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Definitions

We briefly recall some basic definitions:

Definition

We call a function f : Rn → R a (degree-d) Polynomial Threshold
Function (or PTF) if it is of the form f (x) = sgn(p(x)) for p a (degree-d)
polynomial in n variables.

Definition

For p : Rn → R and define

|p|2 :=
(
EX∼Gn

[
|p(X )|2

])1/2
.
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Pseudorandom Generators

Definition

Given a class C of functions f : Rn → R, and a probability distribution D
on Rn we say that another distribution B on Rn ε-fools C with respect to
D if for every f ∈ C,

|EX∼D [f (X )]− EY∼B [f (Y )]| ≤ ε.

Definition

We say that the probability distribution B is a Pseudorandom Generator
(PRG) for C with respect to D if it can be produced by a polynomial time
randomized algorithm using few random bits.

We will produce a small-seed PRG to ε-fool the class of degree-d PTFs
with respect to the n-dimensional Gaussian (or Bernoulli) distribution.
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PRGs from k-independence

Recall that a random variable is k-wise independent if any k of its
coordinates are independent. There are good constructions of k-wise
independent variables from small seeds, and they can be used as PRGs for
PTFs.

[Diakonikolas-Gopalan-Jaiswal-Servedio-Viola, 2010]
k = Õ(ε−2)-independence fools degree-1 PTFs

[Diakonikolas-K.-Nelson 2010] k = O(ε−8)-independence fools
degree-2 PTFs

[K. 2011] k = Od(ε−2
O(d)

)-independence fools degree-d PTFs

Best lower bound that I know: k = Ω(d2ε−2).

I suspect that the lower bound is tight.
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Other PRGs

[Meka-Zuckerman 2010] O(d log(n) + log(1/ε)) (Existential)

[Meka-Zuckerman 2010] log(n)2O(d)ε−8d−3 (Bernoulli)

[K. 2011] log(n)2O(d)ε−4.1 (Gaussian)

[K. 2012] log(n)Od(ε−11.1) (Bernoulli)

[K. 2012] log(n)Od(ε−2.1) (Gaussian)

In this talk we discuss the structure and analysis of a generator with seed
length subpolynomial in the error parameter. Namely, seed length

log(n)Oc,d(ε−c).
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General Construction Idea

Basic idea for the above: Combine a bunch of independent copies of a
weak PRG.
Bernoulli case:

Split coordinates into M bins in a 2-independent fashion.

Fill each bin using a k-independent generator.

Gaussian Case:

Yi are k-independent Gaussians chosen independently.

Y = 1√
M

∑M
i=1 Yi .
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The Replacement Method

These generators can be analyzed using Lindeberg’s replacement method.

Approximate f by smooth function g

Show E[f (X )] ≈ E[g(X )] ≈ E[g(Y )] ≈ E[f (Y )]
I E[f (X )] ≈ E[g(X )] from anticoncentration
I E[g(X )] ≈ E[g(Y )] from replacement
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The Replacement Step

To get E[g(X )] ≈ E[g(Y )],

X = (X1, . . . ,XM),Y = (Y1, . . . ,YM)

Replace Xi by Yi one at a time

Show:

E[g(Y1, . . . ,Yi−1,Yi ,Xi+1, . . . ,XM)]

≈ E[g(Y1, . . . ,Yi−1,Xi ,Xi+1, . . . ,XM)].

Fixing, Y1, . . . ,Yi−1,Xi+1, . . . ,XM Taylor expand g

g(Y1, . . . ,Yi−1,Z ,Xi+1, . . . ,XM) = Poly(Z ) + Error.

Since Z = Xi and Z = Yi have same low order moments, they give
similar expectations.
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Anticoncentration

To ensure E[f (X )] ≈ E[g(X )], want f (X ) = g(X ) with high
probability.

Approximating discontinuous function by smooth one have error near
locus of discontinuity.

Need anticoncentration result.

For example:

Lemma (Carbery-Wright)

If p is a degree-d polynomial in n variables, X an n-dimensional Gaussian,
and τ > 0 then

Pr(|p(X )| ≤ τ |p|2) = O(dτ1/d).
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Balancing Errors

To get low anticoncentration error, need g to have sharp cutoffs

This causes g to have large derivatives

This causes large Taylor error

Which forces M to be large

Improvements can be made by shaping g to the polynomial, but
probably can’t beat seed length ε−2.
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New Idea

First replacement step, show that

EX ,Y

[
g

(√
M − 1

M
X +

1√
M

Y

)]

Is determined to small error by k-independence of Y .

Want g smooth, so that above holds for any fixed X .

Expectation over X provides smoothing.

Hope to show

EX ,Y

[
f

(√
M − 1

M
X +

1√
M

Y

)]

Is approximately determined by k-independence.

Avoids anticoncentration error.
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The Degree 1 Case
We begin by seeing how this works in the degree 1 case. Let

f (x) = sgn(v · x + θ)

for some vector v with |v | = 1 and some θ ∈ R. For fixed Y , we have

EX

[
f

(√
M − 1

M
X +

1√
M

Y

)]

= EX

[
sgn

(
v · X +

1√
M − 1

v · Y +

√
M

M − 1
θ

)]

= erf

(
1√

M − 1
v · Y +

√
M

M − 1
θ

)
= Tk(v · Y ) + O(|v · Y |k(kM)−k/2).

Expectation is determined by k-independence up to an error of
O(M−1)k/2.
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The Degree 1 Case

Lemma

If f is a degree 1 PTF, X a random Gaussian, and Y a k-independent
Gaussian (k even) and δ > 0,

EX [f (X )] = EX ,Y [f (
√

1− δ2X + δY )] + O(δ)k .

For fixed Y , have another degree 1 PTF in X , so we can iterate:

E[f (X )] = E[f (
√

1− δ2X + δY1)] + O(δ)k

= E[f ((1− δ2)X + δY1 + δ(1− δ2)1/2Y2)] + 2O(δ)k

= . . .

= E

[
f

(
(1− δ2)`/2X + δ

∑̀
i=1

(1− δ2)(i−1)/2Yi

)]
+ `O(δ)k .
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Getting Rid of the X

For large `, the coefficient of X is small. Thus, we expect it to have little
effect.
The expected difference of

p

(
(1− δ2)`/2X + δ

∑̀
i=1

(1− δ2)(i−1)/2Yi

)

and

p

∑`
i=1(1− δ2)(i−1)/2Yi√∑`

i=1(1− δ2)i−1


is about O((1− δ2)`/2). Thus, they likely have the same sign.
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Result

Theorem

Let X be a random Gaussian. Let Yi be independently chosen from
k-independent families of Gaussians. For some `, δ > 0, let

Y =

∑`
i=1(1− δ2)(i−1)/2Yi√∑`

i=1(1− δ2)i−1
.

Then for f any degree 1 PTF,

|E[f (X )]− E[f (Y )]| = `O(δ)k + Õ((1− δ2)`/2).

Taking δ constant and k, ` = O(log(1/ε)) gives a generator of seed length

s = O(log(n) log2(1/ε)).
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Higher Degrees

To get this generator to work for higher degree PTFs we need to show

E[f (X )] ≈ E[f (
√

1− δ2X + δY )].

Show that
EX [f (

√
1− δ2X + δY )]

is approximated by a polynomial in Y .
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Approximately Linear Polynomials

We first consider the case where p is approximately linear,

p(x) = (1− δ2)−1/2x(1) + θ + q(x)

with |q(x)|2 small. Letting X = (X(1),X
′), we have that

p(
√

1− δ2X + δY ) = X(1) + θ + r(X(1),X
′,Y ).

Fixing the values of X ′ and Y we have that

p = p(X(1)) = X(1) + θ + Rx ′,Y (X(1)).

With |R|2 small with high probability.
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Approximately Linear Polynomials

p = p(X(1)) = X(1) + θ + Rx ′,Y (X(1)).

For small X , p is invertible by the Inverse Function Theorem.

E[sgn(p(X(1)))] ≈ erf(p−1(0)).

We have p−1(0) smooth in coefficients of R, so Taylor expanding,

E[sgn(p(X(1)))] = Polynomial(R) + Õd ,k(|R|k2).

Since the expectation of a degree-k polynomial in R is determined by
dk-independence of Y , we have that

E[sgn(p(X ))] = E[sgn(p(
√

1− δ2X + δY ))] + Õd ,k((|q|2 + δ)k).
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Local Restrictions

Problem: Most polynomials are not approximately linear

Idea: A smooth function is approximately linear on small scales
I Let pZ (X ) = p(

√
1− δ2Z + δX ).

I With high probability over Z ,

pZ (X ) = Const. + δp′(Z ) · X + Õ(δ2)

I Need linear term not too small
I Want |p′(Z )| > δ1/2 with high probability

Definition

We say that p is (δ, c ,N)-non-singular if

PrZ (|p′(Z )| ≤ δc |p|2) ≤ δN .
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Non-Singular Polynomials

Proposition

If p is (δ, 1/2, k)-non-singular, and Y is 4dk-wise independent, then for
f (x) = sgn(p(x)),∣∣∣E[f (X )]− E[f (

√
1− δ4X + δ2Y )]

∣∣∣ = Õd ,k(δk).

Proof.

Let
√

1− δ4X =
√

1− δ2X1 + δ
√

1− δ2X2

With probability 1− δk , pX1(−) is approximately linear

When this happens,

|EX2,Y [f (
√

1− δ2X1 + δ
√

1− δ2X2 + δ2Y )]

− EX2 [f (
√

1− δ2X1 + δX2)]| = Õd ,k(δk)
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Getting Non-Singular Polynomials

Most polynomials are non-singular

Some aren’t.
I p(x) = L(x)d

I |p′(x)| = d |L′(x)||L(x)|d−1 often small
I Suffices to study L(x) instead

Idea: Decompose arbitrary polynomial in terms of non-singular
polynomials
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Degree 2 Case

p(x) degree 2, |p|2 = 1

Diagonalize quadratic form, change variables:

p(x) =
n∑

i=1

aipi (x(i)) + θ

where pi is mean 0 and variance 1, a1 ≥ a2 ≥ . . . ≥ an ≥ 0.

|p′(x)|2 =
∑

a2i (p′i (x(i)))2

p is (δ, c ,N)-non-singular if:
I a3N/c � δ2c/3 (one of the first few ai |p′i (x(i))| will be big enough)
I
∑n

i=3N/c a
2
i � δc (the sum of the tail terms is too well concentrated)

Thus, p is non-singular unless all but δc/2 of its L2 norm is
determined by the first 3N/c coordinates.
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Degree 2 Case

Either p is non-singular or

p(x) = q(x(1), . . . , x(3N/c)) + δc/2p1(x).

Either p1 is non-singular or

p(x) = q(x(1), . . . , x(6N/c)) + δcp2(x).

. . .
Either:

I

p(x) = q(x(1), . . . , x(m)) + r(x)

with m ≤ 24N2/c2 and r (δ, c ,N)-non-singular
I

p(x) = q(x(1), . . . , x(m)) + O(δ4N)

Need to simultaneously fool m linear functions and one non-singular
quadratic function
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Non-Singular Decomposition

Definition

We say that a sequence of polynomials, (p1, . . . , pm), is
(δ, c ,N)-non-singular if |pi |2 = 1 for all i and except for with probability δN | | |

p′1(X ) p′2(X ) . . . p′m(X )
| | |

 has no singular value smaller than δc .

Definition

A degree d polynomial p has a (δ, c ,N)-non-singular decomposition of size
m if p(x) can be written as

p(x) = Q(p1(x), p2(x), . . . , pm(x))

for some Q and polynomials p1, . . . , pm of degree at most d so that
(p1, . . . , pm) is a (δ, c,N)-non-singular set.
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The Decomposition Theorem

Theorem

For any d , c ,N > 0 there exists a constant s(d , c ,N) so that for any
degree-d polynomial p, and any δ > 0 sufficiently small, there exists a
degree d polynomial p0 with |p − p0|2 ≤ δ2dN |p|2, so that p0 has a
(δ, c ,N)-non-singular decomposition of size at most s(d , c ,N).

In particular, we may take s(1, c ,N) = 1 and s(2, c ,N) = O(N2/c2).

Remark

The proof for d > 2 is quite technical. Also the bounds on s are quite bad.
The best I can show is s(d , c ,N) ≤ A(d + O(1),N/c), where A is the
Ackermann function.
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Using the Decomposition

Proposition

Let f be a degree d PTF. Let M = dks(d , 1/2, k). Let X be a random
Gaussian and Y a 2kd-independent Gaussian. Then for δ > 0

|E[f (X )]− E[f (
√

1− δ4X + δ2Y )]| = O(M)O(M)Õ(δk).

Proof.

p ≈ p0 where p0 has a decomposition into (p1, . . . , pm).

Replacing sgn(p(x)) by sgn(p0(x)) introduces O(δk) error.

sgn(p0(x)) = h(p1(x), p2(x), . . . , pm(x)).

Evaluate at X =
√

1− δ2X1 + δX2 at random, fixed X1

With high probability, pX1
i (X2) approximately linear

Change variables, qi (X ) = X(i) + O(δ1/2)R(X )
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Using the Decomposition

Proof continued...

qi (X ) = X(i) + O(δ1/2)R(X )

Let q(x) = (q1(x), . . . , qm(x)). f (x) = h(q(x)).

Need |E[h(q(X ))]− E[h(q(
√

1− δ2X + δY ))]| = Õ(δk).

Let X(0) = (X(1), . . . ,X(m)), X ′ = (X(m+1), . . . ,X(n)).

q(
√

1− δ2X + δY ) =
√

1− δ2(X(0) + O(δ1/2)R(X(0),X
′,Y ))

=
√

1− δ2qX ′,Y (X(0)).

With high probability, qX ′,Y invertible for small X(0)
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Using the Decomposition

Proof continued...

E[f (
√

1− δ2X + δY )] = EX ′,Y [EX(0)
[g(qX ′,Y (X(0))]]

= EX ′,Y

[
1

(2π)m/2

∫
e−|x |

2/2g(qX ′,Y (x))dx

]
= EX ′,Y

[
1

(2π)m/2

∫
e−|q

−1(y)|2/2g(y)
dy

|Jac(q)|

]

Taylor expand integrand

= EX ′,Y

[
Poly(R(X ′,Y )) + O(M)O(M)Õ(δk)

]
= E[f (X )] + O(M)O(M)Õ(δk)
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Putting it Together

Theorem

For d , k positive integers and δ > 0, there exists an explicit pseudorandom
generator, Y of seed length O(d2k2 log(n)δ−1) so that for X an
n-dimensional Gaussian, and f any degree-d polynomial threshold function
in n variables, and M = dks(d , 1/2, 3k)

|E[f (X )]− E[f (Y )]| = O(M)O(M)(δk).

In particular, such a generator is given by letting

Y =

∑[δ−2/3(2d+1)k]
i=1 (1− δ2/3)i/2Yi√∑[δ−1dk]

i=1 (1− δ2/3)i

Where the Yi are independent of each other and approximate
10d(3k + 3)-independent random Gaussians.
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Results

Applying this theorem, we get PRGs of error ε and seed length

O(log(n) log2(1/ε)) for d = 1

log(n) exp(O(log2/3(1/ε) log log1/3(1/ε))) for d = 2

log(n)Oc,d(ε−c) for d > 2

D. Kane (Stanford) Subpoly PRG November 2013 30 / 35



Linear Threshold Functions

We can actually do even better in the case of linear threshold functions.
Meka and Zuckerman noticed in 2010 that:

Linear Threshold Function can be approximately computed by a Read
Once Branching Program (a program that gets one pass over the
input and has limited memory)

PRGs for Read Once Branching Programs also fool Linear Threshold
Functions

Seed length O(log(n) + log2(1/ε)) in the Bernoulli case.

We can beat this in the Gaussian case.
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Old Generator

Our old generator set

Y =

∑`
i=1(1− δ2)`/2Yi√∑`

i=1(1− δ2)`

With Yi k-independent and

`O(δ)k � ε

(1− δ2)`/2 � ε

Note that

L(Y ) =
∑̀
i=1

Li (Yi )

It suffices to seed Yi with a PRG for ROBPs.

D. Kane (Stanford) Subpoly PRG November 2013 32 / 35



New Generator

Y =

∑`
i=1(1− δ2)`/2Yi√∑`

i=1(1− δ2)`

With Yi k-independent, seeded by a PRG for ROBPs. Seed length:

O(k log(n/ε) + log(`) log(`/ε)).

Need:

`O(δ)k � ε

(1− δ2)`/2 � ε

Use:

k = log(1/δ) ≈
√

log(n/ε)

` ≈ δ−3

Seed length: O(log3/2(n/ε)). Standard dimension reduction techniques
improve this to

O(log(n) + log3/2(1/ε)).
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Conclusions

We have thus made substantial improvements to the smallest known PRGs
for PTFs in the Gaussian case. In particular, we have:

Seed length O(log(n) + log3/2(1/ε)) for d = 1

Seed length log(n) exp(O(log2/3(1/ε) log log1/3(1/ε))) for d = 2

Seed length log(n)Oc,d(ε−c) for d > 2
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Future Directions

There are several directions of attack for future progress on this problem:

Find similarly good generators in the Bernoulli context

For d = 1, we are close to the optimal O(log(n/ε))

For d = 2, the reduction step only needs to fool a bunch of linear
polynomials and one non-singular quadratic. Using a better PRG for
LTFs might improve seed length to polylog(n/ε).

For d > 2 the main obstacle is the potentially huge sizes of the
decompositions. If, as I would conjecture, s(d , 1/2, k) = Poly(d , k),
we would have a generator of seed length
log(n) exp(O(d log(1/ε)1−a)).
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