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Abstract

We study the problem of agnostic learning under the Gaussian distribution. We develop a
method for finding hard families of examples for a wide class of problems by using LP duality.
For Boolean-valued concept classes, we show that the L1-regression algorithm is essentially best
possible, and therefore that the computational difficulty of agnostically learning a concept class
is closely related to the polynomial degree required to approximate any function from the class
in L1-norm. Using this characterization along with additional analytic tools, we obtain optimal
SQ lower bounds for agnostically learning linear threshold functions and the first non-trivial SQ
lower bounds for polynomial threshold functions and intersections of halfspaces. We also develop
an analogous theory for agnostically learning real-valued functions, and as an application prove
near-optimal SQ lower bounds for agnostically learning ReLUs and sigmoids.
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1 Introduction

1.1 Background and Motivation

In Valiant’s Probably Approximately Correct (PAC) learning model [Val84], a learner is given
access to random examples that are consistently labeled according to an unknown function in the
target concept class. Here we focus on the agnostic framework [Hau92, KSS94], which models
learning in the presence of worst-case noise. Roughly speaking, in the agnostic PAC model, we
are given i.i.d. samples from a joint distribution D on labeled examples (x, y), where x ∈ Rn is
the example and y ∈ R is the corresponding label, and the goal is to compute a hypothesis that is
competitive with the “best-fitting” function in the target class C. The notion of agnostic learning
is meaningful both for learning Boolean-valued functions (under the 0-1 loss) and for learning
real-valued functions (typically, under the L2-loss). For concreteness, we restrict the proceeding
discussion to the Boolean-valued setting.

In the distribution-independent setting, agnostic learning is known to be computationally hard,
even for simple concept classes and weak learning [GR06, FGKP06, Dan16]. On the other hand,
under distributional assumptions, efficient learning algorithms with worst-case noise are possible.
A line of work [KKMS08, KLS09, ABL17, Dan15, DKS18, DKTZ20] has given efficient learning
algorithms in the agnostic model for natural concept classes and distributions with various time-
accuracy tradeoffs. In this paper, we will focus on agnostic learning under the Gaussian distribution
on examples. For Boolean-valued concept classes, we have the following definition.

Definition 1.1 (Agnostic Learning Boolean-valued Functions with Gaussian Marginals). Let C
be a class of Boolean-valued concepts on Rn. Given i.i.d. samples (x, y) from a distribution D
on Rn × {±1}, where the marginal Dx on Rn is the standard Gaussian Nn and no assumptions
are made on the labels y, the goal is to output a hypothesis h : Rn → {±1} such that with high
probability we have Pr(x,y)∼D[h(x) 6= y] ≤ OPT + ε, where OPT = inff∈C Pr(x,y)∼D[f(x) 6= y].

The only known algorithmic technique for agnostic learning in the setting of Definition 1.1
is the L1-polynomial regression algorithm [KKMS08]. This algorithm uses linear programming
to compute a low-degree polynomial that minimizes the L1-distance to the target function. Its
performance hinges on how well the underlying concept class C can be approximated, in L1-norm,
by low-degree polynomials. In more detail, if d is the (minimum) degree such that any f ∈ C can
be ε-approximated (in L1-norm) by a degree-d polynomial, the algorithm has sample complexity
and running time nO(d)/poly(ε) and outputs a hypothesis with misclassification error OPT + ε.

For several natural concept classes and distributions on examples, the aforementioned degree
d is independent of the dimension n, and only depends on the error ε (and potentially other
size parameters). For these settings, the L1-regression algorithm can be viewed as a polynomial-
time approximation scheme (PTAS) for agnostic learning. Examples of such concept classes in-
clude Linear Threshold Functions (LTFs) [KKMS08, DGJ+10, DKN10], Bounded Degree Poly-
nomial Threshold Functions (PTFs) [DHK+10, Kan10, DRST14, HKM14], Intersections of Halfs-
paces [KKMS08, KOS08, Kan14], and other geometric concepts [KOS08]. Specifically, for the class
of LTFs under the Gaussian distribution, the L1-regression algorithm is known to have sample and
computational complexity of nO(1/ε2).

For each of the above concept classes, L1-polynomial regression is the fastest (and, essentially,
the only) known agnostic learner. It is natural to ask whether there exists an agnostic learner with
significantly improved sample/computational complexity.

Can we beat L1-polynomial regression for agnostic learning under Gaussian marginals?
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As our first main contribution, we answer the above question in the negative for all concept classes
satisfying some mild properties (including all the geometric concept classes mentioned above). Our
lower bound applies for the class of Statistical Query (SQ) algorithms. Statistical Query (SQ)
algorithms are a class of algorithms that are allowed to query expectations of bounded functions
of the underlying distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 1.2 (STAT Oracle). Let D be a distribution on labeled examples supported on X ×
[−1, 1], for some domain X. A statistical query is a function q : X × [−1, 1] → [−1, 1]. We
define STAT(τ) to be the oracle that given any such query q(·, ·) outputs a value v such that
|v −E(x,y)∼D [q(x, y)] | ≤ τ , where τ > 0 is the tolerance parameter of the query.

The SQ model was introduced by [Kea98] as a natural restriction of the PAC model [Val84] and
has been extensively studied in learning theory; see, e.g., [FGR+13, FPV15, FGV17, Fel17] for
some recent references. The reader is referred to [Fel16] for a survey. The class of SQ algorithms
is fairly broad: a wide range of known algorithmic techniques in machine learning are known to be
implementable using SQs (see, e.g., [CKL+06, FGR+13, FGV17]).

Returning to our agnostic learning setting, roughly speaking, we show that a lower bound of d
on the degree of any L1 approximating polynomial can be translated to an SQ lower bound of nΩ(d)

for the agnostic learning problem. This lower bound is tight, since the L1-regression algorithm can
be implemented in the SQ model with complexity nO(d).

We note that a similar characterization had been previously shown, under somewhat different
assumptions, for agnostic learning under the uniform distribution on the hypercube [DFT+15]. We
explain the technical differences and similarities with our results in Section 1.4. It is worth point-
ing out that learning under the Gaussian distribution is generally believed to be computationally
easier than learning under the uniform distribution on the hypercube in a number of settings. For
example, prior work [ABL17, DKS18, DKTZ20] has given “constant factor” agnostic learners for
LTFs on Rn under the Gaussian distribution — i.e., algorithms with error O(OPT) + ε — that run
in poly(n/ε) time. No polynomial time algorithm with such an error guarantee is known for any
discrete distribution. At a high-level, known algorithms for these problems make essential use of
the anti-concentration of the Gaussian distribution, which fails in the discrete setting. Similar algo-
rithmic gaps exist for robustly learning low-degree PTFs and intersections of halfspaces [DKS18].

Our generic lower bound result for the Boolean case (Theorem 1.4) reduces the problem of
proving explicit SQ lower bounds for agnostic learning to the structural question of proving lower
bounds on the L1 polynomial approximation degree (under the Gaussian measure). As our second
contribution, we provide a toolkit to prove explicit degree lower bounds. As a corollary, we prove
optimal or near-optimal SQ lower bounds for various natural classes, including LTFs, PTFs, and
intersections of halfspaces.

Moving away from the Boolean-valued setting, an interesting direction is to understand the
complexity of agnostic learning for real-valued function classes. In recent years, this broad question
has been intensely investigated in learning theory, in part due to its connections to deep learning.
Here we focus on agnostic learning under the L2-loss.

Definition 1.3 (Agnostic Learning Real-valued Functions with Gaussian Marginals). Let C be a
class of real-valued concepts on Rn. Given i.i.d. samples (x, y) from a distribution D on Rn × R,
where the marginal Dx on Rn is the standard Gaussian Nn and no assumptions are made on the
labels y, the goal is to output a hypothesis h : Rn → R such that with high probability we have
E(x,y)∼D[(h(x)− y)2]1/2 ≤ OPT + ε, where OPT = inff∈C E(x,y)∼D[(f(x)− y)2]1/2.
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A prototypical concept class of significant recent interest are Rectified Linear Units (ReLUs). A
ReLU is any real-valued function f : Rn → R+ of the form f(x) = ReLU (〈w,x〉+ θ), w ∈ Rn and
θ ∈ R, where ReLU : R→ R+ is defined as ReLU(u) = max{0, u}. ReLUs are the most commonly
used activation functions in modern deep neural networks. The corresponding agnostic learning
problem is a fundamental primitive in the theory of neural networks that has been extensively
studied in recent years [GKKT17, MR18, GKK19, DGK+20, GGK20, DKZ20].

Our techniques extend to real-valued concepts leading to improved and nearly tight SQ lower
bounds for natural concept classes. We describe our contributions in the following subsection.

1.2 Our Contributions

Contributions for Boolean-valued Concepts Our main general result for Boolean-valued
concepts is the following:

Theorem 1.4 (Generic SQ Lower Bound, Boolean Case). Let n,m ∈ Z+ with m ≤ na for any
constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Fix a function
f : Rm → {±1}. Let d be the smallest integer such that there exists a degree at most d polynomial
p : Rm → R satisfying Ex∼Nm [|p(x)− f(x)|] < 2ε. Let C be a class of Boolean-valued functions on
Rn which includes all functions of the form F (x) = f(Px), for any P ∈ Rm×n such that PPᵀ = Im.
Any SQ algorithm that agnostically learns C under Nn to error OPT+ε either requires queries with
tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

The L1-polynomial regression algorithm and Theorem 1.4 characterize the complexity of agnostic
learning under the Gaussian distribution – within the class of SQ algorithms – for a range of
concept classes. If d is the (minimum) degree for which any function in C can be ε-approximated
by a degree-d polynomial in L1-norm, the complexity of agnostically learning C is, roughly, nΘ(d).

Applications of Theorem 1.4. Note that the above result does not tell us what the optimal
degree d is for any given concept class C. Using analytic techniques, we establish explicit lower
bounds on the L1 polynomial approximation degree for three fundamental concept classes: Linear
Threshold Functions (LTFs), Polynomial Threshold Functions, and Intersections of Halfspaces. As
a corollary, we obtain explicit SQ lower bounds for these classes. Our applications are summarized
in Table 1.

Concept Class Lower Bound Upper Bound

LTFs Ω
(
1/ε2

)
[Gan02] O

(
1/ε2

)
[Gan02, DKN10]

Degree-k PTFs Ω
(
k2/ε2

)
(Thm 3.1) O

(
k2/ε4

)
[Kan10]

Intersections of k Halfspaces Ω̃
(√

log k/ε
)

(Thm 3.5) O
(
log k/ε4

)
[KOS08]

Table 1: Bounds on the degree d of ε-approximating polynomials in L1-error under the Gaussian
measure. For each concept class, we obtain an SQ lower bound of nΩ(d).

For the class of LTFs, using a known degree lower bound for the sign function [Gan02], we im-
mediately obtain an SQ lower bound of nΩ(1/ε2). This bound is optimal (within polynomial factors),
improving on the previous SQ lower bound of nΩ(1/ε) [GGK20, DKZ20]. Our approach is simpler
and more general compared to these prior works, immediately extending to other families. For the
broader class of degree-k PTFs, we establish a degree lower bound of Ω(k2/ε2) (Proposition 3.2),
which yields an SQ lower bound of nΩ(k2/ε2) for the agnostic learning problem.

3



Our third explicit degree lower bound is for intersections of k halfspaces. For this concept class,
we prove a degree lower bound of d = Ω̃(

√
log k/ε) which implies a corresponding SQ lower bound

of nΩ̃(
√

log k/ε). In the process, we establish a new structural result translating lower bounds on the
Gaussian Noise Sensitivity (GNS) of any Boolean function to the L1-polynomial approximation
degree of the same function.

Recall that the Gaussian Noise Sensitivity (GNS) of a function f : Rn → {±1} is defined as

GNSρ(f)
def
= Pr(x,y)∼N ρn [f(x) 6= f(y)], where N ρ

n is the distribution of a (1−ρ)-correlated Gaussian
pair (i.e., x and y are standard Gaussians with correlation (1− ρ)). We show the following:

Theorem 1.5 (Structural Result). Let f : Rn → {±1} and p : Rn → R be a degree at most d
polynomial. Then, we have that Ex∼Nn [|f(x)−p(x)|] ≥ Ω(1/ log(d))GNS(log(d)/d)2(f). Furthermore,
for any ε > 0, we have that Ex∼Nn [|f(x)− p(x)|] ≥ GNSε(f)/4−O(d

√
ε).

Contributions for Real-valued Concepts For agnostically learning real-valued concepts, we
provide two generic lower bound results, analogous to Theorem 1.4, for Correlational SQ (CSQ)
algorithms and general SQ algorithms respectively. A conceptual message of our results is that
L2 regression is essentially optimal against CSQ algorithms, but not necessarily optimal against
general SQ algorithms.

Recall that Correlational SQ (CSQ) algorithms are a subclass of SQ algorithms, where the
algorithm is allowed to choose any bounded query function on the examples and obtain estimates
of its correlation with the labels. (See Appendix A.1 for a detailed description.) This class of
algorithms is fairly broad, capturing many learning algorithms used in practice (including gradient-
descent). For CSQ algorithms, we prove.

Theorem 1.6 (Generic CSQ Lower Bound, Real-valued Case). Let n,m ∈ Z+ with m ≤ na for any
constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Let f : Rm → R with
Ex∼Nm [f2(x)] = 1 and d be the smallest integer such that there exists a degree at most d polynomial
p : Rm → R satisfying ‖f − p‖2 < ε. Let C be a class of real-valued functions on Rn which includes
all functions of the form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying PPᵀ = Im. Then,
any CSQ algorithm that agnostically learns C over Nn to L2-error OPT + ε either requires queries
with tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

Our lower bound for the general SQ model is presented below. The difference between the two
is that the latter uses the L1-norm to measure the approximation of f by polynomials.

Theorem 1.7 (Generic SQ Lower Bound, Real-valued Case). Let n,m ∈ Z+ with m ≤ na for any
constant 0 < a < 1/2 and ε ≥ n−c for some sufficiently small constant c > 0. Let f : Rm → R with
Ex∼Nm [f2(x)] = 1 and d be the smallest integer such that there exists a degree at most d polynomial
p : Rm → R satisfying ‖f − p‖1 < ε. Let C be a class of real-valued functions on Rn which includes
all functions of the form F (x) = f(Px), for any matrix P ∈ Rm×n satisfying PPᵀ = Im. Then,
any SQ algorithm that agnostically learns C over Nn to L2-error OPT + ε either requires queries
with tolerance at most n−Ω(d) or makes at least 2n

Ω(1)
queries.

Applications of Theorems 1.6 and 1.7. As in the Boolean-valued setting, obtaining explicit
(C)SQ lower bounds for agnostically learning real-valued concepts requires analytic tools to es-
tablish lower bounds on the degree of polynomial approximations. In this paper, we give such
lower bounds for two fundamental concept classes: ReLUs and sigmoids. Establishing degree lower
bounds for other non-linear activations is left as a question for future work.
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p = 1 p = 2
Concept Class Lower Bound Upper Bound Lower Bound Upper Bound

ReLUs Ω (1/ε) (Cor. 5.2) O (1/ε) Ω
(
1/ε4/3

)
(Cor. 5.2) O

(
1/ε4/3

)
Sigmoids Ω(log(1/ε)) (Thm. 5.7) O(log2(1/ε)) Ω

(
log2(1/ε)

)
(Cor. 5.4) O

(
log2(1/ε)

)
Table 2: Bounds on the degree d of ε-approximating polynomials in L1 and L2-error under the
Gaussian measure. For each concept class, we obtain a CSQ (resp. SQ) lower bound of nΩ(d),
where d is the L2 degree (resp. L1 degree).

Our degree lower bounds applications for both L1 and L2 polynomial approximations are sum-
marized in Table 2. Combining these degree lower bounds Theorems 1.6 and 1.7 implies explicit
SQ lower bounds for ReLUs and sigmoids.

Concretely, for agnostically learning ReLUs, we establish a CSQ lower bound of nΩ(1/ε4/3)

(matching the nO(1/ε4/3) upper bound obtained via L2-regression); and an SQ lower bound of

nΩ(1/ε), improving on the previous best bound of nΩ((1/ε)1/36) [GGK20, DKZ20].

1.3 Overview of Techniques

SQ Lower Bounds for Boolean-valued Functions The starting point for our lower bounds is
the work of [DKS17], which shows that if D is a univariate distribution whose low-degree moments
match those of a standard Gaussian (and which satisfies some other mild niceness conditions), then
it is SQ-hard to distinguish between a standard multivariate Gaussian and a distribution that is
a copy of D in a random direction and a standard Gaussian in the orthogonal directions. (This
is shown in [DKS17] for D a 1-dimensional distribution, but it is not hard to generalize to higher
dimensional distributions.)

Note that the above setting is unsupervised. To go from distributions to functions, we will try
to produce a Boolean function f of a few variables such that the distributions of X conditioned
on f(X) = 1 and on f(X) = −1 match moments with a Gaussian. We generalize the techniques
of [DKKZ20] to show that such a function f embedded in a hidden low-dimensional subspace is
SQ hard to distinguish from a random function. Our goal then is to find such a function f that is
(1/2 − ε)-close to a function in our family. Given this construction, learning the function to error
OPT + ε/2 requires being able to distinguish f from a random function.

The aforementioned approach was recently used by [DKZ20]. However, while that work con-
structs the function f somewhat directly, here we take a more general approach. In more detail,
it is not hard to phrase the conditions that (1) f is bounded in [−1, 1], (2) it matches moments
with low-degree polynomials, and (3) is not too far from the function we are trying to learn, as
an infinite-dimensional linear program (LP). We can then non-constructively attempt to find the
optimal value of such an LP by duality. We note that “LP duality” in this setting is non-trivial –
we require some (basic) functional analysis tools to show that duality applies for the LPs we are
considering on function spaces. Given this, we find that the dual program is equivalent to finding
a low-degree polynomial that approximates the function we are trying to learn in L1-norm. The
degree of such a polynomial conveniently matches the parameter that determines the runtime of
the L1- polynomial regression algorithm. We can thus show that, for reasonable function families,
the L1-regression algorithm is in fact optimal, among SQ algorithms, up to polynomial factors.

The above characterization allows us to determine the complexity of agnostically learning LTFs,
by leverage tight degree lower bounds for the sign function. For the cases of degree-k PTFs and
intersections of k halfspaces, we do not know what the correct answer is, but we are able to prove
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non-trivial, and qualitatively close to optimal, lower bounds.
We note that the L1 approximation theory for these functions is more challenging than the L2

approximation theory (which is entirely determined by the Fourier decay). To that end, we develop
new techniques relating L1 approximability to the Gaussian Noise sensitivity (Theorem 1.5), which
allows us to prove the first non-trivial lower bounds. The proof of Theorem 1.5 works via a
symmetrization technique. In particular, let θ = arccos(1 − ε) and let X and Y be standard
Gaussians. Let FX,Y (φ) := f(sin(φ)X + cos(φ)Y ). Then we can write GNSε(f) = Pr[FX,Y (φ) 6=
FX,Y (φ+θ)]. On the other hand, ‖f −p‖1 = E[|FX,Y (φ)−p(sin(φ)X+cos(φ)Y )|]. Thus, it suffices
to show that if F is any Boolean function on the circle that the L1 approximation error of F by
low degree polynomials can be bounded below by Pr[F (φ) 6= F (φ + θ)]. To show this, we use
basic Fourier analysis to show that any low-degree polynomial with small L1 norm cannot have any
large higher derivatives. This implies that if F transitions from being 0 to being 1 over some small
interval, that any low-degree polynomial will not be able to match it very well in this interval.

(C)SQ Lower Bounds for Real-valued Functions We now move to real-valued functions and
sketch our CSQ and SQ lower bounds. For CSQ lower bounds, we obtain a similar characterization.
The difference is that, in the real-valued setting, we need to find a real-valued function f whose low-
degree moments vanish, and which is close to the function we are trying to learn in L2 norm. This
can be phrased as a similar LP and, applying duality, we find that the complexity is determined by
the degree needed to approximate the function we are trying to learn in L2 norm. For this particular
setting, the LP can actually be solved explicitly and the best possible approximation function is
obtained by taking the high-degree Hermite component of f . This lower bound matches (up to
polynomial factors in the final error) the upper bound coming from the L2 polynomial regression
algorithm. This means that we can qualitatively characterize the complexity of agnostic learning
using CSQ algorithms. In particular, we use this characterization to obtain new CSQ lower bounds
on agnostically learning ReLUs and sigmoids.

Our SQ lower bounds against learning real-valued functions are somewhat more challenging,
since the approximating function f must have more than just vanishing moments. It must have
all its level-sets match low-degree moments with a standard Gaussian (which is equivalent only
for Boolean-valued functions). Because of this additional requirement, we restrict our “imitating
functions” to Boolean-valued functions. We can still find an LP defining f , however the dual gives
us the relevant parameter of the degree needed to approximate the function we are trying to learn
in L1-norm (rather than L2-norm) for which a matching upper bound is not known. So, in this
case, while we can still obtain significantly improved SQ lower bounds for agnostically learning a
number of concept classes, we do not obtain optimal results.

1.4 Comparison to Prior Work

At the level of results, the most relevant prior works are the two independent works [DKZ20,
GGK20], which established the previously best SQ lower bounds for LTFs, ReLUs, and sigmoids
under the Gaussian distribution. We have already provided a technical comparison to [DKZ20]
in the previous subsection. The work [GGK20] relies on a boosting procedure that translates
recent SQ lower bounds for (non-agnostic) learning one-hidden-layer neural networks [DKKZ20] to
agnostically learning simple concept classes.

A useful point of technical comparison is the work [DFT+15], which gave an analogue of our
results on agnostically learning Boolean functions on the Boolean hypercube. The basic statement
is the same — that the complexity of agnostic learning Boolean functions under a discrete prod-
uct distribution is characterized by the L1-approximation degree — and the duality-based proof
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techniques are similar. In particular, [DFT+15] sets up a finite LP to find a function f that has
vanishing Fourier coefficients but is close in L1-norm to the target function. Due to the discrete na-
ture of the setting they consider, [DFT+15] avoids the functional analysis based arguments required
to establish duality in our setting.

A more significant difference with our framework is that the hard family of [DFT+15] embeds
a copy of f as a junta on a random subset of coordinates, while ours embeds it in a random low-
dimensional subspace. This is a critical distinction and is necessary in the Gaussian setting to
obtain our tight characterization and the associated applications to LTFs/PTFs and intersections
of halfspaces. Finally, we remark that the appendix of [DFT+15] sketches a generalization of their
results to arbitrary product distributions (including the Gaussian distribution). We emphasize,
however, that the lower bound obtained from their construction does not match the guarantee
of the L1-regression algorithm [KKMS08] for the following reason: The exponent for their lower
bounds for the continuous setting have to do with the degree necessary to ε-approximate the hard
function as a linear combination of d-juntas. On the other hand, the upper bound of [KKMS08]
is related to the approximation by degree-d polynomials. Note that degree-d polynomials are
always linear combinations of d-juntas, and thus the approximation degree by linear combinations
of juntas is lower than the approximation degree by polynomials. In summary, while the lower
bound of [DFT+15] is tight for discrete product distributions, this is not true in general.

1.5 Preliminaries

Notation For n ∈ Z+, we denote [n]
def
= {1, . . . , n}. We typically use small letters to denote

random variables when the underlying distribution is clear from the context. We use E[x] for the
expectation of the random variable x and Pr[E ] for the probability of event E . We will use U(S) for
the uniform distribution on the set S. Let N denote the standard univariate Gaussian distribution
and Nn denote the standard n-dimensional Gaussian distribution. We use φn to denote the pdf of
Nn. Sometimes we may use the same symbol for a distribution and its pdf, i.e., denote by D(x)
the density that the distribution D gives to the point x.

Small boldface letters are used for vectors and capital boldface letters are used for matrices.
Let ‖x‖2 denote the L2-norm of the vector x ∈ Rn. We use 〈u,v〉 for the inner product of vectors
u,v ∈ Rn. For a matrix P ∈ Rm×n, let ‖P‖2 denote its spectral norm and ‖P‖F denote its
Frobenius norm. We use In to denote the n × n identity matrix. We denote by Pnd the class of
all polynomials from Rn to R with degree at most d. We sometimes use the notation Õ(·) (resp.
Ω̃(·)), this is the same with O(·) (resp. Ω(·)), ignoring logarithmic factors, i.e., O(d logk d) = Õ(d).

Statistical Query Dimension To bound the complexity of SQ learning a concept class C, we
use the SQ framework for problems over distributions [FGR+13].

Definition 1.8 (Decision Problem over Distributions). Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision (or hypothesis testing) problem in which
the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.

Definition 1.9 (Pairwise Correlation). The pairwise correlation of two distributions with proba-
bility density functions D1, D2 : Rn → R+ with respect to a distribution with density D : Rn →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2)

def
=∫

Rn D1(x)D2(x)/D(x) dx− 1.

Definition 1.10. We say that a set of s distributions D = {D1, . . . , Ds} over Rn is (γ, β)-correlated
relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i 6= j, and |χD(Di, Dj)| ≤ β for i = j.
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Definition 1.11 (Statistical Query Dimension). For β, γ > 0, a decision problem B(D, D), where
D is a fixed distribution and D is a family of distributions, let s be the maximum integer such that
there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated relative to D and
|DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is defined to be s,
and denoted by SD(B, γ, β).

Lemma 1.12. Let B(D, D) be a decision problem, where D is the reference distribution and D is
a class of distributions. For γ, β > 0, let s = SD(B, γ, β). For any γ′ > 0, any SQ algorithm for B
requires queries of tolerance at most

√
γ + γ′ or makes at least sγ′/(β − γ) queries.

2 SQ Lower Bound for Boolean-Valued Concepts: Proof of The-
orem 1.4

The idea of our construction is to find a function g : Rm → [−1, 1] whose low-degree moments
vanish and is non-trivially close to f . Our hard distribution will then embed g in a random m-
dimensional subspace. Given this construction, we can apply Lemma 1.12 to prove Theorem 1.4.
The following result establishes the existence of such a function g.

Proposition 2.1. Let f : Rm → {±1} be such that for any polynomial p : Rm → R of degree at
most d−1, it holds Ex∼Nm [|p(x)−f(x)|] ≥ 2ε. There exists a function g: Rm → [−1, 1] such that:

1. For any degree at most d − 1 polynomial P : Rm → R, we have that Ex∼Nm [P (x)g(x)] = 0,
i.e., g has zero low-degree moments, and,

2. Ex∼Nm [|g(x)− f(x)|] ≤ 1− 2ε, i.e., g is non-trivially close to f .

Proof. Note that such a function g would be a solution to the following infinite linear program
(LP):

(∗)


E

x∼Nm
[|g(x)− f(x)|] ≤ 1− 2ε

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

|g(x)| ≤ 1 ∀x ∈ Rm

We claim that the LP (∗) is equivalent to the following LP:

(∗∗)


− E

x∼Nm
[g(x)f(x)] + 2ε ≤ 0

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)]− ‖h‖1 ≤ 0 ∀h ∈ L1(Rm)

We now show the equivalence between the two formulations. We claim that the third constraint of
(∗) is equivalent with the third constraint of (∗∗). This follows by introducing the “dual variable”
h : Rm → R. The forward direction follows from Hölder’s inequality and the inverse follows from
the definition of dual norms as suprema. Finally, for the first constraints, note that since f is
Boolean-valued and ‖g‖∞ ≤ 1, we have that Ex∼Nm [|g(x)− f(x)|] = 1−Ex∼Nm [g(x)f(x)].

At this point, we would like to use “LP duality” to argue that (∗∗) is feasible if and only if its
“dual LP” is infeasible. While such a statement turns out to be true, it requires some care to prove
since we are dealing with infinite LPs (both in number of variables and constraints). The proof
requires a version of the geometric Hahn-Banach theorem from functional analysis.
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Lemma 2.2 (Informal). The LP defined by (∗∗) is feasible if only if there is no conical combination
of the inequalities of (∗∗) that yields the contradictory inequality Ex∼Nm [g(x) · 0] + 1 ≤ 0.

A proof of this lemma can be found on Appendix C. Using Lemma 2.2, the LP defined by (∗∗) is
feasible if and only if the following “dual” LP is infeasible:

(∗∗′)


‖h‖1 − 2λ ε < 0

h(x) + P (x)− λ f(x) = 0 ∀x ∈ Rm

λ ≥ 0, h ∈ L1(Rm), P ∈ Pmd−1

Suppose that such a solution (λ, h, P ) exists. We can assume that λ > 0, since otherwise the first
inequality is violated. Moreover, by scaling the solution, we can further assume λ = 1. Then, the
second constraint becomes h = f − P and the first becomes ‖f − P‖1 < 2ε. However, this cannot
happen by the definition of the degree d (since, by assumption, there is no polynomial of degree less
than d such that ‖f −P‖1 < 2ε). Therefore, the LP (∗∗) is feasible, which completes our proof.

Our construction will use rotated versions of the function g from Proposition 2.1 to create a
family of distributions that is hard to distinguish from a fixed reference distribution. To bound
the SQ dimension of this hypothesis testing problem, we will need a generalization of Lemma 16
in [DKKZ20], which bounds the correlation of two rotated versions of g. To formally state our
lemma, we will need one additional piece of terminology. If g(x) =

∑
J∈Nm ĝ(J)HJ(x) is the

Hermite expansion of g, the degree-t Hermite part of g is the sum of the terms corresponding to
the Hermite polynomials of degree exactly t. (For background in multilinear algebra and Hermite
analysis, see Appendices A.2 and A.3.) Our main correlation lemma is the following.

Lemma 2.3 (Correlation Lemma). Let g : Rm → R and U,V ∈ Rm×n be linear maps such that
UUᵀ = VVᵀ = Im. Then, we have that

E
x∼Nn

[g(Ux)g(Vx)] ≤
∞∑
t=0

‖UVᵀ‖t2 E
x∼Nm

[(g[t](x))2] ,

where g[t] denotes the degree-t Hermite part of g.

Proof. To simplify notation, write g1(x) = g(Ux) and g2(x) = g(Vx). Moreover, we will write

g1(x) ∼
∑∞

k=0 g
[k]
1 (x) and g2(x) ∼

∑∞
k=0 g

[k]
2 (x). Using Fact A.5, we obtain

E
x∼Nn

[g1(x)g2(x)] =
∞∑
k=0

E
x∼Nn

[g
[k]
1 (x)g

[k]
2 (x)] =

∞∑
k=0

1

k!
〈∇kg[k]

1 (x),∇kg[k]
2 (x)〉

=
∞∑
k=0

1

k!
〈∇kg[k](Ux),∇kg[k](Vx)〉 . (1)

Denote by U ⊆ Rn the image of the linear map Uᵀ. Now observe that, using the chain rule, for
any function h(Ux) : Rn → R it holds ∇h(Ux) = ∂ih(Ux)Uij ∈ U , where we used Einstein’s
summation notation for repeated indices. Applying the above rule k times, we have that

∇kh(Ux) = ∂ik . . . ∂i1h(Ux)Ui1j1 . . .Uikjk ∈ U
⊗k .

We denote R = ∇kg[k](x) and observe that this tensor does not depend on x. Moreover, denote
M = UVᵀ, S = ∇kg[k](Ux) = (Uᵀ)⊗kR ∈ U⊗k, and T = ∇kg[k](Vx) = (Vᵀ)⊗kR ∈ V⊗k. We have
that

〈S,T〉 = 〈(Uᵀ)⊗kR, (Vᵀ)⊗kR〉 = 〈R,M⊗kR〉 ≤
∥∥∥M⊗k

∥∥∥
2
‖R‖22 = k! ‖M‖k2 E

x∼Nn
[(g[k](x))2] ,
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where to get the last equality we used again Fact A.5. To finish the proof, we combine this inequality
with Equation (1).

We consider high-dimensional distributions that encode a function in a subspace and are Gaus-
sian in the orthogonal complement. Using Lemma 2.3, we can bound their pairwise correlations.

Corollary 2.4. Let d ≥ 2 and D be a distribution over Rm such that the first (d−1) moments of D
match the corresponding moments of Nm. Let G(x) = D(x)/φm(x) be the ratio of the corresponding
probability density functions. For matrices U,V ∈ Rm×n such that UUᵀ = VVᵀ = Im, define DU

and DV to have probability density functions G(Ux)φn(x) and G(Vx)φn(x), respectively. Then,
we have that |χNn(DU, DV)| ≤ ‖UVᵀ‖d2χ2(D,Nm).

Proof. We compute

χNn(DU, DV) = E
x∼Nn

[
(DU(x)− φn(x))(DV(x)− φn(x))

φ2
n(x)

]
= E

x∼Nn
[(G(Ux)− 1)(G(Vx)− 1)] .

We then apply Lemma 2.3 to the function g(x) = G(x) − 1. Note that the assumption that D
matches the first d − 1 moments with Nm is equivalent to saying that g[t] = 0 for t < d. Thus,
Lemma 2.3 implies that

|χNn(DU, DV)| ≤ ‖UVᵀ‖d2
∞∑
t=0

E
x∼Nm

[(g[t](x))2] = ‖UVᵀ‖d2 E
x∼Nm

[g2(x)]

≤ ‖UVᵀ‖d2χ2(D,Nm) ,

where the equality is Parseval’s identity and in the last inequality we used the definition of G.

Note that DU and DV are copies of D in the subspaces defined by U and V respectively, and
independent Gaussians in the orthogonal component.

In order to create our hard family of distributions, we will need the following lemma which states
that there exist exponentially many linear operators from Rn to Rm that are nearly orthogonal.

Lemma 2.5. Let 0 < a, c < 1/2 and m,n ∈ Z+ such that m ≤ na. There exists a set S of 2Ω(nc)

matrices in Rm×n such that every U ∈ S satisfies UUᵀ = Im and every pair U,V ∈ S with U 6= V
satisfies ‖UVᵀ‖F ≤ O(n2c−1+2a).

Proof. Our proof relies on the following fact that there exist exponentially many nearly orthogonal
unit vectors.

Fact 2.6 (see, e.g., Lemma 3.7 of [DKS17]). For any 0 < c < 1/2 there exists a set S′ of 2Ω(nc)

unit vectors in Rn such that any pair u,v ∈ S′, with u 6= v, satisfies |〈u,v〉| < O(nc−1/2).

Let S′ be the set of unit vectors that Fact 2.6 constructs. We group them into sets of size m and
use the vectors of each group as rows for each matrix that we make. Thus, we create at least
|S′|/na = 2Ω(nc) many matrices. Next, we ortho-normalize each matrix V ∈ S′ using the Gram-
Schmidt process, in order to get VVᵀ = Im. In every row of V, the Gram-Schmidt algorithm adds
at most m orthogonal vectors, each having norm O(nc−1/2). Thus, the total correction term for
each row has norm at most

√
mO(nc−1/2). Putting everything together, we have that for all U,V

obtained that way,

‖UVᵀ‖F ≤
(
m2m2O(n4(c−1/2))

)1/2
= O

(
n2c−1+2a

)
.
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We now formally define the family of distributions that we use to prove our hardness result.

Definition 2.7. Given a function g : Rm → [−1, 1], we define Dg to be the class of distributions
over Rn × {±1} of the form (x, y) such that x ∼ Nn and E[y|x = z] = g(Uz), where U ∈ Rm×n
with UUᵀ = Im.

In the following, we show that if g has low-degree moments equal to zero, then distinguishing
Dg from the distribution (x, y) with x ∼ Nn, y ∼ U({±1}) is hard in the SQ model.

Proposition 2.8. Let g : Rm → [−1, 1] be such that Ex∼Nm [g(x)p(x)] = 0, for every polynomial
p : Rm → R of degree less than d, and Dg be the class of distributions from Definition 2.7. Then, if
m ≤ na, for some constant a < 1/2, any SQ algorithm that solves the decision problem B(Dg,Nn×
U({±1})) must either use queries of tolerance n−Ω(d) or make at least 2n

Ω(1)
queries.

Proof. Consider the set of matrices S of Lemma 2.5, for an appropriately small value of c > 0.
Each matrix U ∈ S is associated with a unique element of Dg. For every pair of distinct U,V ∈ S,
we have that

‖UVᵀ‖2 ≤ ‖UVᵀ‖F ≤ O(n2c−1+2a) ≤ n−Ω(1) ,

where for the last inequality we chose c to be a sufficiently small constant, e.g., c = (1− 2a)/4.
Note that the distribution inDg associated to a matrix U has probability density (1+g(Ux))φn(x)

when conditioned on y = 1, and density (1 − g(Ux))φn(x) when conditioned on y = −1. Let DU

be the distribution associated to U and DV the distribution associated to V. Denote by AU the
distribution DU conditioned on the event y = 1 and BU the same distribution conditioned on
y = −1. Similarly, let AV and BV denote the conditional distributions associated with V. Using
the definition of pairwise correlation and the fact that y gets each label with equal probability, it
follows directly that

χNn×U({±1})(DU, DV) =
1

2
(χNn(AU, AV) + χNn(BU, BV)) .

By Corollary 2.4 applied to AU, AV and BU, BV, we obtain

χNn(AU, AV) + χNn(BU, BV) ≤ ‖UVᵀ‖d2
(
χ2(A,Nm) + χ2(B,Nm)

)
,

where A is the distribution of the random variable Ux for x ∼ AU (and similarly for B). For the
χ2-divergence terms, we have that

χ2(A,Nm) =

∫
Rm

A2(z)

φm(z)
dz− 1 =

∫
Rm

φ2
m(z) Pr2[y = 1|x = z]

φm(z) Pr2[y = 1]
dz− 1

≤ 4

∫
Rm

φm(z) Pr[y = 1|x = z]dz− 1 = 4 Pr[y = 1]− 1 = 1 ,

where we used the definition of A, Bayes’ rule and the fact that Pr[y = 1] = 1/2. Combining the
above, we get that |χNn×U({±1})(DU, DV)| ≤ n−Ω(d). This inequality implies that SD(B, γ, β) =

2Ω(nc), for γ = n−Ω(d) and β = O(1). Using Lemma 1.12, with γ′ = γ, completes the proof.

Proof of Theorem 1.4. Let A be an agnostic learner for C. We use A to solve the decision problem
B(Dg,Nn×U({±1})), where g : Rm → [−1, 1] is the function from Proposition 2.1 and Dg the family
of Definition 2.7. Let D′ be the target distribution, i.e., D′ = Nn ×U({±1}) if the null hypothesis
is true or D′ ∈ Dg otherwise. We feed A examples drawn from D′ and it outputs a hypothesis
h : Rn → {±1} such that Pr(x,y)∼D′ [h(x) 6= y] ≤ OPT+ ε

2 . If D′ ∈ Dg, then for a matrix U ∈ Rm×n

11



with UUᵀ = Im, we have that OPT ≤ Pr(x,y)∼D′ [f(Ux) 6= y] = 1
2 ‖f − g‖1 ≤

1
2(1−2ε), where in the

equality we used the fact that the expectation of y conditioned on x is g(x) and the last inequality
is due to Proposition 2.1. Combining the above, we get that Pr(x,y)∼D′ [h(x) 6= y] ≤ (1 − ε)/2, or
equivalently that E(x,y)∼D′ [h(x)y] ≥ ε. On the other hand, if the labels were drawn uniformly at
random, this correlation would be exactly 0. Therefore, we can distinguish between the two cases
by performing a final query of tolerance ε/2 for the correlation of h with y.

3 Explicit SQ Lower Bounds for Boolean Concept Classes

3.1 LTFs and Degree-k PTFs

Linear threshold functions (LTFs) are Boolean functions of the form F (x) = sign(〈w,x〉+θ), where
w ∈ Rn and θ ∈ R. A degree-k PTF is any Boolean function of the form F (x) = sign(q(x)), where
q : Rn → R is a real degree-k polynomial. In this section, we show:

Theorem 3.1 (Degree Lower Bound for PTFs). There exists a degree-k PTF f : R→ {±1} such
that any degree-d polynomial p : R→ R with ‖f − p‖1 < ε must have d = Ω(k2/ε2).

Theorems 1.4 and 3.1 imply that any SQ algorithm that agnostically learns the class of degree-k
PTFs on Rn under the Gaussian distribution must have complexity at least nΩ(k2/ε2).

We now elaborate on these contributions.

Lower Bound for LTFs The L1-regression algorithm [KKMS08] is known to be an agnostic
learner for LTFs under Gaussian marginals with complexity nO(1/ε2). This upper bound uses the
known fact that the L1 polynomial ε-approximate degree of LTFs under the Gaussian distribu-
tion is d = O(1/ε2) (see, e.g., [DKN10]). This upper bound is tight. Specifically, known results
in approximation theory (see Appendix B.1) imply that, any polynomial that ε-approximates the
function sign(t) in L1-norm, under the standard Gaussian distribution, requires degree Ω(1/ε2).
Given this structural result, an application of Theorem 1.4, for m = 1 and f(t) = sign(t) gives
the tight SQ lower bound of nΩ(1/ε2). This bound improves on the best previous bound of
nΩ(1/ε) [GGK20, DKZ20]. Importantly, our approach is much simpler and generalizes to any concept
class satisfying the mild assumptions of Theorem 1.4.

Lower Bound for Degree-k PTFs The L1-regression algorithm is known to be an agnostic
learner for degree-k PTFs under Gaussian marginals with complexity nO(k2/ε4). This upper bound
uses the known upper bound of O(k

√
ε) on the Gaussian noise sensitivity of degree-k PTFs [Kan10],

which implies an upper bound ofO(k2/ε2) on the L2 polynomial ε-approximate degree, and therefore
an upper bound of O(k2/ε4) on the L1 polynomial ε-approximate degree. This degree upper bound
is not known to be optimal (in fact, it is provably sub-optimal for k = 1) and it is a plausible
conjecture that the right answer is Θ(k2/ε2). Here we prove a lower bound of Ω(k2/ε2), which
applies even for the univariate case.

Proposition 3.2. There exists a (k + 1)-piecewise-constant function f : R→ {0, 1} such that any
degree-d polynomial p : R→ R that satisfies ‖f − p‖1 < ε must have d = Ω(k2/ε2).

An application of Theorem 1.4, for m = 1 and f(t) being the piecewise constant function of
Proposition 3.2, implies an SQ lower bound of nΩ(k2/ε2).

Before we provide the formal proof, we sketch the proof of Proposition 3.2. The hard function
f consists of k/2 intervals with the same carefully chosen length; we split each interval in half and
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we let f = 0 in the first half, and f = 1 in the second half. We construct a distribution D that
puts almost all of its mass in the first half of each interval, matches the first d moments with the
standard Gaussian, and D(x) ≤ 2φ(x) for all x ∈ R. Then, by construction Ex∼N [f(x)] is much
larger than the same expectation under D. We show that, in fact, this difference bounds from
below the error of any degree-d polynomial approximation to the function f .

The main technical lemma we establish in this context is the following:

Lemma 3.3. There exists a univariate distribution D that (i) matches its first d moments with N ,
(ii) the pdf of D is at most 2 times the pdf of N pointwise in R, and (iii) for some α = Θ(1/

√
d)

it holds that Pr[(X mod a) ∈ (a/2, a)] = 2−Ω(d).

We defer the proof of Lemma 3.3 to Section 3.2 and show how it implies Proposition 3.2 below.

Proof of Proposition 3.2. We can assume that k is even. Let f be 1 on the k/2 intervals (ia +
a/2, (i+1)a), for i = 0, . . . , k/2−1, and zero elsewhere. Denote by D the distribution of Lemma 3.3.
From property (iii), we have that Ex∼D[f(x)] = 2−Ω(d)k. On the other hand, assuming that
k = O(

√
d), we have that Ex∼N [f(x)] = Ω(k/

√
d). This is because the regions where f is 1

are contained in the interval [0,Θ(k/
√
d)] ⊆ [0, O(1)], where the pdf of the standard Gaussian is

bounded below by some constant.
Let D(x) and φ(x) denote the density on point x of the distribution D and N respectively. For

every polynomial p : R→ R of degree at most d, it holds

E
x∼N

[f(x)]− E
x∼D

[f(x)] = E
x∼N

[
f(x)

(
1− D(x)

φ(x)

)]
= E

x∼N

[
(f(x)− p(x))

(
1− D(x)

φ(x)

)]
≤ E

x∼N
[|f(x)− p(x)|] ,

where the second equality follows from the fact that D matches its first d moments with N , and
in the last inequality we used that 0 ≤ D(x) ≤ 2φ(x) for all x ∈ R. Thus, if f could be L1-
approximated to error ε by a degree-d polynomial, then Ex∼N [f(x)] − Ex∼D[f(x)] would be at
most ε. But we already showed that this is Ω(k/

√
d), which implies that d = Ω(k2/ε2).

3.2 Proof of Lemma 3.3

First, we need the following lemma.

Lemma 3.4. There is a d-wise independent family of t = O(d) standard Gaussians X1, X2, . . . , Xt

such that
(∑t

i=1Xi

)
mod 1 ∈ [0, 1/2] with probability 1−2−Ω(d). Furthermore, such a distribution

can be obtained by rejection sampling a set of independent standard Gaussians, where a sample is
rejected with probability 1/2.

Proof. The standard Gaussian distribution can be decomposed into a uniform component and a
remaining term. That is, N = cU([0, 1]) + (1− c)E, where U([0, 1]) is the uniform distribution in
[0, 1], E is another distribution, and c > 0 is a constant. Let t ∈ N such that t > d/c. We generate
this d-wise independent family X1, . . . , Xt as follows.

First, we sample Y1, . . . , Yt independent standard Gaussians, writing each Yi either as a sample
from U([0, 1]) or a sample from E. Then, two complementary cases are considered.

Case 1. The number of Yi’s that came from U([0, 1]) is at most d. In this case, the sample
is rejected with probability 1/2.

Case 2. Otherwise, the sample is rejected if and only if (
∑t

i=1 Yi) mod 1 ∈ (1/2, 1].
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Let X1, . . . , Xt be the output of this rejection sampling procedure. The probability that the sample
is generated by the first case of the algorithm is exponentially small. To see this, define Zi ∈ {0, 1}
to be one if and only Yi is drawn from U([0, 1]). If C1 denotes the event of being in Case 1, then
by standard Chernoff bounds we have that

Pr[C1] = Pr

[
t∑
i=1

Zi ≤ d

]
= Pr

[
t∑
i=1

Zi ≤ E

[
t∑
i=1

Zi

](
1−

(
1− d

tc

))]

≤ exp

(
−(1− d/(tc))2tc

2

)
= 2−Ω(d) ,

where we used that t > d/c. Therefore, the probability that (
∑t

i=1Xi) mod 1 ∈ [0, 1/2] is 1 −
2−Ω(d).

Moreover, the probability of accepting the sample is exactly 1/2 independently of the Yi’s. To
see this, let C1, C2 = C1 be the events of Case 1 and Case 2 being true respectively, and A be the
event of accepting the sample. For Case 1, we have Pr[A|C1] = 1/2. In Case 2, we know that at
least one element is drawn from U([0, 1]), which means that the (

∑t
i=1Xi) mod 1 is going to be

uniform in [0, 1]. Thus, Pr[A|C2] = 1/2. Therefore, Pr[C1|A] = Pr[A|C1] Pr[C1]/Pr[A] = Pr[C1]
and Pr[C2|A] = Pr[A|C2] Pr[C2]/Pr[A] = Pr[C2], i.e., accepting is independent of C1, C2, and
thus independent of the sample itself. This means that the output X1, . . . , Xt remains Gaussian.

For the d-wise independence of the variables X1, . . . , Xt, let I be an arbitrary set of at most d
indices from {1, . . . , t}. We claim that {Xi}i∈I are independent. Case 1 is trivial, since we accept
independently of the values of the Yi’s. For Case 2, note that in that case there are more than
d Yi’s drawn from U([0, 1]). This means that there exists one j 6∈ I such that Yj is uniform and
forces the (

∑t
i=1Xi) to be uniform in [0, 1]. Thus, the event (

∑t
i=1Xi) ∈ [0, 1/2] is independent of

{Yi}i∈I , and therefore {Xi}i∈I is a set of independent random variables.

Proof of Lemma 3.3. Consider the random variable X =
∑t

i=1Xi/
√
t for the Xi’s of Lemma 3.4.

For (i), note that the d-th moment involves the expectation of at most d of the Xi’s, which are
independent. Note that (ii) holds because the distribution of X puts almost all of its mass on half
of the real line, and (iii) follows from our scaling of 1/

√
t.

3.3 Intersections of Halfspaces: Degree Lower Bound via Gaussian Noise Sen-
sitivity

An intersection of k halfspaces on Rn is any function f : Rn → {±1} such that there exist k LTFs
hi : Rn → {±1}, i ∈ [k], such that f(x) = 1 if and only if hi(x) = 1 for all i ∈ [k].

The L1-regression algorithm [KKMS08] is known to be an agnostic learner for intersection of
k halfspaces on Rn under Gaussian marginals with complexity nO((log k)/ε4). This upper bound
uses the known tight upper bound of O(

√
ε log k) on the Gaussian noise sensitivity of this concept

class [KOS08], which implies an upper bound of O(log k/ε4) on the L1 polynomial ε-degree. This
degree upper bound is not known to be optimal (in fact, it is provably suboptimal for k = 1) and
it is a plausible conjecture that the right answer is Θ(

√
log k/ε2). Here we prove a lower bound of

Ω̃(
√

log k/ε), which applies even for k-dimensional functions.

Theorem 3.5 (Degree Lower Bound for Intersections of Halfspaces). There exists an intersection
of k halfspaces f on Rk such that the following holds: Any degree-d polynomial p : Rk → R that
satisfies ‖f − p‖1 < ε must have d = Ω̃(

√
log k/ε).
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Theorem 3.5 combined with Theorem 1.4, applied for m = k and f being the function from
Theorem 3.5, implies that any SQ algorithm that agnostically learns intersections of k halfspaces
on Rn under the Gaussian distribution must have complexity at least nΩ̃(

√
log k/ε).

To prove Theorem 3.5, we make essential use of our structural result, Theorem 1.5, combined
with the following tight lower bound on the Gaussian noise sensitivity of a well-chosen family of
intersection of halfspaces (see Appendix B.2 for the proof).

Lemma 3.6. There exists an intersection of k halfspaces on Rk, f : Rk → {±1}, such that
GNSε(f) = Ω(

√
ε log k).

3.4 Proof of Theorem 1.5

We require the following proposition.

Proposition 3.7. Let p(θ) be a degree-d polynomial on the circle, i.e., a degree at most d polynomial
in sin θ and cos θ, and let B(θ) be a Boolean-valued function that is periodic modulo 2π. Then, for
t being a sufficiently small multiple of log d/d, it holds

1

2π

∫ 2π

0
|p(θ)−B(θ)|dθ = Ω̃(1/ log d) Pr

φ∼U([0,2π])
[B(φ− t) 6= B(φ+ t)] .

Proof. We can assume that 1
2π

∫ 2π
0 |p(θ)|dθ is at most 2, since otherwise the 1

2π

∫ 2π
0 |p(θ)−B(θ)|dθ

is at least 1. Let k be an odd integer proportional to log d. We start with the following technical
claim.

Claim 3.8. For any θ ∈ [0, 2π], it holds |p(k)(θ)| = O(d)k.

Proof. Using cos θ =
(
eiθ + e−iθ

)
/2 and sin θ =

(
eiθ − e−iθ

)
/2, we write p(θ) =

∑∞
n=−∞ ane

niθ, for

some coefficients an, where an = 1
2π

∫ 2π
0 p(φ)e−niθdφ. Since p has degree at most d, it holds that

an = 0, for all n > d and n < −d. Therefore, we have that p(θ) =
∑d

n=−d
1

2π

∫ 2π
0 p(φ)eni(θ−φ)dφ.

Taking the k-th derivative (using Leibniz’s rule) gives

p(k)(θ) =

d∑
n=−d

1

2π

∫ 2π

0
p(φ)(ni)keni(θ−φ)dφ .

This implies that

|p(k)(θ)| ≤
d∑

n=−d

1

2π

∫ 2π

0
|p(φ)|nkdφ ≤ 2

d∑
n=−d

nk = O(dk+1) .

Moreover, k is proportional to log d, thus |p(k)(θ)| = O(d)k, for all θ ∈ [0, 2π].

We next pick t to be a small multiple of log d/d and φ ∈ [0, 2π]. Let zm = t cos(πm/k) + φ,
for m = 0, 1, . . . , k, and let q(z) =

∑k
j=0 cjz

j be the unique degree-k polynomial such that q(zm) =
p(zm), for m = 0, 1, . . . , k. Observe that q − p has k + 1 zeroes. Therefore, iterating Rolle’s
theorem, we obtain that there is a point φ − t ≤ z ≤ φ + t such that p(k)(z) = q(k)(z), and thus
|q(k)(z)| = O(d)k, or equivalently ck = 2kO(d/k)k.

Let R(θ) = q(t cos θ + φ). For some constants bn (which depend on t and φ), we have that
R(θ) =

∑k
n=−k bne

niθ. Since R(θ) is an even function, its Fourier coefficients are real numbers.
The following claim provides an upper bound on the coefficient bk.
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Claim 3.9. It holds that |bk| ≤ 1/(4k).

Proof. Note that bk = (1/2π)
∫ 2π

0 R(θ)e−kiθdθ. Using the orthogonality of the trigonometric poly-

nomials, only terms containing cos(kθ) are non-zero. Moreover, cosk θ =
∑k

j=0 uj cos(jθ) with

uk = 2−k+1, which can be verified using the identity cos θ = (eiθ +e−iθ)/2. Therefore, we have that

bk =
1

2π

∫ 2π

0
R(θ)e−kiθdθ =

1

2π

∫ 2π

0
ckukt

k cos(kθ)e−kiθdθ = ckuk
tk

2π
π =

(
t

2

)k
ck ,

where we used thatR(θ) =
∑k

j=0 cj(t cos θ+φ)j . Since ck = 2kO(d/k)k, we have that bk = O(td/k)k;
this is at most 1/(4k), if t is a small enough multiple of log d/d.

On the other hand, by doing a filtering using the (2k)-th roots of unity, we get that
∑2k−1

m=0 R(2πm/(2k)) =

2kbk, and this is equivalent to
∑k

m=−k+1 q(t cos(πm/k) + φ)(−1)m = 2kbk. Therefore,

bk =
1

2k

k∑
m=−k+1

q(t cos(πm/k) + φ)(−1)m =
1

2k

k∑
m=−k+1

p(z|m|)(−1)m

=
1

2k

( k∑
m=−k+1

(p(z|m|)−B(z|m|))(−1)m +
k∑

m=−k+1

B(z|m|)(−1)m + (B(φ+ t)−B(φ− t))
)
.

Since k−1 is even and B is Boolean, 2
∑k−1

m=1B(zm)(−1)m is a multiple of 4. If B(φ+t) 6= B(φ−t),
the reverse triangle inequality gives

∣∣∣B(φ+ t)−B(φ− t) + 2
∑k−1

m=1B(zm)(−1)m
∣∣∣ ≥ 2. Therefore,

in this case, we have that 1
4k > |bk| ≥

1
2k

(
2−

∑k
m=−k+1 |p(z|m|)−B(z|m|)|

)
, or in other words,

k∑
m=−k+1

|p(z|m|)−B(z|m|)| ≥ 1{B(φ+ t) 6= B(φ− t)} .

Integrating this over φ from 0 to 2π gives∫ 2π

0
|p(θ)−B(θ)|dθ ≥ π

k
Pr

φ∼U([0,2π])
[B(φ− t) 6= B(φ+ t)] .

The result follows from our assumption that k is proportional to log d.

Using Proposition 3.7, we can prove the main theorem of this section.

Proof of Theorem 1.5. The latter statement follows from the fact that Ex∼Nn [|f(x) − p(x)|] ≥
Ex∼Nn [|f(x)− sign(p(x))|/2]. On the other hand, we can write

GNSε(f)−GNSε(sign(p)) = Pr
(x,y)∼N εd

[f(x) 6= f(y)]− Pr
(x,y)∼N εd

[sign(p(x)) 6= sign(p(y))]

≤ Pr
x∼Nn

[f(x) 6= sign(p(x))] + Pr
x∼Nn

[f(y) 6= sign(p(y))] = 2 E
x∼Nn

[|f(x)− sign(p(x))| .

Combining these, we find that Ex∼Nn [|f(x) − p(x)|] ≥ GNSε(f)/4 − GNSε(sign(p))/4. The result
then follows from noting that sign(p) is a degree-d PTF, and therefore by [Kan10] it holds that
GNSε(sign(p)) = O(d

√
ε).
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For the first statement, let y and z be independent Gaussians and let x(φ) = cosφy + sinφ z.
Let a be a sufficiently small multiple of log d/d. For any φ ∈ [0, 2π], x(φ − a) and x(φ + a) are
(1−δ)-correlated Gaussian random variables, where δ = Θ(log d/d)2. We have that

E
x∼Nn

[|f(x)− p(x)|] = E
φ∈U([0,2π])

[
E

y,z∼Nn
[|f(x(φ))− p(x(φ))|]

]
= E

y,z∼Nn

[
E

φ∈U([0,2π])
[|f(x(φ))− p(x(φ))|]

]
≥ Ω(1/ log(d)) E

y,z∼Nn
[ Pr
φ∈U([0,2π])

[f(x(φ− a)) 6= f(x(φ+ a))]] ,

where in the inequality we used Proposition 3.7. Moreover, using Fubini’s theorem, we have

E
x∼Nn

[|f(x)− p(x)|] ≥ Ω(1/ log(d)) E
φ∈U([0,2π])

[
Pr

y,z∼Nn
[f(x(φ− a)) 6= f(x(φ+ a))]

]
= Ω(1/ log(d)) E

φ∈U([0,2π])
[GNSδ(f)] = Ω(1/ log(d))GNSδ(f) = Ω(1/ log(d))GNS(log(d)/d)2(f) .

4 Lower Bound for Real-Valued Functions

4.1 CSQ Lower Bound: Proof of Theorem 1.6

To prove our CSQ lower bound, we need to find a hard function g : Rm → R that is uncorrelated
with low-degree polynomials and, at the same time, is close to f in the L2-sense. Instead of using
duality to establish the existence of such a function g, we let g be the orthogonal component of the
truncated Hermite expansion of f .

Proof of Theorem 1.6. Let an algorithm A that agnostically learns C up to L2-error ε. Let g(x) =
f(x) −

∑d−1
i=0 f

[i](x), i.e., g is the same as the function f without the low-degree moments up to
d − 1. Note that ‖g‖2 ≥ ε. Let C = 2/(ε ‖g‖2) and let S be the set of nearly orthogonal matrices
of Lemma 2.5. Consider the class Cg that consists of all functions from Rn to R of the form
GV(x) = Cg(Vx), for any matrix V ∈ S. Every GV ∈ Cg is orthogonal to all polynomials of
degree less than d, and also ‖GV‖2 = 2/ε. We feed A with samples (x, GV(x)), where x ∼ Nn,
V ∈ S. Let ε′ > 0 be the accuracy parameter used with A. Then, A returns a hypothesis h
satisfying √

E
x∼Nn

[(h(x)−GV(x))2] ≤ OPT + ε′ . (2)

For our choice of C, the optimal error becomes

OPT ≤
√

E
x∼Nn

[(f(x)−GV(x))2] =

√
1 + C2 ‖g‖22 − 2C E

x∼Nm
[f(x)g(x)]

≤
√

1 +
4

ε2
−

2 ‖g‖2
ε
≤
√

4

ε2
− 1 ≤ 2

ε

√
1− ε2

4
≤ 2

ε
− ε

4
,

where in the second inequality we used that 2 Ex∼Nm [f(x)g(x)] ≥ ‖g‖22. By choosing ε′ = ε/8,
Equation (2) becomes ‖h−GV‖2 ≤ 2/ε− ε/8.

It remains to bound from above the pairwise correlation of the class Cg. For any two different
U,V ∈ S, we have that

E
x∼Nn

[GU(x)GV(x)] ≤ C2
∞∑
t=0

‖UVᵀ‖t2 E
x∼Nm

[(g[t](x))2] ≤ C2 ‖UVᵀ‖d2
∞∑
t=d

E
x∼Nm

[(g[t](x))2]

≤ 4ε−2 ‖UVᵀ‖dF ≤ ε
−2n−Ω(d) ≤ n−Ω(d) ,
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where in the first inequality we used Lemma 2.3, in the second inequality we used the fact that g is
uncorrelated with all polynomials of degree less than d, the third inequality follows from Parseval’s
identity and the fact that ‖g‖2C = 2/ε, the next one follows from Lemma 2.5, and the last one
from our assumption ε > n−c for an appropriate constant c. As a note, we extend our class Cg
to include the identically zero function, which does not increase the pairwise correlations. Using
Lemma A.3 with γ′ = γ, we have that CSDANn(Cg, 2γ) = 2n

Ω(1)
for γ = n−Ω(d). An application of

Lemma A.4 with η = 2/ε concludes the proof.

4.2 SQ Lower Bound: Proof of Theorem 1.7

To prove lower bounds for the general SQ model, we require our hard function g to be pointwise
bounded. This allows us to define a learning problem with Boolean labels, for which we have SQ
lower bounds ready to be used. Because of our L∞ constraint on g, the resulting lower bound is
expressed in terms of the degrees of polynomials that approximate f in L1 rather than L2 sense.
Our duality argument will now use the pair of dual norms L1, L∞.

Proposition 4.1. Let f ∈ L2(Rm) be such that for any degree at most d−1 polynomial p : Rm → R,
it holds ‖f − p‖1 ≥ ε. Then, there exists a function g : Rm → [−1, 1] such that:

1. Ex∼Nm [f(x)g(x)] ≥ ε, and,

2. Ex∼Nm [P (x)g(x)] = 0, for any polynomial P : Rm → R with degree less than d.

Proof. The function g is a solution to the infinite system:

(∗)


E

x∼Nm
[f(x)g(x)] ≥ ε

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

‖g‖∞ ≤ 1

This is equivalent to the following LP:

(∗∗)


− E
x∼Nm

[f(x)g(x)] + ε ≤ 0

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)] ≤ ‖h‖1 ∀h ∈ L1(Rm)

From Corollary C.2, the above LP is feasible unless the following is infeasible:

(∗∗′)


‖h‖1 − λε < 0

h(x) + P (x)− λf(x) = 0, ∀x ∈ Rm

λ ≥ 0, h ∈ L1(Rm), P ∈ Pmd−1

Let (h, P, λ) be a solution to (∗∗′). Note that we can assume that λ = 1 since all constraints are
homogeneous. Then, the constraints become h = f − P and

‖f − P‖1 < ε ,

which is a contradiction. Therefore, the original system (∗) is feasible.

We conclude with the proof of the main theorem for this section.
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Proof of Theorem 1.7. Suppose that we have such an agnostic learner A. Let g : Rm → [−1, 1] be
the function of Proposition 4.1, for a parameter ε′ > 0 to be specified. Let Dg be the family of
distributions over Rn × {±1} from Definition 2.7. We use A to solve the problem of distinguishing
between a distribution from Dg and the distribution where the labels are drawn uniformly at
random. That is, we convert A into an algorithm for B(Dg,Nn×U({±1})), and the hardness result
will follow from the hardness of that decision problem, as established by Proposition 2.8.

Let D′ be a distribution that is either D′ = Nn × U({±1})) or D′ ∈ Dg. We feed A a set of
i.i.d. samples of the form (x, Cy), where (x, y) ∼ D′ and C = 1/Ex∼Nm [f(x)g(x)]. Let ε′ > 0 be
the accuracy parameter used when running A and h be the returned hypothesis. We have that√

E
(x,y)∼D′

[(h(x)− Cy)2] ≤ OPT + ε′ . (3)

If D′ ∈ Dg, for the optimal error we have that

OPT ≤
√

1 + C2 − 2C E
x∼Nm

[f(x)g(x)] ≤
√
C2 − 1 = C

√
1− 1/C2 ≤ C − 1/(2C) .

If we choose ε′ = 1/(4C), Equation (3) becomes
√

E(x,y)∼D′ [(h(x)− Cy)2] ≤ C − 1/(4C). On the

other hand, we can write
√

E(x,y)∼D′ [(h(x)− Cy)2] ≥
√
C2 − 2C Ex∼Nm [h(x)y]. Combining these

two, we obtain

2C E
x∼Nm

[h(x)y] ≥ C2 − (C − 1/(4C))2 ≥ 1/3 ,

which gives that Ex∼Nm [h(x)y] ≥ 1/(6C) = Ex∼Nm [f(x)g(x)]/6 ≥ ε/6 from Proposition 4.1.
Note that if D′ = Nn ×U({±1}), then E(x,y)∼D′ [h(x)y] = 0. Therefore, by performing a query

of tolerance Ω(ε) for the correlation of h with the labels, we can distinguish between the two cases

of our hypothesis testing problem. By Proposition 2.8, this requires either 2n
Ω(1)

queries or queries
of tolerance n−Ω(d).

5 Applications for Classes of Real-Valued Functions

5.1 ReLU Activation

The class of Rectified Linear Unit (ReLU) functions consists of all functions of the form ReLU(〈w,x〉),
where w ∈ Rn is any vector with ‖w‖2 = 1 and ReLU : R→ R is defined as ReLU(t) = max{0, t}.

Upper and lower bounds for agnostically learning ReLUs were given in [GGK20, DKZ20].
[DKZ20] established an SQ lower bound of nΩ(1/εc), for some constant c > 0. This constant c was
not explicitly calculated in [DKZ20], but can be shown to be approximately 1/40. [GGK20] gave an

SQ lower bound of nΩ(1/ε1/36) for this problem. We note that [GGK20] considered a correlational
type of guarantee, i.e., finding a hypothesis whose correlation with the labels is within ε of the
optimal, as opposed to L2-error. For this correlational guarantee, the upper bound of [GGK20]

is an L2-regression algorithm with complexity nO(ε−4/3), and the lower bound states that any
SQ algorithm needs to perform queries with tolerance τ < n−Ω(ε−1/12) or at least 2n

Ω(1)
ε queries.

Furthermore, [GGK20] showed that any agnostic learner with the square loss guarantee can be
run with increased accuracy to satisfy the correlational guarantee. This reduction costs a “third
root” in the exponent, yielding an nΩ(ε−1/36) SQ lower bound for the square loss guarantee. As
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a note, [GGK20] assumes bounded labels. In this setting, agnostically learning within L2-error
OPT + ε is equivalent to agnostically learning in squared L2-error OPT + ε′, for ε′ = Θ(ε).

Given the context of prior work, we can now present our results. To apply our generic lower
bound theorems, we bound from below the degree of any polynomial that ε-approximates the
univariate ReLU function. This can be done by appealing to a known powerful theorem from the
approximation theory literature by Ganburg [Gan02, GR08]. This result can be used to derive tight
polynomial degree lower bounds for the ReLU function and the sign function (see Appendix B.1).

Let Aσ(f)p = infg∈Bσ ‖f − g‖p, where Bσ, σ > 0 is the class of all entire functions of exponential
type σ, i.e., the class consisting of every entire function g such that for every ε > 0 there exists a
C for which |g(z)| ≤ Ceσ(1+ε)|z|.

Fact 5.1. For any function f : R→ R of polynomial growth

lim
n→∞

(
bn
σ

)1/p

inf
p∈Pn

∥∥∥∥f (bnσ x
)
− p(x)

∥∥∥∥
p

= Aσ(f)p ,

where bn = 2
√
n, p ∈ [1, 2] and Aσ(f)p is the error of the best approximation of f by entire functions

of exponential type σ in Lp(R).

As an immediate corollary, we obtain:

Corollary 5.2. Let f : R→ R be the ReLU function ReLU(t) = max{0, t} and p ∈ [1, 2]. The min-
imum integer d for which there exists a degree-d polynomial P : R→ R such that ‖ReLU− P‖p ≤ ε

is d = Θ
(
ε
− 2

1+1/p

)
.

Therefore, Theorems 1.6 and 1.7 imply a complexity of at least nΩ(ε−4/3) for any agnostic CSQ
learner; and nΩ(ε−1) for any agnostic SQ learner respectively.

5.2 Sigmoid Activation

5.2.1 CSQ Lower Bound

We now let f be the standard sigmoid function, defined as f(t) = 1/(1+e−t), t ∈ R. We first focus on
bounding the degree of polynomials that approximate f in L2-norm. This can be done via Hermite
analysis, in particular, based on the fact that the polynomial of degree d being closest to f in L2-
norm is the truncated Hermite expansion pd(t) =

∑d
i=0 f̂(i)Hi(t). The error of this approximation

is ‖pd − f‖22 =
∑∞

i=d+1 f̂
2(i). For the asymptotic behavior of the Hermite coefficients, we use the

following fact (see [GGJ+20] and the references therein).

Fact 5.3 (Lemma A.9 from [GGJ+20]). Let f : R → R be the standard sigmoid function f(t) =
1/(1 + e−t) and f̂(i) be its Hermite coefficients for i ∈ Z+. Then, f̂(0) = 0.5, f̂(2i) = 0 and

f̂(2i− 1) = e−Θ(
√
i), for i ≥ 1.

From this fact, we get the bound on the L2-error of the best polynomials of degree d.

Corollary 5.4 (L2-Degree Lower Bound for Sigmoid). Let f : R → R be the standard sigmoid
function f(t) = 1/(1+e−t) and d be the smallest integer for which there exists a degree-d polynomial
p : R→ R such that ‖f − p‖2 < ε. Then d = Θ(log2(1/ε)).
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Proof. Fix a degree k. From Fact 5.3, the best k-degree polynomial pk achieves error

‖f − pk‖22 =
∞∑

i=k+1

f̂2(i) =
∑

i>k,i odd

e−Θ(
√
i) =
√
ke−Θ(

√
k) .

This becomes ε2 when k becomes Θ(log2(1/ε)).

By Theorem 1.6, we get that any CSQ agnostic learner for sigmoids has complexity nΩ(log2(1/ε)).

5.2.2 SQ Lower Bound

The approach to derive lower bounds for the degrees of L1-approximating polynomials will be to
relate the L1-norm to the L2-norm and use the lower bounds for the latter. In particular, we will
use the following fact about polynomials under the Gaussian measure.

Theorem 5.5 (Hypercontractivity [Bog98, Nel73]). If p is a d-degree polynomial and t > 2, then

‖p‖t ≤ (t− 1)d/2 ‖p‖2 .

Claim 5.6. Let r ∈ L4(R). Then, ‖r‖2 ≤ ‖r‖
1/3
1 ‖r‖2/34 .

Proof. The proof follows from two applications of the Cauchy-Schwartz inequality.

E
t∼N

[r2(t)] ≤ E
t∼N

[|r(t)|]1/2 E
t∼N

[
|r(t)|3

]1/2 ≤ E
t∼N

[|r(t)|]1/2 E
t∼N

[
|r(t)|2

]1/4
E
t∼N

[
|r(t)|4

]1/4
.

Rearranging the above, yields the claimed inequality.

We can now show our L1 polynomial degree lower bound.

Theorem 5.7 (L1-Degree Lower Bound for Sigmoid). Let f : R → R be the standard sigmoid
function f(t) = 1/(1 + e−t) and 0 < ε < 1. Any degree-d polynomial p : R → R that satisfies
‖f − p‖1 < ε must have d = Ω(log(1/ε)).

Proof. Let p : R → R be a degree-d polynomial such that ‖f − p‖1 < ε. Using Theorem 5.5 with
t = 4 and then Claim 5.6 with r(t) = p(t), we get that

‖p‖4 ≤ 3d/2 ‖p‖2 ≤ 3d/2 ‖p‖1/31 ‖p‖2/34 .

After dividing both sides by ‖p‖2/34 , we have that ‖p‖4 ≤ 33d/2 ‖p‖1. Furthermore, using the
triangle inequality, ‖p‖1 ≤ ε + ‖f‖1 = O(1). Therefore, ‖p‖4 ≤ 2O(d). Furthermore, Claim 5.6 for
r(t) = f(t)− p(t) gives

‖f − p‖2 ≤ ‖f − p‖
1/3
1 ‖f − p‖2/34 ≤ ε1/32O(d) .

On the other hand, for the L2-error we have that ‖f − p‖2 ≥
√
de−Θ(

√
d) (Corollary 5.4). Combining

the two bounds, it follows that d = Ω(log(1/ε)).

We note that [GGK20] showed an nΩ(log2(1/ε)) SQ lower bound for the correlational guarantee.
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A Omitted Background

A.1 Correlational Statistical Query (CSQ) Model

For some of our lower bounds in the real-valued setting, we consider correlational or inner product
queries. The CSQ model is a restriction of the SQ model, where the algorithm is allowed to choose
any bounded query function, and obtain estimates for its correlation with the labels.

Specifically, for f, h : X → R and a distribution Dx over the domain X, we denote by 〈f, h〉Dx

the quantity Ex∼Dx [f(x)h(x)] and refer to it as the correlation of f and h under Dx. While it is
commonly assumed that the query function h is pointwise bounded, it is in fact sufficient to assume
that it has bounded L2-norm. IfD is the joint distribution on points and labels, a correlational query
takes h and a parameter t > 0, and outputs a value v ∈ [E(x,y)∼D[h(x)y]− τ,E(x,y)∼D[h(x)y] + τ ].
Similarly to the general SQ model, we consider the following notions of statistical dimension.

Definition A.1 (Correlational Statistical Query Dimension). For β, γ > 0, a probability distri-
bution Dx over domain X and a family C of functions f : X → R, let s be the maximum integer
for which there exists a finite set of functions {f1, . . . , fs} ⊆ C such that |Ex∼Dx [f2

i (x)]| ≤ β for
all i ∈ [s], and |Ex∼Dx [fi(x)fj(x)]| ≤ γ for all i, j ∈ [s] with i 6= j. We define the Correla-
tional Statistical Query Dimension with pairwise correlations (γ, β) of C to be s and denote it by
CSDDx(C, γ, β).

Definition A.2 (Average Correlational Statistical Query Dimension). Let ρ > 0, let Dx be a
probability distribution over some domain X, and let C be a family of functions f : X → R. We
define the average pairwise correlation of functions in C to be ρ(C) = 1

|C|2
∑

g,r∈C |Ex∼Dx [g(x)r(x)]|.
The Average Correlational Statistical Query Dimension of C relative to Dx with parameter γ,
denoted by CSDADx(C, γ), is defined to be the largest integer s such that every subset C′ ⊆ C of
size |C′| ≥ |C|/s, satisfies ρ(C′) ≥ ρ.

In most of the cases, it suffices to bound the correlational statistical query dimension, since by
simple calculations this implies a bound on the average statistical query dimension.

Lemma A.3. Let C be a class of functions and Dx be a distribution and suppose that CSDDx(C, γ, β) =
d, for some γ, β > 0. Then, for all γ′ > 0, we have that CSDDx(C, γ + γ′) ≥ dγ′/(β − γ).

The following result [Szö09, GGJ+20] relates the Average Correlational SQ dimension of a
concept class with the complexity of any CSQ algorithm for the class.

Lemma A.4 (Theorem B.1 in [GGJ+20]). Let Dx be a distribution over a domain X and let C be
a real-valued concept class over X such that 0 ∈ C, and ‖f‖2 ≥ η for all f ∈ C, f 6≡ 0. Suppose that
for some γ > 0 we have s = CSDADx(C, γ). Any CSQ algorithm that outputs a hypothesis h such
that ‖h− f‖2 < η needs at least s/2 queries or queries of tolerance

√
γ.

A.2 Preliminaries: Multilinear Algebra

Here we introduce some multilinear algebra notation. An order k tensor A is an element of the
k-fold tensor product of subspaces A ∈ V1⊗ . . .⊗Vk. We will be exclusively working with subspaces
of Rd so a tensor A can be represented by a sequence of coordinates, that is Ai1,...,ik . The tensor
product of a order k tensor A and an order m tensor B is an order k + m tensor defined as
(A⊗B)i1,...,ik,j1,...,jm = Ai1,...,ikBj1,...,jm . We are also going to use capital letters for multi-indices,
that is tuples of indices I = (i1, . . . , ik). We denote by Ei the multi-index that has 1 on its i-th
co-ordinate and 0 elsewhere. For example the previous tensor product can be denoted as AIBJ .
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To simplify notation we are also going to use Einstein’s summation where we assume that we sum
over repeated indices in a product of tensors. For example if A ∈ Rd⊗Rd, v ∈ Rd, u ∈ Rd we have∑d

i,j=1 viujAij = viujAij . We define the dot product of two tensors (of the same order) to be

〈A,B〉 = Ai1,...,ikBi1,...,ik = AIBI . We also denote the `2-norm of a tensor by ‖A‖2 =
√
〈A,A〉.

We denote by A(X) a function that maps the tensor X to a tensor A(X). Let V be a vector space
and let A(x) : Rd → V⊗k be a tensor valued function. We denote by ∂iA(x) the tensor of partial
derivatives of A(x), ∂iA(x) = ∂iAJ(x) is a tensor of order k + 1 in V⊗k ⊗Rd. We also denote this
tensor ∇A(x) = ∂iAJ(x). Similarly we define higher-order derivatives, and we denote

∇mA(x) = ∂i1 . . . ∂imAJ(x) ∈ V⊗k ⊗ (Rd)⊗m .

A.3 Basics of Hermite Polynomials

We are also going to use the Hermite polynomials that form an orthonormal system with re-
spect to the Gaussian measure. While, usually one considers the probabilists’s or physicists’ Her-
mite polynomials, in this work we define the normalized Hermite polynomial of degree i to be
H0(x) = 1, H1(x) = x,H2(x) = x2−1√

2
, . . . ,Hi(x) = Hei(x)√

i!
, . . . where by Hei(x) we denote the prob-

abilists’ Hermite polynomial of degree i. These normalized Hermite polynomials form a complete
orthonormal basis for the single dimensional version of the inner product space L2. To get an
orthonormal basis for L2, we use a multi-index J ∈ Nd to define the d-variate normalized Her-
mite polynomial as HJ(x) =

∏d
i=1Hvi(xi). The total degree of HJ is |J | =

∑
vi∈J vi. Given a

function f ∈ L2(R) we compute its Hermite coefficients as f̂(J) = Ex∼Nn [f(x)HJ(x)] and express
it uniquely as

∑
J∈Nn f̂(J)HJ(x). For more details on the Gaussian space and Hermite Analysis

(especially from the theoretical computer science perspective), we refer the reader to [O’D14]. Most
of the facts about Hermite polynomials that we use in this work are well known properties and can
be found, for example, in [Sze67].

We denote by f [k](x) the degree k part of the Hermite expansion of f , f [k](x) =
∑
|J |=k f̂(J) ·

HJ(x). We say that a polynomial q is harmonic of degree k if it is a linear combination of degree
k Hermite polynomials, that is q can be written as

q(x) = q[k](x) =
∑

J :|J |=k

cJHJ(x) .

For a single dimensional Hermite polynomial it holds H ′m(x) =
√
mH ′m−1(x). Using this we

obtain that for a multivariate Hermite polynomial HM (x), where M = (m1, . . . ,mn) it holds

∇HM (x) =
√
miHM−Ei(x) ∈ Rn, (4)

where Ei = ei is the multi-index that has 1 position i and 0 elsewhere. From this fact and the
orthogonality of Hermite polynomials we obtain

E
x∼Nn

[〈∇HM (x),∇HL(x)〉] = |M |δM,L. (5)

The following fact gives us a formula for the inner product of

Fact A.5. Let p, q : Rn → R be harmonic polynomials of degree k. Then

E
x∼Nn

[
〈∇`p(x),∇`q(x)〉

]
= k(k − 1) . . . (k − `+ 1) E

x∼Nn
[p(x)q(x)] .

In particular,
〈∇kp(x),∇kq(x)〉 = k! E

x∼Nn
[p(x)q(x)] .
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Proof. Write p(x) =
∑

M :|M |=k bMHM (x) and q(x) =
∑

M :|M |=k cMHM (x). Since the Hermite
polynomials are orthonormal we obtain Ex∼Nn [p(x)q(x)] =

∑
M :|M |=k cMbM . Now, using Equa-

tion (4) iteratively we obtain

E
x∼N

[
〈∇`HM (x),∇`HL(x)〉

]
= k(k − 1) . . . (k − `+ 1)δM,L.

Using this equality we obtain

E
x∼N

[
〈∇`p(x),∇`q(x)〉

]
= E

x∼N

[
〈
∑
M

bM∇`HM (x),
∑
L

cL∇`HL(x)〉

]
=
∑
M,L

bMcL E
x∼N

[
〈∇`HM (x),∇`HL(x)〉

]
=
∑
M,L

bMcLk(k − 1) . . . (k − `+ 1)δM,L

= k(k − 1) . . . (k − `+ 1) E
x∼N

[p(x)q(x)].

Observe that for every harmonic polynomial p(x) of degree k we have that∇kp(x) is a symmetric
tensor of order k. Since the degree of the polynomial is k and we differentiate k times this tensor
no longer depends on x. Using Fact A.5, we observe that this operation (modulo a division by

√
k!)

preserves the L2-norm of the harmonic polynomial p, that is Ex∼Nn [p2(x)] =
∥∥∇kp(x)

∥∥2

2
/k!.

B Omitted Proofs from Section 3

B.1 Low-Degree Polynomial Approximation to the Sign Function

By selecting f(t) = sign(t) and p = 1 in Fact 5.1, we get that any polynomial that achieves error
at most ε with respect to the L1-norm must have degree at least Ω(1/ε2).

Corollary B.1. Let f : R → {±1} with f(t) = sign(t). Any polynomial p : R → R satisfying
‖f − p‖1 ≤ ε must have degree d = Ω(1/ε2).

B.2 Proof of Lemma 3.6

We restate the lemma below.

Lemma B.2. There exists an intersection of k halfspaces on Rk, f : Rk → {±1} such that
GNSε(f) = Ω(

√
ε log k).

Proof. We will exhibit a family of k halfspaces whose intersection has the claimed Gaussian noise
sensitivity. In particular, these halfspaces will be orthogonal. For i ∈ [k], let fi : Rn → {±1} with
fi(x) = sign(−〈ei,x〉+ θ), where ei is the vector having 1 in the i-th coordinate and 0 elsewhere,
and θ > 0 is the bias. That is, fi is 1 if and only if the i-th coordinate is less than θ.

Fix an index i ∈ [k]. The Gaussian noise sensitivity of a single halfspace is GNSε(fi) =

Ω(e
− θ2

2(1−ε/2)
√
ε) (see, e.g., [DJS+15, Lemma 3.4] for a proof). Let x,y be two (1−ε)-correlated

n-dimensional standard Gaussian random variables. Then, the inner products 〈ei,x〉 and 〈ei,y〉
are (1−ε)-correlated univariate Gaussians. Since the Gaussian noise sensitivity of fi is proportional
to the probability that 〈ei,x〉 < θ < 〈ei,y〉, we have that

Pr
(x,y)∼N 1−ε

n

[〈ei,x〉 < θ < 〈ei,y〉] = Ω(e
− θ2

2(1−ε/2)
√
ε) .
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Let θ be the threshold for which Prx∼Nn [〈ei,x〉 > θ] = 1/k. The standard bound for the Gaus-
sian tail is Prx∼Nn [〈ei,x〉 > θ] = Θ(e−θ

2/2/θ). Therefore, for the θ that we selected it holds
Pr(x,y)∼N 1−ε

n
[〈ei,x〉 < θ < 〈ei,y〉] = Ω(θ

√
ε/k) = Ω(

√
ε log k/k).

Let f : Rn → {±1} be 1 if and only if fi is 1 for all i ∈ [k]. Then, we have that

GNSε(f) = 2 Pr
(x,y)∼N 1−ε

n

[f(x) = 1, f(y) = −1] = Pr
x∼Nn

[f(x) = 1]− Pr
(x,y)∼N 1−ε

n

[f(x) = f(y) = 1]

=

(
1− 1

k

)k
−
(

1− 1

k
− Ω

(√
ε log k

k

))k
,

where the k-th powers are due to the fact that 〈ei,x〉 and 〈ej ,x〉 are independent for i 6= j. We
can use the Taylor expansion to show that the above difference is Ω(

√
ε log k). Let the function

h(t) = (1−1/k+ t)k. By Taylor’s theorem, h(0)−h(t) = −h′(0)t−h′′(ξ)t2/2, for some ξ between t
and 0. By calculating the derivatives, setting t = −Ω(

√
ε log k/k) and noting that the second term of

the approximation is less than the first one, we get that h(0)−h(t) = Ω
(√

ε log k
k

)
k
(
1− 1

k

)k−1
.

C Duality in Infinite-Dimensional LP

We start with some basic definitions.

Lp space Let (X,A, µ) be a measure space and 1 ≤ p < ∞. We will typically take X = Rn,
n ∈ Z+, and µ be the Gaussian measure, unless otherwise specified. For a function f : X → R, the

Lp-norm of f under Nn is defined as ‖f‖p
def
=
(∫
X |f |

pdµ
)1/p

. For the special case where p = ∞,

the L∞-norm of f is defined as the essential supremum of f on X, i.e., ‖f‖∞
def
= inf{a ∈ R : µ{x ∈

X : f(x) > a} = 0}. The vector space Lp(X,µ) consists of all functions f : X → R with ‖f‖p <∞.
We will typically use the shortened notation Lp(Rn) for Lp(Rn,Nn).

Dual Norms Consider a vector space V with inner product 〈·, ·〉 and a norm ‖·‖ on V . The dual
norm ‖f‖∗, f ∈ V , is defined as ‖f‖∗ = sup{〈f, h〉 : ‖h‖ ≤ 1}. Hölder’s inequality states that for
any f, h ∈ V it holds 〈f, h〉 ≤ ‖f‖ ‖h‖∗.

Basics on Duality of Infinite-Dimensional LPs For succinctness, we will use the following
notation. We use (h̃, t) for the inequality Ex∼Nm [g(x)h̃(x)] + t ≤ 0, where h̃ ∈ X and t ∈ R. Here
X is an appropriate space of functions that in our context will be Lp(Rm). Let S be the set of all
such tuples that describe the target LP. For the set S, the closed convex cone over X × R is the
smallest closed set S+ satisfying the following: if A ∈ S+ and B ∈ S+ then A + B ∈ S+; and if
A ∈ S+ then λA ∈ S+, for all λ ≥ 0.

In our arguments, we need to prove that there exists a function g : Rm → R, such that for any
function h ∈ Lp(Rm) and at most (d− 1)-degree polynomial P : Rm → R, it holds

(∗)


− E

x∼Nm
[g(x)f(x)] + c ≤ 0 0 <c < ‖f‖

E
x∼Nm

[P (x)g(x)] = 0 ∀P ∈ Pmd−1

E
x∼Nm

[g(x)h(x)]− ‖h‖p ≤ 0 ∀h ∈ Lp(Rm)

This is in fact an infinite dimensional linear system with respect to the unknown function g ∈
(L1(Rm))∗ = L∞(Rm), for p = 1 and g ∈ Lp/(p−1)(Rm) for 1 ≤ p < ∞. We are going to denote X
the metric space Lp(Rm).
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For succinctness, we will use the following notation. We use (h̃, t) for the inequality Ex∼Nm [g(x)h̃(x)]+
t ≤ 0, where h̃ ∈ X and t ∈ R. Moreover, let S be the set that contains all such tuples that
describe the target system. For the set S, the closed convex cone over X × R is the small-
est closed set S+ satisfying, if A ∈ S+ and B ∈ S+ then A + B ∈ S+ and, if A ∈ S+ then
λA ∈ S+ for all λ ≥ 0. Note that the S+ contains the same feasible solutions as S. The set
S = {(h,−‖h‖p) : h ∈ Lp} ∪ {(P, 0) : P ∈ Pmd−1} ∪ {(−f, c)}.

In the finite-dimensional case, we can always prove the feasibility of an LP by applying the
standard Farkas’ lemma (aka theorem of the alternative). However, when the system is infinite-
dimensional, Farkas’ lemma does not hold in general. We are going to use the following result from
[Fan68].

Lemma C.1 (Theorem 1 of [Fan68]). If X is a locally convex, real separated vector space then, a
linear system described by S for which S+ is closed is feasible (i.e., there exists a g ∈ X ∗) if and
only if (0, 1) 6∈ S+ and S+ is closed.

One direction is trivial, but the other one needs an application of Hahn-Banach theorem which
is where the assumption on X to be a separated space is used.

Corollary C.2. If X = Lp for 1 ≤ p < ∞ then, the LP described by S is feasible if only if
(0, 1) 6∈ S+.

Proof. It is not hard to see that the positive cone is defined by

S+ = {(P + h− yf,−‖h‖p + yc− t) : P ∈ Pmd−1, h ∈ Lp(Rm), y, t ∈ R, y, t ≥ 0}.

Now if S+ were closed, we could simply apply Lemma C.1. However, it is not immediately clear
if this is the case. Instead, we note that Lemma C.1 can be applied to the closure of S+. In
particular, this means that the LP is solvable unless for any ε > 0 we have P, h, y and t so that
‖P + h− yf‖p, | − ‖h‖p + yc− t− 1| < ε. Letting h′ = yf −P = h− (P + h− yf), we find that S+

contains
(P + h′ − yf,−‖h′‖p + yc− t) = (0,−‖h′‖p + yc− t).

We note that ‖h′‖p ≤ ‖h‖p + ‖P + h − yf‖p = ‖h‖p + ε. This means that −‖h′‖p + yc − t ≥
−‖h‖m + yc− y − ε ≥ 1− 2ε ≥ 1/2 if ε < 1/4. Noting that S+ is scale invariant, this implies that
(0, 1) ∈ S+.

Thus, the LP is solvable unless (0, 1) ∈ S+.
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