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Definitions

We briefly recall some basic definitions:
Definition
We call a function f : R” — R a (degree-d) Polynomial Threshold

Function (or PTF) if it is of the form f(x) = sgn(p(x)) for p a (degree-d)
polynomial in n variables.

Definition
For p: R"” — R and define

Pl = (Ex~ar [Ip(X)2])"?.

D. Kane (Stanford) Subpoly PRG November 2013 2 /35



Pseudorandom Generators

Definition

Given a class C of functions f : R” — R, and a probability distribution D
on R"” we say that another distribution B on R"” e-fools C with respect to
D if for every f € C,

|Ex~p[f(X)] — Eys[f(Y)]| <e.

Definition

We say that the probability distribution B is a Pseudorandom Generator
(PRG) for C with respect to D if it can be produced by a polynomial time
randomized algorithm using few random bits.

We will produce a small-seed PRG to e-fool the class of degree-d PTFs
with respect to the n-dimensional Gaussian (or Bernoulli) distribution.
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PRGs from k-independence

Recall that a random variable is k-wise independent if any k of its
coordinates are independent. There are good constructions of k-wise
independent variables from small seeds, and they can be used as PRGs for
PTFs.

o [Diakonikolas-Gopalan-Jaiswal-Servedio-Viola, 2010]
k = O(e~?)-independence fools degree-1 PTFs

o [Diakonikolas-K.-Nelson 2010] k = O(e¢~8)-independence fools
degree-2 PTFs

o [K.2011] k = Od(efzo(d))—independence fools degree-d PTFs

@ Best lower bound that | know: k = Q(d2¢~2?).
@ | suspect that the lower bound is tight.
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Other PRGs

o [Meka-Zuckerman 2010] O(d log(n) + log(1/€)) (Existential)
o [Meka-Zuckerman 2010] log(n)20(d)¢—84=3 (Bernoulli)
o [K. 2011] log(n)20(d) =41 (Gaussian)
o [K. 2012] log(n)Og(e~111) (Bernoulli)
o [K. 2012] log(n)Og(e~21) (Gaussian)

In this talk we discuss the structure and analysis of a generator with seed
length subpolynomial in the error parameter. Namely, seed length

10g(n) Oc.a(e ).
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General Construction ldea

Basic idea for the above: Combine a bunch of independent copies of a
weak PRG.
Bernoulli case:

@ Split coordinates into M bins in a 2-independent fashion.
@ Fill each bin using a k-independent generator.
Gaussian Case:

@ Y; are k-independent Gaussians chosen independently.
M
°Y= ﬁ 2iz1 Vi
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The Replacement Method

These generators can be analyzed using Lindeberg's replacement method.
@ Approximate f by smooth function g
e Show E[f(X)] =~ E[g(X)] = E[g(Y)] = E[f(Y)]
» E[f(X)] = E[g(X)] from anticoncentration
» E[g(X)] = E[g(Y)] from replacement
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The Replacement Step

To get E[g(X)] ~ E[g(Y)],
o X = (Xl,...,XM),YZ (Yl,...,YM)
@ Replace X; by Y; one at a time
@ Show:

E[g(Y]_, ey )/l'—17 WyXi+17 v 7XM)]
~ E[g(yb ) \/l'—l’XhX/'-f-la cee 7XM)]

e Fixing, Y1,...,Yi—1,Xit1,...,Xnm Taylor expand g

g(Y1,...,Yi-1,Z,Xi+1,...,Xum) = Poly(Z) + Error.

@ Since Z = X; and Z = Y; have same low order moments, they give
similar expectations.
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Anticoncentration

e To ensure E[f(X)] =~ E[g(X)], want f(X) = g(X) with high
probability.

@ Approximating discontinuous function by smooth one have error near
locus of discontinuity.

@ Need anticoncentration result.

For example:

Lemma (Carbery-Wright)

If p is a degree-d polynomial in n variables, X an n-dimensional Gaussian,
and 7 > 0 then

Pr(|p(X)| < 7lpl2) = O(dr*/7).
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Balancing Errors

To get low anticoncentration error, need g to have sharp cutoffs

This causes g to have large derivatives

°

°

@ This causes large Taylor error
@ Which forces M to be large
°

Improvements can be made by shaping g to the polynomial, but
probably can't beat seed length 2.
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New ldea

o First replacement step, show that

M—-1 1
X + Y
g( M m)

Ex,y

Is determined to small error by k-independence of Y.

e Want g smooth, so that above holds for any fixed X.

@ Expectation over X provides smoothing.

M—1 1
f X + 14
( M VM >

Is approximately determined by k-independence.

@ Hope to show

Ex,y

@ Avoids anticoncentration error.

D. Kane (Stanford) Subpoly PRG

November 2013

11/ 35



The Degree 1 Case

We begin by seeing how this works in the degree 1 case. Let
f(x) =sgn(v-x+0)

for some vector v with |v| = 1 and some 6 € R. For fixed Y, we have

Exlf< MI\;lXJr\/lMY)]
:Exlsgn<v-X+\/%v-Y+ MM_19>]

1 M
- (m” +\//\4_19>

=Ti(v-Y)+ O(|v- Y|F(kM)~k/?).

Expectation is determined by k-independence up to an error of
O(M~1)k/2,
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The Degree 1 Case

Lemma

If f is a degree 1 PTF, X a random Gaussian, and Y a k-independent
Gaussian (k even) and ¢ > 0,

Ex[f(X)] = Ex.y[f(V/1 — 02X + 8Y)] + O(6)*.

For fixed Y, have another degree 1 PTF in X, so we can iterate:

E[f(X)] = E[f(V1 — 62X 4+ 6Y1)] + O(8)*
=E[f((1 - 6%)X + Y1+ 6(1 — 62)Y2Y,)] +20(5)

:E[f (( 52)€/2x+5z —§2)U~ 1)/2Y>
i=1

+L0(0)*.
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Getting Rid of the X

For large £, the coefficient of X is small. Thus, we expect it to have little
effect.
The expected difference of

4
p ((1 _ 52)6/2X + 52(1 _ 52)(i—1)/2yi>

=1
and
S (1= 6202y,

V(1 - a2y

is about O((1 — 02)%/2). Thus, they likely have the same sign.
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Result

Theorem

Let X be a random Gaussian. Let Y; be independently chosen from
k-independent families of Gaussians. For some ¢,6 > 0, let

y = Ziz(l =03V 2y;
\/Zf:l(l _ §2)i-1
Then for f any degree 1 PTF,

[E[f(X)] — E[f(Y)]| = £O(6)* + O((1 — 6°)?).

v

Taking d constant and k,¢ = O(log(1/¢)) gives a generator of seed length

s = O(log(n) log?(1/e€)).
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Higher Degrees

@ To get this generator to work for higher degree PTFs we need to show

E[f(X)] ~ E[f(v/1 — 62X + 8Y)].

@ Show that

Ex[f(v/1— 02X +6Y)]

is approximated by a polynomial in Y.
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Approximately Linear Polynomials

We first consider the case where p is approximately linear,
p(x) = (1= 6%) ™ 2xqy + 0+ q(x)
with |g(x)]2 small. Letting X = (X(1), X’), we have that
p(V/1— 02X +6Y) = Xy + 0+ r(Xay, X', Y).
Fixing the values of X’ and Y we have that

p = p(X)) = Xa) + 0 + R vy (X))

With |R|2 small with high probability.
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Approximately Linear Polynomials

p = p(X1)) = X1) + 0+ Re vy (X))
For small X, p is invertible by the Inverse Function Theorem.
Efsgn(p(X(1))] ~ exf(p~*(0)).
We have p~1(0) smooth in coefficients of R, so Taylor expanding,
Elsgn(p(X(1)))] = Polynomial(R) + Og (|RI%).

Since the expectation of a degree-k polynomial in R is determined by
dk-independence of Y, we have that

E[sgn(p(X))] = Elsgn(p(v/1 — 62X + 6Y))] + O ((|ql2 + 6)*).
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Local Restrictions

@ Problem: Most polynomials are not approximately linear

@ Idea: A smooth function is approximately linear on small scales

» Let pz(X) = p(v1— 3827 + 6X).
» With high probability over Z,

pz(X) = Const. + 6p'(Z) - X + O(6?)

» Need linear term not too small
» Want |p/(Z)| > 6'/2 with high probability

Definition
We say that p is (0, ¢, N)-non-singular if

Prz(|p'(Z)] < 6%|pl2) < 6.
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Non-Singular Polynomials

Proposition

If p is (8,1/2, k)-non-singular, and Y is 4dk-wise independent, then for
f(x) = sgn(p(x)),

E[f(X)] — E[f(V/1 — 6*X + 62Y)]‘ = Oy k(6%).

Proof.

o Let VI —6*X =1 — 62Xy +0V1— 62X,
o With probability 1 — 6%, px,(—) is approximately linear
@ When this happens,

Ex, v [F(V1— 62X1 + 61 — 82Xz + 62Y)]
- EXz[f(ﬂXl + 5X2)]| - éd,k((sk)

O]

y
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Getting Non-Singular Polynomials

@ Most polynomials are non-singular
@ Some aren't.
> p(x) = L(x)?
> [p'(x)| = d|L'(x)||L(x)]9"! often small
» Suffices to study L(x) instead
@ Idea: Decompose arbitrary polynomial in terms of non-singular
polynomials
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Degree 2 Case

p(x) degree 2, |pl2 =1

Diagonalize quadratic form, change variables:
n
p(x) = aipi(x) + 0
i=1

where p; is mean 0 and variance 1, a3 > a, > ... > a, > 0.
(x> = X a7 (pi(x(1))?
pis (9, c, N)-non-singular if:

> azy/c > §2¢/3 (one of the first few a;|p;(x(;))| will be big enough)
> 27:3N/C a? > §¢ (the sum of the tail terms is too well concentrated)

Thus, p is non-singular unless all but §</2 of its L2 norm is
determined by the first 3N /c coordinates.
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Degree 2 Case

e Either p is non-singular or

p(x) = q(x1)s- - -+ X@3n/0)) + 62 pr(x).

o Either p; is non-singular or

p(x) = q(xa); - - - X6n/c)) + 0 p2(x).

° ...
o Either:
>
p(X) = q(X(1)7 s 7X(m)) + r(X)
with m < 24N2?/c? and r (4, c, N)-non-singular
>

p(x) = q(xy, - - X(m)) + O(8*")

@ Need to simultaneously fool m linear functions and one non-singular

quadratic function
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Non-Singular Decomposition

Definition
We say that a sequence of polynomials, (p1,...,pm), is
(9, ¢, N)-non-singular if |p;|> = 1 for all i and except for with probability 5"

pi(X) P5(X) ... pPL(X)| has no singular value smaller than §¢.

Definition
A degree d polynomial p has a (0, ¢, N)-non-singular decomposition of size
m if p(x) can be written as

p(x) = Q(p1(x), p2(x), - - -, Pm(X))

for some @ and polynomials p1, ..., pm of degree at most d so that
(p1s---,Ppm) is a (0, c, N)-non-singular set.

v
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The Decomposition Theorem

Theorem

For any d, c, N > 0 there exists a constant s(d, c, N) so that for any
degree-d polynomial p, and any § > 0 sufficiently small, there exists a
degree d polynomial py with |p — pgla < 6%V|pla, so that py has a
(6, ¢, N)-non-singular decomposition of size at most s(d, c, N).

In particular, we may take s(1,c, N) = 1 and s(2,c, N) = O(N?/c?).

Remark

The proof for d > 2 is quite technical. Also the bounds on s are quite bad.

The best | can show is s(d,c, N) < A(d + O(1), N/c), where A is the
Ackermann function.

D. Kane (Stanford) Subpoly PRG November 2013 25/ 35



Using the Decomposition

Proposition

Let f be a degree d PTF. Let M = dks(d,1/2, k). Let X be a random
Gaussian and 'Y a 2kd-independent Gaussian. Then for 6 > 0

IE[f(X)] — E[f(V/1 — 84X + 62Y)]| = O(M)°M) O(s%).
Proof.
@ p =~ pg where py has a decomposition into (p1, ..., pm)-

o Replacing sgn(p(x)) by sgn(po(x)) introduces O(5¥) error.
o sgn(po(x)) = h(p1(x), p2(x), - - -, Pm(x)).

e Evaluate at X = /1 — §2X; + 0X; at random, fixed X

@ With high probability, pfﬁ(Xz) approximately linear

o Change variables, g;(X) = Xy + O(6Y?)R(X)
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Using the Decomposition

Proof continued...
° qi(X) = X + O(sY?)R(X)
Let g(x) = (q1(x), - .., gm(x)). f(x) = h(q(x)).
Need [E[h(g(X))] — E[A(q(v/1 = 62X + 6Y))]| = O(5%).
Let X(0) = (X1), - - -» Xm))s X' = (Xm1)s - - -» X(n))-

a(V1—= 08X +38Y) = V1 - 62(X) + O(6"*)R(X(0), X', V)
= 1-— 52CIX',Y(X(0))-

e With high probability, gx: y invertible for small X(q)
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Using the Decomposition

Proof continued...
o

E[f(v/1— 82X +6Y)] = Ex:, v[Exqlg(ax:,v(X0))l]
=Ex vy [ - K2 (gx v (x))d ]

| )R /2, dy
e
e

2T

ZE/
XY [27r

) °
e/

m/2

o Taylor expand integrand
= Ex.,y |Poly(R(X', Y)) + O(M)° M 6(5)|
= E[f(X)] + O(M)°M) §(5%)

O]

v
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Putting it Together

Theorem

For d, k positive integers and § > 0, there exists an explicit pseudorandom
generator, Y of seed length O(d?k?log(n)d~—1) so that for X an

n-dimensional Gaussian, and f any degree-d polynomial threshold function
in n variables, and M = dks(d,1/2,3k)

[E[F(X)] = E[f(Y)]| = O(M)°(M)(5).
In particular, such a generator is given by letting

. ZE(;:—12/3(2d+1)k](1 . 52/3),'/2\/1'

Sy

Where the Y; are independent of each other and approximate
10d(3k + 3)-independent random Gaussians.
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Results

Applying this theorem, we get PRGs of error € and seed length
o O(log(n)log?(1/e)) for d =1
o log(n) exp(O(log?3(1/e) loglog/3(1/e))) for d =2
o log(n)Oc q(e™€) for d > 2
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Linear Threshold Functions

We can actually do even better in the case of linear threshold functions.
Meka and Zuckerman noticed in 2010 that:

@ Linear Threshold Function can be approximately computed by a Read
Once Branching Program (a program that gets one pass over the
input and has limited memory)

@ PRGs for Read Once Branching Programs also fool Linear Threshold
Functions

o Seed length O(log(n) + log?(1/e€)) in the Bernoulli case.
We can beat this in the Gaussian case.
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Old Generator

Our old generator set

y - Ziza(1—0%)2Y;

S (1 — 02

With Y; k-independent and
0 (0(8)F < ¢
o (1-0)? «e

Note that

14
L(Y) = D L)

It suffices to seed Y; with a PRG for ROBPs.
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New Generator

y = Siza(1=0%)Y;
Diea(1- 02
With Y; k-independent, seeded by a PRG for ROBPs. Seed length:

O(klog(n/e) + log(?) log(¢/¢)).

Need:
0 (O(8) < ¢
o (1-6)? < e

Use:
o k =log(1/9) = +/log(n/e)
o (o3

Seed length: O(log®?(n/e)). Standard dimension reduction techniques
improve this to

O(log(n) + Iog3/2(1/e)).
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Conclusions

We have thus made substantial improvements to the smallest known PRGs
for PTFs in the Gaussian case. In particular, we have:

o Seed length O(log(n) + log®/?(1/€)) for d =1
o Seed length log(n) exp(O(log?/3(1/€) loglog'/3(1/¢))) for d = 2
o Seed length log(n)Oc ¢(e™¢) for d > 2
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Future Directions

There are several directions of attack for future progress on this problem:
@ Find similarly good generators in the Bernoulli context
e For d =1, we are close to the optimal O(log(n/¢))

@ For d = 2, the reduction step only needs to fool a bunch of linear
polynomials and one non-singular quadratic. Using a better PRG for
LTFs might improve seed length to polylog(n/e).

@ For d > 2 the main obstacle is the potentially huge sizes of the
decompositions. If, as | would conjecture, s(d,1/2, k) = Poly(d, k),
we would have a generator of seed length
log(n) exp(O(d log(1/€)'72)).
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