e−

∑
nis but s

∑
ni ≤ N2s � 1

by construction. Therefore we have∏
i

z(qni)−1 =
∏

nis(1 +O(ni |s|)) = sM
∏
i

ni · (1 +O(sN2)).

Recall that

(3.3) ni = ki− |{j : tj ≤ i}| = ki exp

(
−|{j : tj ≤ i}|

ki
+O

(
` |{j : tj ≤ i}|

i2

))
.
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So the sum becomes∑
`≡a (mod k)

∑
t1≤···≤t`

∏
i

z(qni)−1

=
∑

`≡a (mod k)

(sk)MM !
∑

t1≤···≤t`

∏
j

exp

−∑
i≥tj

1

ki
+O

(
`

i2

)(1 +O(sN2)
)

=
∑

`≡a (mod k)

(sk)M
M !

`!

∑
t1,··· ,t`

exp

(
−1

k

∑̀
j=1

log

(
M

tj

)
+O

(
`

tj

))
×
∏
j

(1 + |{i < j : ti = tj}|)
(
1 +O(sN2)

)
=

∑
`≡a (mod k)

(sk)M
M !M `

`!

(∫ 1

0

t
1
k eO( `

Mt)dt

)`(
1 +O

(
`2

N
+ sN2

))

=
∑

`≡a (mod k)

(sk)M
M !M `

`!

(∫ 1

0

t
1
k

(
1 +O

(
`

Mt

))
dt

)`(
1 +O

(
`2

N
+ sN2

))

=
∑

`≡a (mod k)

(sk)M
M !M `

`!

(
k

k + 1

)` (
1 +Ok

(
s

2
kN

k+2
k + sN2

))
,

where we use that δ ≤ k+1
k
ε. The third line is obtained by removing the ordering on the ti's.

The product 1
`!

∏
j (1 + |{i < j : ti = tj}|) accounts for the introduced over-counting. The

fourth line is obtained by approximating the sum over tj (once ti has been �xed for i < j)

of t
1/k
j (1 + |{i < j : ti = tj}|) by

∫
t1/kdt. Additionally, in the �fth line we note that term

O
(
`
Mt

)
is always negative, see (3.3).

Applying Stirling's approximation toM !, and suppressing the errors, we see that the above
is equal to(s

e
(N − a)

)N−a
k

√
2π
N − a
k

∑
`≡a (mod k)

(s
e

) `
k

(
N + `− a
N − a

)N−a
k

+ 1
2

(N + `− a)`(
k+1
k ) 1

`!

(
1

k + 1

)`

=

(
s(N − a)

e

)N−a
k

√
2π
N − a
k

∑
`≡a (mod k)

(
1

k + 1
s

1
k (N − a)

k+1
k

(
1 +O

(
`

N

)))`
1

`!

=

(
s(N − a)

e

)N−a
k

√
2π
N − a
k

 ∑
`≡a (mod k)

(
1

k + 1
s

1
k (N − a)

k+1
k

)`
1

`!

(1 +O
(
s

2
kN

k+2
k

))

where we have used
(
N+`−a
N−a

)N−a
k =

(
1 + `

N

)N−a
k = e

`
k times a negligible error.

Extending the sum to a sum over all ` rather than those with ` < 2kes
1
kN

k+1
k introduces a

negligible error. The completed sum over ` is the sum over every k-th term of an exponential.
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Thus, suppressing the above error terms, we have∑
`≡a (mod k)

(
s

1
k (N − a)

k+1
k (k + 1)−1

)` 1

`!

=
1

k

∑
t (mod k)

ζatk exp
(
s

1
k (N − a)

k+1
k (k + 1)−1ζtk

)

=
1

k
exp

(
s

1
k (N − a)

k+1
k (k + 1)−1

)(
1 +O

(
exp

(
− s

1
kN

k+1
k

2k(k + 1)

)))
=

1

k
exp

(
s

1
kN

k+1
k (k + 1)−1

)(
1 +O

(
(sN)

1
k

))
where we have approximated N − a by N .
To �nish the proof of the theorem we use

N∏
n=1

z(qn) =
N∏
n=1

(sn)−1 (1 +O(ns)) =
s−N

N !

(
1 +O

(
N2s

))
=

eN

(sN)N
√

2πN

(
1 +O

(
N2s

))
.

�

Before concluding this section we give a comparison between ṽk0(N, q) and the eigenvec-

tors of m(qN). We let V i
n(q) be the eigenvector

(
1 λi(q

n)−1 · · · λi(q
n)−k+1

)T
of m(qn)

corresponding to the eigenvalue λi(q
n)z(qn).

Proposition 3.3. In the notation above, with the assumptions of Theorem 3.1 and V i
N(q) =(

1 λi(q
N)−1 · · · λi(q

N)−k+1
)T

we have

Ṽ (N, q) = (Ns)−N
k−1
k e−

N
k

1

k
3
2

exp
(
s

1
kN

k+1
k (k + 1)−1 +O

(
sN2 + s

2
kN

k+2
k

))
V 1
N(q)

+
∑
i>1

Ci
N(q)V i

N(q)

where

Ci
N(q)� (Ns)−N

k−1
k e−

N
k exp

(
s

1
kN

k+1
k (k + 1)−1

)
O
(
sN2 + s

2
kN

k+2
k

)
.

Proof. Since the eigenvectors, form a basis, there exist Ci
N(q) so that Ṽ (N, q) =

∑
i≥1C

i
N(q)V i

N(q).
Applying Theorem 3.1, we have that

ṽka(N, q) = ṽk0(N, q)(sN)−
a
k

(
1 +O

(
s

2
kN

k+2
k + sN2

))
.

By Lemma 2.1 we have that

λj(q
N) = e2πi

(j−1)
k (sN)

1
k (1 +O((sN)

2
k )).

Therefore, we have that for 0 ≤ a ≤ k − 1,

ṽk0(N, q)
(

1 +O
(
s

2
kN

k+2
k + sN2

))
=

k∑
i=1

e−
2πia(j−1)

k (1 +O(sN)
2
k )Ci

N(q).



PARTITIONS WITH NO k-SEQUENCE 17

In other words if B is the matrix with (a, j) entry e−
2πia(j−1)

k , then B + O(sN)
2
k times the

vector of Ci
N(q) equals a vector whose entries are ṽk0(N, q)

(
1 +O

(
s

2
kN

k+2
k + sN2

))
. Noting

that the inverse of B +O(sN)
2
k is B−1 +O(sN)

2
k this implies that

C1
N(q) = ṽk0(N)

(
1 +O

(
s

2
kN

k+2
k + sN2

))
, and Ci

N(q) = ṽk0(N, q)O
(
s

2
kN

k+2
k + sN2

)
for

i > 1. This proves our Proposition. �

Finally, the next proposition compares ṽk0(N, q) to the product of the eigenvalues.

Proposition 3.4. In the notation above, with the assumptions of Theorem 3.1 we have

ṽk0(N, q)∏N
n=1 λ1(qn)z(qn)

=
1

k
3
2 (2π)

1−k
2k

exp

(
k − 1

2k
log(N) +O

(
s

2
kN

k+2
k + sN2

))
.

Proof. By Lemma 2.1 we see that the product of the �rst N primary eigenvalues is

N∏
n=1

λ1(qn)z(qn) =
N∏
n=1

(ns)
1
k

(
1 +

1

k
(ns)

1
k +O(ns)

2
k

)
· (ns)−1 (1 +O(ns))

=
N∏
n=1

(ns)−
k−1
k

(
1 +

1

k
(ns)

1
k +O(ns)

2
k

)

=(N !)−
k−1
k s−

k−1
k
N exp

(
s

1
k

k + 1
N

1+k
k +O

(
(sN)

1
k

))
=(2π)−

k−1
2k (Ns)−N

k−1
k eN(1− 1

k)

× exp

(
−k − 1

2k
log(N) +

1

k + 1
s

1
kN

k+1
k +O

(
(sN)

1
k

))
.

Theorem 3.1 gives the result. �

4. After the run-up

In the previous section, we computed Ṽ (N, q) =
∏N

n=1m(qn)e1. In this section, we evaluate

Gk(q) = eT
∞∏
n=N

m(qn) Ṽ (N, q)

We have the following proposition which shows that we only need to consider the eigenvalues
and the �rst entry in each of the transition matrices.

Theorem 4.1. In the notation from Lemma 2.5 for N an integer bigger than a su�ciently

large multiple of s−
1
k+1 log(s−1)

k
k+1 we have

Gk(q) =
∞∏
n=N

λ1(qn)z(qn) ·
∞∏
n=N

T (n, q)1,1 · ṽk0(N, q) ·
(

1 +O
(
s+N

−k−1
k s

−1
k

))
.

In order to prove Theorem 4.1 we will need the following lemma.
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Lemma 4.2. Let w(n, q) := A(qn)−1
∏n−1

i=1 m(qi)e1. Then for n bigger than a su�ciently

large multiple of s−
1
k+1 log(s−1)

k
k+1 , we have that for i 6= 1 that

|w(n, q)i| ≤ O(n−
k+1
k s−

1
k + s)|w(n, q)1|.

Proof of Lemma 4.2. The proof is by induction on n. Proposition 3.3 makes this result clear
for n at the lowest end of the permissible range. The basic idea here is that

w(n+ 1, q) = T (n, q)D(qn)w(n, q).

Now since |λ1(qn)| > |λi(qn)|, multiplication by D(qn) increases the ratio of the �rst entry
relative to the other entries. Since T (n, q) is approximately I, multiplication by T (n, q) does
not worsen this ratio by too much.
We begin by proving our claim for ns� 1. Letting

(4.1) u(n, q) := D(qn)w(n, q)

and applying Lemma 2.1, we have that

|u(n, q)i|
|u(n, q)1|

≤ |w(n, q)i|
|w(n, q)1|

(1− Ω((ns)
1
k )).

Next, since T (n, q) = Ik +O(n−1), and since |u(n, q)i| < k|u(n, q)1|, we have that

|w(n+ 1, q)i|
|w(n+ 1, q)1|

= O(n−1) +

(
|w(n, q)i|
|w(n, q)1|

)
(1− Ω((ns)

1
k )).

Induction on n gives

|w(n, q)i| ≤ O(n−
k+1
k s−

1
k )|w(n, q)1|

for all n� s−1.
The argument for ns � 1 is similar. It should be noted that in this range that |λi(q

n)|
|λ1(qn)| is

bounded above by some constant less than 1 (say by 1− ε). Therefore, we have that

|w(n+ 1, q)i|
|w(n+ 1, q)1|

= O(s) +

(
|w(n, q)i|
|w(n, q)1|

)
(1− ε).

From this, it is easy to conclude by induction that |w(n, q)i| = O(s)|w(n, q)1|. �

Remark 4.3. It should be noted that the bound in Lemma 4.2 is not tight for small n (a

stronger bound is given in Proposition 3.3). The bound of n−
k+1
k s−

1
k would be tight given our

analysis if all we use is that T (n, q)1,i = O(n−1) and that
∣∣∣ λi(qn)
λ1(qn)

∣∣∣ = 1−Ω((ns)
1
k ). In order to

obtain a tighter analysis, one can note that the T (n, q)1,j are roughly constant in n and that
λi
λ1

is roughly ωi, where ω is a primitive kth root of unity. By our previous analysis, wi(n+1,q)
w1(n+1,q)

is approximately λi(q
n)

λ1(qn)

(
T (n, q)1,i +

(
wi(n,q)
w1(n,q)

))
. Approximating each λi

λ1
by ωi(1− (ns)

1
k ) and

each T (n, q)1,i by a constant of order n−1, we note that resulting recurrence leads to terms
of size O(n−1) due to cancelation that is not captured in our analysis.

We are now prepared to prove Theorem 4.1.
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Proof of Theorem 4.1. We claim that

w(n+ 1, q)1 = w(n, q)1λ1(qn)z(qn)T (n, q)1,1(1 +O(min(n−
2k+1
k s−

1
k , s2z(qn)))).

Or equivalently (since u(n, q)1 = λ1(qn)z(qn)w(n, q)1) that

w(n+ 1, q)1 = u(n, q)1T (n, q)1,1(1 +O(min(n−
2k+1
k s−

1
k , s2z(qn)))).

It is clear that

w(n+ 1, q)1 =
∑
j

T (n, q)1,ju(n, q)j

Hence we need to show

max
j 6=1

(
T (n, q)1,j · |u(n, q)j|

|u(n, q)1|

)
= O(min(n−

2k+1
k s−

1
k + s, s2z(qn))).

If ns � 1, this follows since T (n, q)1,j � n−1, and
|u(n,q)j |
|u(n,q)1| ≤

|w(n,q)j |
|w(n,q)1| = O(n−

k+1
k s−1).

Otherwise, this follows from noting that T (n, q)1,j � s and

|u(n, q)j|
|u(n, q)1|

=

(
|λj(qn)|
|λ1(qn)|

)(
|w(n, q)j|
|w(n, q)1|

)
= O(z(qn)s).

This proves the claim.
Therefore we have that

lim
n→∞

w(n, q)1 =
∞∏

n=N+1

λ1(qn)z(qn)T (n, q)1,1 · exp

(
O

(
∞∑

n=N+1

min(n−
2k+1
k s−

1
k , s2z(qn))

))
.

The sum in the error term is at most

bs−1c∑
n=N+1

n−
2k+1
k s−

1
k +

∞∑
n=bs−1c

s2z(qn).

The �rst term is O
(
N−

k+1
k s−

1
k

)
and the latter term is O (s2

∑∞
n=1 e

−ns) = O(s). �

The following theorem is enough to deduce Theorem 1.4 and thus Theorem 1.2

Theorem 4.4. With N as above we have
∞∏
n=N

T (n, q)1,1 = k
1
2 exp

(
−k − 1

2k
log (Ns) +O

(
(Ns)

1
k +N−1 + s

))
.

Proof. Throughout this proof we use the notation of Lemma 2.5 and often suppress the
dependence on n. We have

T (n− 1, q)1,1 =
∏
m6=1

µ1 − λm
λ1 − λm

· λ1

µ1

and

µ1(qn) = λ1(qn−1) = λ1(qn)− λ′1(qn) +O(λ′′1(qn))
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where λ′1(qn) = ∂
∂n
λ1(qn). Therefore,

µ1 − λm
λ1 − λm

· λ1

µ1

= 1 + λ′1

(
1

λ1 − λm
− 1

λ1

)
+Ok

((
λ′′1
λ1

+

(
λ′1
λ1

)2
))

Hence,

T (n− 1, q)1,1 = exp

(
−λ′1

∑
m6=1

(
1

λ1 − λm
− 1

λ1

)
+Ok

((
λ′′1
λ1

+

(
λ′1
λ1

)2
)))

.

To estimate the big-O term for ns� 1 we use (2.5) and (2.6) and Lemma 2.1 to obtain

1

λ1

∂λ1

∂n
=− s 1

λ1

∂λ1

∂z
· z(qn)2ens = O

(
1

n

)
1

λ1

∂2λ1

∂n2
=
s2e2ns

λ1

(
∂2λ1

∂z2
· z(qn)4 +

∂λ1

∂z
· z(qn)3

)
= O

(
1

n2

)
.

For ns� 1 we use Lemma 2.7 to obtain

1

λ1

∂λ1

∂n
= O

(
se−ns

)
and

1

λ1

∂2λ1

∂n2
= O

(
s2e−ns

)
.

Therefore

∞∏
n=N

T (n− 1, q)1,1 exp

(
λ′1
∑
m6=1

(
1

λ1 − λm
− 1

λ1

))
= exp

 b 1
s
c∑

n=N

O

(
1

n2

)
+O

s2

∞∑
n=b 1

s
c

e−ns


= exp

(
O

(
1

N
+ s

))
.

Let P (λ, z) := λk − z−1
(
λk−1 + · · ·+ λ+ 1

)
. We have

(4.2) 2
∑
m 6=1

1

λ1 − λm
=

∂2

∂λ2
P (λ, z)

∂
∂λ
P (λ, z)

∣∣
λ=λ1

z=z(N,q)
=: Rk(λ1(qn)).

Therefore,

∞∏
n=N

T (n, q)1,1 =
∞∏
n=N

T (n− 1, q)1,1(1 +O(N−1 + s))

= exp

(
−
∞∑
n=N

(
1

2
λ′1(qn)Rk(λ1(qn))− (k − 1)

λ′1(qn)

λ1(qn)

)
+O

(
N−1 + s

))
We apply Euler-MacLaurin to approximate the sum by an integral. The error from the terms
λ′1(qn)

λ1(qn)
introduces an error of size∫ ∞

N

(
λ′′1(qn)

λ1(qn)
+

(
λ′1(qn)

λ1(qn)

)2
)
dn = O

(
N−1 + s

)
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as above. Thus, we have
∞∏
n=N

T (n, q)1,1 = exp

(
−
∫ ∞
N

(
1

2
λ′1(qx)Rk(λ1(qx))− (k − 1)

λ′1(qx)

λ1(qx)

)
dx+O

(
N−1 + s

))
= exp

(
−
∫ ∞
λ1(qN )

Rk(x)

2
− k − 1

x
dx+O

(
N−1 + s

))
In order to evaluate the integral

∫
Rk(x)dx, we let a(λ) = λk and b(λ) = λk−1 + · · ·+ 1. We

then have that z−1 = a(λ1)
b(λ1)

. Therefore,

Rk(λ) =
a′′(λ)− z−1b′′(λ)

a′(λ)− z−1b′(λ)
=
a′′(λ)b(λ)− a(λ)b′′(λ)

a′(λ)b(λ)− a(λ)b′(λ)
=

∂

∂λ
log(a′(λ)b(λ)− a(λ)b′(λ)).

Letting

Q(λ) := a′(λ)b(λ)− a(λ)b′(λ)

= kλk−1(λk−1 + · · ·+ 1)− λk((k − 1)λk−2 + · · ·+ 1)

= λ2k−2 + 2λ2k−3 + · · ·+ kλk−1,

we have that ∫ ∞
λ1(qN )

Rk(x)

2
− k − 1

x
dx =

1

2

[
log
(
Q(λ)λ−2k+2

)]∞
λ1(N)

.

We note that for λ� 1 that Q(λ)λ−2k+2 = 1 +O(λ−1), and therefore,

lim
λ→∞

log
(
Q(λ)λ−2k+2

)
= 0.

For λ� 1, we have that Q(λ)λ−2k+2 = kλ−k+1(1 +O(λ)). Therefore
∞∏
n=N

T (n, q)1,1 = exp

(
1

2
log
(
kλ1(qN)−k+1(1 +O(λ1(qN)))

)
+O

(
N−1 + s

))
.

By Lemma 2.1, we have
∞∏
n=N

T (n, q)1,1 = exp

(
−k − 1

2
log
(
λ1(qN)

)
+

1

2
log(k) +O

(
(Ns)

1
k +N−1 + s

))
= exp

(
−k − 1

2k
log (Ns) +

1

2
log(k)− k − 1

2k
(Ns)

1
k +O

(
(Ns)

1
k +N−1 + s

))
.

�

In the next section, we analyze the product of the primary eigenvalues.

5. The Product of the Primary Eigenvalues

In this section, we estimate

∞∏
n=1

λ1(qn)z(qn) = exp

(
∞∑
n=1

log(λ1(qn)) + log

(
qn

1− qn

))
.
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Theorem 5.1. In the notation above we have
∞∑
n=1

log (λ1(qn)z(qn)) =
π2

6s

(
1− 2

k(k + 1)

)
+

(
k − 1

2k

)
log(s)−

(
k − 1

2k

)
log(2π) +Ok

(
s

1
k

)
.

We start with the following lemma which closely resembles Euler-MacLaurin summation.

Lemma 5.2. For suitable functions h and n ≥ 1 we have

h(n) =

∫ n+ 1
2

n− 1
2

h(z)dz −
∫ n+ 1

2

n− 1
2

h′(x)

(
[x]− x+

1

2

)
dx

=

∫ n+ 1
2

n− 1
2

h(z)dz − 1

2

∫ n+ 1
2

n− 1
2

h′′(x)

(
[x]− x+

1

2

)2

dx

where [x] denotes the integer part of x.

Proof. To see this note that for any function h(z) we have

h(z) = h(n) + h′(n)(z − n) +

∫ z

n

h′′(x)(z − x)dx.

Integrating from n− 1
2
to n+ 1

2
gives the second result. Integration by parts on each interval

[n, n+ 1
2
] and [n− 1/2, n] gives the �rst result. �

De�ne the function fk(e
−x) to be the increasing function satisfying

(5.1) fk(e
−x)k+1 − fk(e−x)k = e−x(k+1) − e−xk.

Since λ1(qn)k = z(qn)−1
(
λ1(qn)k−1 + · · ·λ1(qn) + 1

)
, multiplying by λ1(qn) − 1 we have

λ1(qn)k+1 − λ1(qn)k = z(qn)−1(λ1(qn)k − 1) = q−nλk1 − q−n − λk1 + 1. Therefore fk(e
−ns) =

λ1(qn)qn.

Remark 5.3. This function fk(e
−x), and certain generalizations, are studied in [15].

Proof of Theorem 5.1. The modularity of the Dedekind η-function gives

(5.2)
∞∑
n=1

log (1− qn) =
π2

6s
+

1

2
log(s)− 1

2
log(2π)− s

24
+O(sM)

for any M > 0. Additionally, by Lemma 5.2, we have
∞∑
n=1

log (1− qn) =

∫ ∞
0

log(1−e−xs)dx−
∫ 1

2

0

log(1−e−xs)dx−s
∫ ∞

1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx.

Noting that
∫∞

0
log(1− e−xs)dx = π2

6s
and

∫ 1
2

0
log(1− e−xs)dx = 1

2
log(s) +

∫ 1
2

0
log(x)dx+O(s)

we may conclude that

(5.3) −
∫ 1

2

0

log(x)dx− s
∫ ∞

1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx =

1

2
log(2π) +O(s).

Following the notation of Section 3 of [8] we de�ne

(5.4) gk(xs) = − log(fk(e
−xs)).
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By Lemma 5.2,

(5.5)
∞∑
n=1

gk(ns) =

∫ ∞
0

gk(xs)dx−
∫ 1

2

0

gk(xs)dx− s
∫ ∞

1
2

g′k(xs)

(
[x]− x+

1

2

)
dx.

Theorem 1 of [15] gives
∫∞

0
gk(xs)dx = 1

s
π2

3k(k+1)
. Lemma 2.1 gives that for sx� 1

gk(xs) = − log
(
fk(e

−xs)
)

= −1

k
log(xs) +

1

k
(xs)

1
k +O

(
(xs)

2
k

)
Therefore, we have

(5.6) −
∫ 1

2

0

gk(xs)dx =
1

2k
log(s)− 1

k

∫ 1
2

0

log(x)dx+O
(
s

1
k

)
.

Let M = bs− 1
k c. Then we have

s

∫ ∞
M+ 1

2

g′k(xs)

(
[x]− x+

1

2

)
dx =

s2

2

∫ ∞
M+ 1

2

g′′k(xs)

(
[x]− x+

1

2

)2

dx

�s
∫ ∞
Ms

g′′k(w)dw �M−1 � s
1
k(5.7)

where we use g′(Ms) = Ok

(
1
Ms

)
(see, for instance, Lemma 3.1 of [8]).

To estimate the integral of g′k from 1
2
to M + 1

2
we take the logarithmic derivative of

fk(e
−w)k+1 − fk(e−w)k = e−w(k+1) − e−wk to obtain

g′k(w) = 1− 1

k

e−w

e−w − 1
+

1

k
e−w

f ′k(e
−w)

1− fk(e−w)
.

Therefore

s

∫ M+ 1
2

1
2

g′k(xs)

(
[x]− x+

1

2

)
dx =− s

k

∫ M+ 1
2

1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx

+
s

k

∫ M+ 1
2

1
2

e−xs
f ′k(e

−xs)

1− fk(e−xs)

(
[x]− x+

1

2

)
dx(5.8)

Observe that we have∫ M+ 1
2

1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx

=

∫ ∞
1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx−

∫ ∞
M+ 1

2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx

=

∫ ∞
1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx+

s

2

∫ ∞
M+ 1

2

e−xs

(1− e−xs)2

(
[x]− x+

1

2

)2

dx

=

∫ ∞
1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx+O(se−Ms).(5.9)
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Additionally, integrating by parts we obtain

s

∫ M+ 1
2

1
2

e−xs
f ′k(e

−xs)

1− fk(e−xs)

(
[x]− x+

1

2

)
dx

�s · e
−xsf ′k(e

−xs)

1− fk(e−xs)

∣∣∣M+ 1
2

1
2

�k s
1
k

(
1 +M− k−1

k

)
(5.10)

where we have used that monotonicity of log(1− fk(w)) and f ′k(z) = O
(
z

1−k
k

)
for z near 0.

Returning to (5.5) and using (5.3) and (5.7)-(5.10)

−1

k

∫ 1
2

0

log(x)dx− s
∫ ∞

1
2

g′k(xs)

(
[x]− x+

1

2

)
dx

=
1

k

(
−
∫ 1

2

0

log(x)dx− s
∫ ∞

1
2

e−xs

1− e−xs

(
[x]− x+

1

2

)
dx

)
+O

(
s

1
k +M−1

)
=

1

2k
log(2π) +O(s

1
k )

Finally, this together with (5.5) and (5.6) gives the result. �

6. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 and thus Theorem 1.2.

Proof of Theorem 1.4. We have Gk(q) = eT
∏∞

n=N+1m(qn) ·
∏N

n=1 m(qn)e1. It follows from
Theorem 4.1, Proposition 3.4, and Theorems 4.4 and 5.1 that for appropriate N ,

Gk(e
−s) =

1

k
exp

(
π2

6s

(
1− 2

k(k + 1)

)
+O

(
N−

k+1
k s−

1
k + sN2 + s

2
kN

k+2
k +N−1

))
.

Setting N =
⌊
s−

3
2k+3

⌋
yields the result. �

7. Proof of Theorem 1.8

In this section we apply a result of Ingham [16] to deduce the asymptotics for pk(n) from
the asymptotics of Gk(q) as q → 1. In particular, we have the following result which is a
special case of Theorem 1 of [16] and is given as Theorem 4.1 of [10].

Theorem 7.1 (Ingham). Let f(z) =
∑∞

n=0 a(n)zn be a power series with real nonnegative
coe�cients and radius of convergence equal to 1. If there exists A > 0, λ, α ∈ R such that

f(z) ∼ λ(− log(z))α exp

(
− A

log(z)

)
as z → 1−, then

n∑
m=0

a(m) ∼ λ

2
√
π

A
α
2
− 1

4

n
α
2

+ 1
4

exp
(

2
√
An
)

as n→∞.
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Proof of Theorem 1.8. By Lemma 10 of [15] (1− q)Gk(q) =
∑∞

n=0(pk(n)− pk(n− 1))qn has
nonnegative coe�cients. Applying Theorems 1.4 and 7.1 gives the result. �
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