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Abstract

We study the power of query access for the fundamental task of agnostic learning under
the Gaussian distribution. In the agnostic model, no assumptions are made on the labels of the
examples and the goal is to compute a hypothesis that is competitive with the best-fit function in
a known class, i.e., it achieves error opt+ǫ, where opt is the error of the best function in the class.
We focus on a general family of Multi-Index Models (MIMs), which are d-variate functions that
depend only on few relevant directions, i.e., have the form g(Wx) for an unknown link function
g and a k× d matrix W. Multi-index models cover a wide range of commonly studied function
classes, including real-valued function classes such as constant-depth neural networks with ReLU
activations, and Boolean concept classes such as intersections of halfspaces.

Our main result shows that query access gives significant runtime improvements over random
examples for agnostically learning both real-valued and Boolean-valued MIMs. Under standard
regularity assumptions for the link function (namely, bounded variation or surface area), we
give an agnostic query learner for MIMs with running time O(k)poly(1/ǫ) poly(d). In contrast,
algorithms that rely only on random labeled examples inherently require dpoly(1/ǫ) samples and
runtime, even for the basic problem of agnostically learning a single ReLU or a halfspace. As
special cases of our general approach, we obtain the following results:

• For the class of depth-ℓ, width-S ReLU networks on Rd, our agnostic query learner runs
in time poly(d)2poly(ℓS/ǫ). This bound qualitatively matches the runtime of an algorithm
by [CKM22] for the realizable PAC setting with random examples.

• For the class of arbitrary intersections of k halfspaces on Rd, our agnostic query learner runs in
time poly(d) 2poly(log(k)/ǫ). Prior to our work, no improvement over the agnostic PAC model
complexity (without queries) was known, even for the case of a single halfspace.

In both these settings, we provide evidence that the 2poly(1/ǫ) runtime dependence is required
for proper query learners, even for agnostically learning a single ReLU or halfspace.

In summary, our algorithmic result establishes a strong computational separation between
the agnostic PAC and the agnostic PAC+Query models under the Gaussian distribution. Prior
to our work, no such separation was known — even for the special case of agnostically learning
a single halfspace, for which it was an open problem first posed by Feldman [Fel08]. Our results
are enabled by a general dimension-reduction technique that leverages query access to estimate
gradients of (a smoothed version of) the underlying label function.
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1 Introduction

PAC Learning with Queries In Valiant’s PAC learning model [Val84a, Val84b], the learner is
given access to random examples labeled according to an unknown function in a known concept
class. The goal of the learner is to compute a hypothesis that is close to the target function with
respect to a specified loss function1. The standard PAC learning model is “passive” in that the
learning algorithm has no control over the selection of the training set. Interestingly, while this has
become known as the PAC model, Valiant’s landmark paper [Val84b] allowed queries (in addition to
random samples), i.e., black-box access to the target function. We will refer to this as PAC+Query
model.

A query oracle2 allows the learner to obtain the value of the target function on any desired
point in the domain. PAC learning with access to a query oracle can be viewed as an “active”
learning model, intuitively capturing the ability to perform experiments or the availability of expert
advice. A long line of research in computational learning theory has explored the power of queries
in the context of PAC learning. This line of investigation has spanned the distribution-free versus
distribution-specific settings and the realizable (i.e., clean label) setting versus the agnostic (i.e.,
adversarial label noise) setting; see, e.g., [Ang87, GL89, KM93, Jac97] for some classical early works
and [GKK08a, BLQT22] for some more recent results in this broad area. A conceptual message of
this line of work is that, in the realizable setting, access to queries can be stronger than random
samples (from a computational standpoint) for a range of natural concept classes.

In addition to being a fundamental open question in learning theory, the general problem of
understanding the effect of query access in the computational complexity of learning has received
renewed attention over the past decade in the context of deep neural networks. A recent line
of inquiry from the machine learning security community has studied model extraction attacks —
see, e.g., [TZJ+16, SSG17, PMG+17, MSDH19, JCB+20, RK20, JWZ20] and references therein —
where black-box query access to publicly deployed networks may allow efficient reconstruction of
the hidden model – thus exposing potential vulnerability of the deployed models. These practical
applications served as a motivation for the design of the first computationally efficient learners for
simple neural networks using query access to the target function [CKM21, DG22]. Importantly, the
latter algorithmic results apply in the realizable PAC model under the Gaussian distribution.

Multi-index Function Models (MIMs) A common (semi)-parametric modeling assumption
in high- dimensional statistics is that the target function depends only on a few relevant directions.
Specifically, multi-index models [FJS81, Hub85, Li91, HL93, XTLZ02, Xia08] prescribe that the
target function is of the form f(x) = g(Wx) for a link function g : Rk 7→ R and a k × d weight
matrix W. In most settings, the link function g is assumed to be unknown and satisfies certain
smoothness properties. Single-index models are the special case where the target function depends
only on a single hidden-direction w, i.e., f(x) = g(w · x) for some g : R 7→ R and w ∈ Rd [Ich93,
HJS01, HMS+04, DJS08].

Multi-index models capture a wide range of parametric models studied in the statistics and
computer science literatures, including neural networks and classes of geometric Boolean functions
(e.g., intersections of halfspaces). An extensive recent line of work [JSA15, GLM18, DH18, BJW19,
GKLW19, DKKZ20, CM20, DLS22, BBSS22, CDG+23, CN23, DK23] have studied the efficient
learnability of (natural classes of) MIMs from random examples under well-behaved marginal distri-

1For Boolean functions, one typically uses the 0-1 loss, while for real-valued functions a typical choice is the L2

loss.
2In the special case of learning Boolean-valued functions, these are known as “membership” queries, as the answer

to a query determines membership in the set of satisfying assignments of the target concept.
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butions — most notably under the Gaussian distribution on examples. The aforementioned works
exclusively focus on the PAC model with random samples and the underlying algorithms succeed
in the realizable setting (or in the presence of additive Gaussian label noise).

This Work: Agnostically Learning Multi-index Models with Queries Here we study
the power of queries in the agnostic PAC model [Hau92, KSS94] for a wide class of multi-index
models. In the agnostic model, no assumptions are made on the labels of the examples and the
goal is to compute a hypothesis that is competitive with the best-fit function in a known class. This
is a notoriously challenging model of learning with very few positive results in the distribution-
free setting. For example, it is known that even weak (distribution-free) agnostic learning (i.e.,
outputting a hypothesis with non-trivial advantage over random) is computationally hard for very
simple classes of single-index models with known link functions. These include linear threshold
gates and single neurons with ReLU activations [Dan16, DKMR22a, DKMR22b, Tie23]3.

In this work, we focus on the general problem of agnostically learning multi-index models under
the standard Gaussian distribution using queries. At a high-level, our results also encompass the
challenging setting where the link function is unknown and only require an average smoothness
condition on the target function. Classes covered by our framework include real-valued function
classes such as constant-depth neural networks with ReLU activations and Boolean concept classes
such as intersections of halfspaces. In summary, we are interested in the following question:

Question 1.1. Does query access affect the complexity of distribution-specific agnostic learning
of multi-index models? In particular, does the availability of queries allow for qualitatively more
efficient algorithms, compared to the vanilla random example setting?

The main contribution of this paper is a simple and general methodology that answers this question
in the affirmative for a broad family of multi-index function models (including all the aforementioned
examples).

A special case of Question 1.1 was explicitly asked — in the Boolean setting — for the class
of Linear Threshold Functions by Feldman [Fel08] and by Gopalan, Kalai, and Klivans [GKK08b]
As a corollary of our approach, we answer this open question. Specifically, we provide a new
query algorithm for agnostically learning halfspaces implying a super-polynomial separation between
the two learning models (learning with random samples versus with queries), subject to standard
cryptographic assumptions. In the following subsection, we describe our contributions in detail.

1.1 Our Results

Problem Definition Before we formally state our main results, we define the agnostic learning
model with queries. For concreteness, Definition 1.2 concerns real-valued functions, where the
accuracy is measured with respect to the L2 loss. The definition for Boolean-valued concepts is
essentially identical, where the L2 loss is replaced by the 0-1 loss.

Definition 1.2 (Agnostically Learning Real-valued Functions with Queries). Fix ǫ ∈ (0, 1) and a
class C of real-valued functions on Rd. The adversary picks a label function y(x) ∈ R for every
x ∈ Rd. The learner is allowed to either draw x ∼ N (sample access) or select any desired point
x ∈ Rd (query access) and obtain the value y(x). Let Ns ∈ Z+ be the number of samples and
Nq ∈ Z+ the number of queries used by the learner. The goal of the learner is to output a hypothesis
h : Rd → R that, with high probability, has excess L2

2 error at most ǫ (with respect to C), i.e., it
satisfies E2(h, C; y) := Ex∼N [(h(x) − y(x))2]− infc∈C Ex∼N [(c(x) − y(x))2] ≤ ǫ .

3We note that these computational hardness results hold even with query access, as follows from [Fel08].
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Remark 1.3 (Boolean-valued Functions). In the boolean-valued setting, we focus on learning with
respect to the 0-1 loss. That is, the goal of the learner is to output a hypothesis h : Rd 7→ {±1} with
excess 0-1 error at most ǫ, i.e., E0/1(h, C; y) := Prx∼N [h(x) 6= y(x)]−infc∈C Prx∼N [c(x) 6= y(x)] ≤ ǫ .

1.1.1 Agnostically Learning Real-valued Multi-index Models

We start by describing the family of multi-index models for which our results are applicable. Roughly
speaking, our algorithmic approach can be used to agnostically learn any family of multi-index
models C such that any function in C has “bounded variation”, in the sense that the L2-norm of
its gradient is bounded with respect to the standard normal. We remark that similar “smoothness”
assumptions, i.e., that f belongs in a Sobolev space, are standard (and necessary) in non-parametric
and semi-parametric regression [Tsy08]. Under this assumption, we show that there exists an effi-
cient dimension-reduction scheme that yields a “fixed parameter tractable” agnostic learner signifi-
cantly improving over the best known algorithmic results in the agnostic PAC setting with random
examples.

We are now ready to formally define the semi-parametric class of MIMs that we consider in this
work. In the following definition, we require that the target function is bounded in L4-norm (with
respect to the standard normal distribution) and also that the norm of its gradient is bounded in
L2-norm.

Definition 1.4 (Bounded Variation Multi-index Models). Fix L,M > 0 and k ∈ Z+. We define
the class R(M,L, k) of continuous, (almost everywhere) differentiable real-valued functions such that
for every f ∈ R(M,L, k):

1. It holds (Ex∼N [f4(x)])1/2 ≤M and Ex∼N [‖∇f(x)‖22] ≤ L.

2. There exists a subspace U of Rd of dimension at most k such that f depends only on U , i.e., for
every x ∈ Rd it holds that f(x) = f(projUx), where projUx is the projection of x on U .

We will subsequently see that this is a very broad class of functions subsuming commonly studied
classes such as multi-layer neural networks with ReLUs and other activations.

Our main result is an efficient algorithm that exploits the power of queries to significantly reduce
the runtime of agnostically learning the semi-parametric class of Definition 1.4.

Theorem 1.5 (Agnostic Query Learner for Real-valued Multi-index Models). Fix the function
class R(M,L, k) given in Definition 1.4. There exists an algorithm that makes Nq = poly(dML/ǫ)
queries, draws Ns = poly(dML/ǫ)+kpoly(L,M,1/ǫ) random labeled examples, runs in time poly(Ns, Nq, d),
and outputs a polynomial h : Rd 7→ R such that with high probability h has L2

2-excess error
E2(h,R(L,M, k); y) ≤ ǫ.

Comparison with Sample-Based Algorithms As a corollary of Theorem 1.5, we establish a
strong separation between the agnostic PAC+Query model and the agnostic PAC model (with ran-
dom samples only). We first compare with the best-known algorithm for agnostically PAC learning
real-valued functions, which is the L2-polynomial regression algorithm. To agnostically learn the
class of Definition 1.4 to excess error ǫ, one needs polynomials of degree poly(L,M, 1/ǫ), and thus
dpoly(L,M,1/ǫ) samples and time are necessary. Theorem 1.5 leverages the power of queries to effi-
ciently reduce the dimensionality of the problem, and thus qualitatively improve the computational
complexity of agnostic learning to poly(d) kpoly(L,M,1/ǫ).

Given the assumption of Definition 1.4 that the target function depends only on an unknown
k-dimensional subspace, it is natural to attempt some kind of dimension-reduction technique in
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order to reduce the sample and computational complexity of learning. Such reductions are indeed
often possible in the realizable setting by using some form of PCA and then working in the obtained
low-dimensional subspace; see, e.g., [Vem10].

On the other hand, in the agnostic setting considered here, there is strong evidence that such
dimension-reduction schemes, or any other runtime improvements whatsoever, are impossible using
only sample access to the target function. Specifically, a recent line of work (see, e.g., [DKPZ21,
DKR23]) has shown that for agnostically learning real-valued MIMS (even very special cases thereof),
the standard L2-regression algorithm is qualitatively optimal computationally (e.g., under standard
cryptographic assumptions) in the standard agnostic PAC model. This in particular implies that
the best possible runtime without query access is dpoly(1/ǫ). In fact, even for learning a single ReLU
activation, which satisfies Definition 1.4 with L,M = O(1) and k = 1, dpoly(1/ǫ) samples and time
are required [DKPZ21, DKR23]. In contrast, Theorem 1.5 decouples the dimension dependence
from the dependence on 1/ǫ and yields an algorithm with runtime poly(d) 2poly(1/ǫ).

Concrete Applications Theorem 1.5 applies to a fairly general non-parametric class of functions.
Here we provide specific applications to well-studied classes of neural networks.

Single Non-Linear Gates. The simplest case is that of agnostically learning a ReLU, i.e., a
function of the form f(x) = ReLU (w · x), where w ∈ Rd and ReLU(t) = max{0, t}. In the vanilla
agnostic PAC setting, the complexity of this problem is dpoly(1/ǫ)(both upper and lower bounds). On
the positive side, the L2-polynomial regression algorithm has sample and computational complexity
dΘ(poly(1/ǫ)). On the negative side, there is strong evidence that this complexity upper bound is
qualitatively best possible, both for SQ algorithms [GGK20, DKZ20, DKPZ21] and under plausible
cryptographic assumptions [DKR23]. Our agnostic query learner has complexity poly(d) 2poly(1/ǫ),
implying a super-polynomial separation between the two learning models.

Corollary 1.6 (Agnostic Query Learning for ReLUs). There exists an agnostic query learner for
the class of ReLUs on Rd with running time poly(d) 2poly(1/ǫ).

Corollary 1.6 follows from Theorem 1.5 by observing that ReLUs satisfy Definition 1.4 for k = 1
and L,M = O(1) (assuming that the norm of the weight vector is bounded, i.e., ‖w‖2 = O(1)).

Note that selecting the excess error to be ǫ = 1/ logc(d), where c > 0 is a small constant, the
query algorithm of Corollary 1.6 has poly(d) runtime. On the other hand, the complexity of agnostic
learning problem with random samples is super-polynomial in d for any ǫ = od(1).

Finally, we note that Corollary 1.6 holds for other link functions satisfying smoothness assump-
tions, e.g., sigmoidal activations of the form t 7→ 1/(1 + exp(−t)).
Single-index Models. Our first application above assumed that the link function is known a
priori.We next consider learning Single-index models (SIMs) with an unknown Lipschitz link function
g : R 7→ R, i.e., f(x) = g(w · x). Classical results [KS09, KKSK11] gave efficient algorithms for
this setting in the realizable PAC setting (or with unbiased additive noise) under the additional
assumption that g is non-decreasing. The agnostic setting was recently considered in [GGKS23]
who gave an efficient algorithm achieving error O(

√
opt) + ǫ for distributions with bounded second

moments (similarly assuming weight vectors of bounded ℓ2-norm). Using Theorem 1.5, we can
leverage query access to provide optimal agnostic guarantees with essentially the same complexity
as for the case of known link function.

Corollary 1.7 (Agnostic Query Learning for Lipschitz SIMs). There exists an agnostic query
learner for the class of L-Lipschitz SIMs on Rd, for L = O(1), with running time poly(d) 2poly(1/ǫ).
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Table 1: Learning Real-Valued Functions using Queries: Running time comparisons of the best
known PAC algorithms with our PAC+Queries technique (Influence PCA).

Function Class PAC (without queries) PAC+Queries
L2 Regression Influence PCA (Ours)

Single ReLU dpoly(1/ǫ) poly(d) 2poly(1/ǫ)

Sum of k ReLUs dpoly(1/ǫ) poly(d)O(k)poly(1/ǫ)

Linear Combinations of k ReLUs dpoly(k/ǫ) poly(d) 2poly(k/ǫ)

Deep Networks with ℓ-Layers, S-width dpoly(ℓS/ǫ) poly(d) 2poly(ℓS/ǫ)

Bounded Variation dpoly(k,L,M,1/ǫ) poly(d) 2poly(k,L,M,1/ǫ)

One-Hidden Layer ReLU Networks. Our approach naturally extends to non-negative linear
combinations (aka sums) of ReLUs, i.e., functions of the form f(x) =

∑k
i=1 α

(i)ReLU(w(i) · x)
for k non-negative weights α(i) ≥ 0 and weight vectors w(i) ∈ Rd. Prior work [JSA15, GLM18,
DKKZ20, DK20] has studied this problem in the noiseless setting with random samples under the

Gaussian distribution — with the best-known runtime being poly(d/ǫ) (k/ǫ)O(log2 k) [DK20]. Using
Theorem 6.2, we obtain an agnostic query learner with complexity poly(d)O(k)poly(1/ǫ). To see this,
we note that as long as E[f2(x)] = O(1) we also obtain that E[‖∇f(x)‖22] = O(1) which implies
only an O(k)poly(1/ǫ) runtime overhead.

Our approach can also be applied to the more general class of (unconstrained) linear combi-
nations of k ReLUs, i.e., functions of the form f(x) =

∑k
i=1 α

(i)ReLU(w(i) · x). This is known
[DKKZ20, CDG+23, CN23, DK23] to be a more challenging class of functions to learn. In the noise-
less setting, the best known runtime for general linear combinations is (dk/ǫ)O(k) [DK23]. Using
Theorem 1.5, we obtain an agnostic query learner with complexity poly(d) 2poly(k/ǫ).

Corollary 1.8 (Agnostic Query Learning for 1-Hidden Layer ReLU Networks). There exists an
agnostic query learner for sums of k ReLUs on Rd with running time poly(d)O(k)poly(1/ǫ). For
general linear combinations of ReLUs, the runtime is poly(d) 2poly(k/ǫ).

Bounded Depth Neural Networks. Our non-parametric function class of Definition 1.4 includes
deep ReLU networks with ℓ layers of width at most S. More precisely, we assume that f(x) =
WLReLU(WL−1 · · ·ReLU(W1x)), for matrices W1 ∈ Rk1×d, . . . ,WL ∈ RkL×1, with ‖Wi‖op ≤
O(1) and ki ≤ S; see Definition 6.24 for more details. The running time of our algorithm for this
class is poly(d)2poly(ℓS/ǫ); see Theorem 6.25. We remark that a similar fixed-parameter tractability
result for deep ReLU networks was recently shown in [CKM22] for the realizable PAC setting (with
access to random examples only). Our result exploits the power of queries to provide a learner
with qualitatively similar running time in the much more challenging agnostic setting. We remark
that the following result can be readily extended to other continuous activation functions, including
sigmoids, LeakyReLUs, and combinations thereof.

Corollary 1.9 (Agnostic Query Learning for Bounded-Depth Networks). There exists an agnostic
query learner for ℓ-depth, S-width, ReLU networks on Rd with running time poly(d)2poly(ℓS/ǫ).

For a summary of our results for the above classes, we refer to Table 1 (where for the L2-
regression algorithm we only assume random sample access).

Proper versus Improper Learning The hypothesis computed by algorithm of Theorem 1.5 is
not necessarily in the target concept class. That is, the agnostic learner is improper. With some
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additional effort, our approach can be used to obtain proper learners. As a concrete example, for
the class of ReLUs, we show the following:

Theorem 1.10 (Proper Agnostic Query Learner of ReLUs). There exists an algorithm that makes
poly(d/ǫ) queries, runs in time poly(d) 2poly(1/ǫ), and properly agnostically learns the class of ReLUs
on Rd, i.e., it outputs a ReLU hypothesis h(x) = ReLU(ŵ · x) with excess L2

2 error at most ǫ with
high probability.

We note that in addition to computing a ReLU hypothesis, the learner of Theorem 1.10 uses
poly(d/ǫ) labeled examples (queries plus random examples), removing the extraneous 2poly(1/ǫ) term
in our generic result.

It is natural to ask whether the 2poly(1/ǫ) runtime dependence in Theorem 1.10 is inherent. We
provide evidence that such a dependence may be necessary for proper learners. Specifically, we
show (Theorem 8.4) that if there exists a poly(d/ǫ) agnostic proper learning for our problem, there
exists a polynomial-time algorithm for the small-set expansion (SSE) problem [RS10] (refuting the
SSE hypothesis). This hardness result also extends to the Boolean class of halfspaces. Obtaining a
computational lower bound for improper learners is left as an interesting open problem.

1.1.2 Agnostically Learning Boolean Multi-index Models

We start by describing the family of Boolean functions for which our results are applicable. Roughly
speaking, our algorithmic approach can be used to agnostically learn any Boolean concept class C
satisfying the following conditions: (i) C has bounded Gaussian surface area, (ii) it depends on an
unknown low-dimensional subspace, and (iii) it is closed under translations. Under these assump-
tions, we similarly obtain a “fixed parameter tractable” agnostic learner qualitatively improving over
the agnostic PAC setting with random examples only.

The Gaussian surface area of a Boolean function is the surface area of its decision boundary
weighted by the Gaussian density (Definition 1.11). The Gaussian surface area of a concept class
has played a significant role as a useful complexity measure in learning theory and related fields;
see, e.g., [KOS08, Kan11, Nee14, KTZ19, DMN21]. A formal definition follows:

Definition 1.11 (Gaussian Surface Area). For a Borel set A ⊆ Rd, its Gaussian surface area is

defined by Γ(A) := lim infδ→0
N (Aδ\A)

δ , where Aδ = {x : dist(x,A) ≤ δ}. For a Boolean function
f : Rd 7→ {±1}, we overload notation and define its Gaussian surface area to be the surface area of
its positive region K = {x ∈ Rd : f(x) = +1}, i.e., Γ(f) = Γ(K). For a class of Boolean concepts
C, we define Γ(C) := supf∈C Γ(f).

We are ready to define the class of Boolean multi-index models for which our approach applies.

Definition 1.12 (Bounded Surface Area, Low-Dimensional Boolean Concepts). Fix Γ > 0 and
k ∈ Z+. We define the class B(Γ, k) of Boolean concepts with the following properties:

1. For every f ∈ B(Γ, k), it holds Γ(fr) ≤ Γ for all r ∈ Rd, where fr(x) = f(x+ r).

2. For every f ∈ B(Γ, k), there exists a subspace U of Rd of dimension at most k such that f
depends only on U , i.e., for every x ∈ Rd it holds f(x) = f(projUx).

We remark that B(Γ, k) is a general non-parametric class that contains a range of natural and
well-studied Boolean function classes. For example, B(Ω(k), k) contains arbitrary functions of k
halfspaces.

Our main positive result in this context is a query algorithm that agnostically learns the class
B(Γ, k) with running time poly(d)kpoly(Γ/ǫ). In more detail, we establish the following theorem:
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Theorem 1.13 (Agnostic Learner for Boolean Multi-index Models). Fix the concept class B(Γ, k)
given in Definition 1.12. There exists an algorithm that makes Nq = poly(d/ǫ) queries, draws
Ns = poly(d/ǫ) + O(k)poly(Γ/ǫ) random labeled examples, runs in sample-polynomial time, and
outputs a hypothesis h : Rd → {±1} with excess 0-1 error E0/1(h,B(Γ, k); y) ≤ ǫ.

Discussion Some remarks are in order. We start by noting that, in the setting of Theorem 1.13,
an exponential dependence on the parameter Γ is information-theoretically necessary — even with
access to queries. Specifically, as shown in [KOS08], there exists a Boolean concept class with
Gaussian surface area Γ (consisting of intersections of halfspaces) such that the total number of
samples and queries required to obtain constant accuracy is 2Ω(Γ).

It is worth comparing Theorem 1.13 with the best known algorithmic results in the standard
agnostic PAC model (with random samples only). Klivans, O’Donnell and Servedio [KOS08] showed
that the L1-polynomial regression algorithm of [KKMS08] agnostically learns any concept class on
Rd whose Gaussian surface area is at most Γ > 0 with (sample and computational) complexity
dpoly(Γ/ǫ). Under the additional assumption that the concepts in the target class depend on an
unknown k-dimensional subspace, for some parameter k ≪ d, Theorem 1.13 gives a significantly
improved agnostic query algorithm with computational complexity poly(d) kpoly(Γ/ǫ).

For a concrete example, if the target class is the concept class consisting of any intersection of ℓ
halfspaces, then we have that k = ℓ and Γ = O(

√
log(ℓ)) [KOS08]. So, as long as ℓ = O(1) or even

ℓ = polylog(d), query access allows us to obtain a super-polynomial complexity improvement.

Concrete Applications Theorem 1.13 applies to a fairly general non-parametric class of func-
tions. Here we provide specific applications to well-studied classes of Boolean functions.

Halfspaces. Arguably the simplest application is for the class of halfspaces. A halfspace (or
Linear Threshold Function) is any Boolean-valued function f : Rd → {±1} of the form f(x) =
sign (w · x− θ), where w ∈ Rd is the weight vector and θ ∈ R is the threshold. (The function
sign : R → {±1} is defined as sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise.) The problem
of PAC learning halfspaces is a textbook problem in machine learning, whose history goes back to
Rosenblatt’s Perceptron algorithm [Ros58]. As a corollary of Theorem 1.13, we obtain the following:

Corollary 1.14 (Agnostic Query Learning of Halfspaces). There exists an agnostic query learner
for the class of halfspaces on Rd with running time poly(d) 2poly(1/ǫ).

Corollary 1.14 follows from Theorem 1.13 by observing that halfspaces satisfy Definition 1.12
for k = 1 and Γ ≤ 1/

√
2π.

As mentioned in the introduction, Corollary 1.14 answers an open question independently posed
by Feldman [Fel08] and by Gopalan, Kalai, and Klivans [GKK08b]. Specifically, as we explain below,
it implies a super-polynomial computational separation between agnostic query learning and agnostic
learning with random samples for the class of halfspaces.

In the vanilla agnostic PAC setting, the complexity of this problem is dpoly(1/ǫ); the upper bound
follows via the L1-polynomial regression algorithm [KKMS08] which has complexity dΘ(1/ǫ2) [DKN10]
in this setting. The matching lower bound follows from a recent line of work, both in the SQ
model [GGK20, DKZ20, DKPZ21] and under plausible cryptographic assumptions [DKR23, Tie23].

Functions of Halfspaces. A more general concept class where our general approach is applicable
is that consisting of all intersections (or arbitrary functions) of a bounded number of halfspaces.
For the special case of intersections, we show:

Corollary 1.15 (Agnostic Query Learning for Intersections of Halfspaces). There exists an agnostic
query learner for intersections of ℓ halfspaces on Rd with running time poly(d)O(ℓ)poly(log(ℓ)/ǫ).
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Table 2: Learning Boolean Concepts using Queries: Running time comparisons of the best known
agnostic learners (using random samples) with our Influence PCA technique (using queries).

Concept Class PAC (without queries) PAC+Queries
L1 Regression [KOS08] Influence PCA (Ours)

Single Halfspace dpoly(1/ǫ) poly(d) 2poly(1/ǫ)

Intersections of k Halfspaces dpoly(log(k)/ǫ) poly(d) 2poly(log(k)/ǫ)

Functions of k Halfspaces dpoly(k/ǫ) poly(d) 2poly(k/ǫ)

Degree-ℓ, k-Dim. PTFs dpoly(ℓ/ǫ) poly(d)O(k)poly(ℓ/ǫ)

Low-Dim. Geometric Concepts dpoly(Γ/ǫ) poly(d)O(k)poly(Γ/ǫ)

Corollary 1.15 follows from Theorem 1.13 by observing that intersections of ℓ halfspaces satisfy
Definition 1.12 for k = ℓ and that their Gaussian surface area is bounded above by Γ = O(

√
log(ℓ)),

as shown by Nazarov (see, e.g., [KOS08, CCK17]).
Analogously to the case of a single halfspace, the complexity of the agnostic learning problem

with random samples is significantly worse (as long as ℓ≪ d), namely dpoly(log(ℓ)/ǫ); the upper bound
follows from [KOS08] and a qualitatively matching SQ lower bound was given in [DKPZ21, HSSV22].

Finally, for arbitrary functions of ℓ halfspaces, the Gaussian surface area is bounded by Γ = O(ℓ),
leading to the following corollary:

Corollary 1.16 (Agnostic Query Learning for Functions of Halfspaces). There exists an agnostic
query learner for arbitrary functions of ℓ halfspaces on Rd with running time poly(d)O(ℓ)poly(ℓ/ǫ).

Similarly, the best known complexity upper bound with random samples is dpoly(ℓ/ǫ).

Low-degree Polynomial Threshold Functions (PTFs). Another notable application is for
the class of low-degree PTFs that depend on a low-dimensional subspace. A degree-ℓ PTF is any
Boolean function f : Rd → {±1} of the form h(x) = sign (p(x)), where p : Rd → R is a degree at
most ℓ polynomial. Low-degree PTFs have been extensively studied in theoretical machine learning
and specifically in the context of agnostic learning [DHK+10, DSTW10, DRST14, Kan11].

Here we consider a natural subclass of low-degree PTFs where the underlying polynomial is
a subspace junta. Specifically, we consider the class of Boolean functions of the form f(x) =
sign (p(projUx)), where U is an unknown k-dimensional subspace and p is a degree-ℓ polynomial
in k variables. Since the Gaussian surface area of this class of functions is bounded above by
Γ = O(ℓ) [Kan11], we obtain the following corollary:

Corollary 1.17 (Agnostic Query Learning for Low-Dimensional PTFs). There exists an agnostic
query learner for degree-ℓ PTFs on Rd that depend on an unknown k-dimensional subspace with
running time poly(d)O(k)poly(ℓ/ǫ).

The above running time bound should be compared with the best known complexity bound of
dpoly(ℓ/ǫ) for agnostic learning with samples [Kan11].

Table 2 summarizes our contributions for Boolean concept classes in comparison to prior work
on agnostic PAC learning (with random samples only).

2 Technical Overview

We leverage query access to develop a unified dimension-reduction framework for agnostically learn-
ing both real-valued and Boolean-valued multi-index models. As already explained after the state-
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ment of Theorem 1.5, natural dimension-reduction approaches that work in the realizable (noiseless)
setting inherently cannot be extended to the agnostic setting.

At a high-level, our framework reduces the problem of agnostically learning MIMS in d dimen-
sions to agnostically learning the same class in poly(k/ǫ) dimensions. It consists of three main
steps:

• First we use queries to the label function to simulate gradient queries to a “smoothed” version ỹ(x)
of the adversarial label y(x). We show that, as long as the concept class of interest has bounded
variation (real-valued MIMs of Definition 1.4) or bounded Gaussian surface area (Boolean MIMs
of Definition 1.12), a hypothesis that has low excess-error with respect to the smoothed label ỹ
will also have low excess error with respect to the original label y(x); see Proposition 2.1.

• The second step uses gradient queries to the function ỹ in order to compute an accurate estimate
of the influence matrix of the “smoothed” label, namely M = Ex∼N [∇ỹ(x)(∇ỹ(x))⊤]. We perform
PCA on M and find the top eigenvectors (i.e., the eigen-directions whose corresponding eigenval-
ues are larger than some threshold). This method is known as outer gradient product [XTLZ02];
in the context of learning/testing Boolean concepts, it has been used in [DKK+21, DMN21]. (See
Section 3 for a detailed summary of related work.) We show that those “high-influence” directions
form a low-dimensional (i.e., of dimension poly(k/ǫ)) subspace such that there exists a hypothesis
that (i) depends only on the low-dimensional subspace, (ii) has bounded surface area/variation,
and (iii) is close to our target function. That is, we effectively reduce the dimension of our original
learning task from d down to poly(k/ǫ).

• The third step is to solve an agnostic learning task of a bounded variation/surface area function
in the low-dimensional subspace spanned by the top eigenvectors of M. For this step, for learning
real-valued MIMs, we rely on a generic L2-regression algorithm; for learning Boolean concepts,
we use the L1-polynomial regression agnostic learner of [KKMS08, KOS08]. Those methods yield
non-proper learning algorithms – to obtain proper-learners, we essentially perform a brute-force
search over a net of the low-dimensional parameter space found in the previous step.

2.1 From Zero- to First-Order: Gradient Queries via Oracle Queries

Intuitively, having access to queries, for some example x, we can ask for the values of y(x) in a
“small” neighborhood around x and therefore estimate the gradient ∇xy(x). The first issue that we
have to overcome is that the observed label y(x) is not guaranteed to be a differentiable function
(even if the underlying target function is). To circumvent this issue, we employ a strategy similar
to the Gaussian convolution technique used in zero-order (gradient-free) optimization [NS17]. In
particular, to estimate the gradient of a function y(·) at x only having access to a value oracle,
the method samples z from a mean-zero Gaussian with small covariance, i.e., z ∼ N (0, ρI) for
some small ρ, and then asks for the value of the function at x + ρz. Even if the function y(·)
itself is non-smooth, then, by Stein’s identity, we have Ez∼N [z y(x + ρz)] ∝ ∇ỹ(x), where ỹ(x)
is a smoothed version of y(x), specifically ỹ(x) = Ez∼N [y(x + ρz)]. By drawing N = poly(d/ǫ)
Gaussian samples z(1), . . . , z(N), we can empirically estimate the gradient of ỹ(·) at every desired
point x ∈ Rd. Therefore, by performing N queries on the points z(i), we obtain an approximation of
the gradient ∇ỹ(x) for any x. Even though the above technique yields gradient estimates, it comes
with a cost: to obtain the “smooth” label ỹ(x), we add noise to the (already corrupted) label y(x).
Our plan is to argue that learning using the resulting smoothed labels ỹ(x) yields a good classifier
for the original instance — as long as the “smoothing” parameter ρ is sufficiently small.
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Ornstein–Uhlenbeck Smoothing One could hope that if we add a small amount of noise to
y(x), the smooth label ỹ(x) will be close to y(x) (at least in the L2-sense). Unfortunately, this is not
true (even in one dimension), as y(x) may be an arbitrarily complex function and after smoothing
ỹ(x) may be far from y(x); see Figure 1. To be able to learn from the smoothed instance, we need
two properties: (i) the resulting marginal distribution on the examples must be close to the initial
x-marginal, and (ii) the smoothing operation must not increase the excess error of the functions in
the hypothesis class by a lot. In other words, a hypothesis that performs well with respect to the
smoothed label ỹ(x) should also perform well with respect to the original label y(x). Applying the
Gaussian convolution smoothing x+ρz yields a normal distribution that has covariance (1+ρ)I. In
order to make this distribution be close to a standard normal (say, in total variation distance), one
would need to apply a tiny amount of noise, i.e., ρ should be at most poly(1/d). To avoid changing
the x-marginal of the instance, instead of simply convolving with a Gaussian kernel, we apply
the Ornstein–Uhlenbeck noise operator Tρ that rescales x and corresponds to the transformation

x̃ =
√
1− ρ2x + ρz. We observe that x̃ follows a standard normal distribution. The resulting

“smoothed” label ỹ is now defined as Tρy(x) = Ez∼N [y(x̃)]. Even though the marginal of x̃ matches
exactly with the initial marginal, we have introduced noise to the instance and we still need to show
that this does not significantly affect the performance of the hypotheses in the function class of
interest.

We show that, regardless of how complex the label y(x) is, if the function class of interest
is “well-behaved” — in the sense that it only contains concepts with bounded variation/Gaussian
surface area — the Ornstein–Uhlenbeck noise process will not significantly affect the excess error of
a hypothesis h.

Proposition 2.1 (Informal – Ornstein–Uhlenbeck Smoothing Preserves the Risk-Minimizer). Let y :
Rd 7→ R and C be a class of functions over Rd such that for every f ∈ C it holds Ex∼N [‖∇f(x)‖22] ≤
L. Let f̃ ∈ C be an L2 risk minimizer with respect to the smoothed label Tρy (see Definition 5.1),

i.e., f̃ ∈ argminh∈C Ex∼N [(h(x) − Tρy(x))2]. Then we have that

Pr
x∼N

[(f̃(x)− y(x))2] ≤ inf
f∈C

Pr
x∼N

[(f(x)− y(x))2] +O(ρ2L) .

At a high-level, the effect of the noise operator Tρ on the risk minimizer is milder when the
function does not change very rapidly. To prove Proposition 2.1, we show that the correlation of any
hypothesis f with bounded variation is approximately preserved when we replace y(x) with Tρy(x).
The correlation of f with respect to Tρy(x) is Ex∼N [f(x)Tρy(x)]. However, since Tρ is a symmetric
linear operator, we can equivalently apply the smoothing Tρ to f and consider Ex∼N [Tρf(x)y(x)].
Since f(x) has bounded variation, we can now show via a result on noise sensitivity for real-valued
functions, that Tρf(x) is indeed close to f(x) in L2

2. Therefore, the correlation Ex∼N [Tρf(x)y(x)]
is close to Ex∼N [f(x)y(x)]. The fact that Tρf and f are close is intuitively clear: the smaller the
variation of f , Ex∼N [‖∇f(x)‖22], the smaller the effect of slightly perturbing a point x will have on
the L2

2, as the L2
2 distance between f(x) and f(

√
1− ρx+ρz) is roughly proportional to ρ2‖∇f(x)‖22.

For more details, we refer to Section 5 and Proposition 5.6.
For learning Boolean concepts, we identify their Gaussian Surface Area to be the crucial com-

plexity measure that determines the effect the smoothing operator Tρ has on the agnostic learning
instance. Similarly to our result for real-valued functions, we reduce preserving the excess error
to preserving the correlation of concepts, i.e., ensuring that Ex∼N [f(x)Tρy(x)] − Ex∼N [f(x)y(x)]
is small for all concepts of interest f — see Proposition 5.10 — and then use a result of Ledoux
[Led94a] and Pisier [Pis86] to show that correlations are indeed approximately preserved when the
concepts have bounded Gaussian Surface Area; see Proposition 5.10.
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Figure 1: Smoothing the label y(x). The label y(x) corresponds to the “square wave” (shown in
blue). The smoothed version ỹ(x) is the red curve. We observe that y(x) and ỹ(x) are far (in the
L2 sense).

2.2 Learning Bounded Variation Functions via Influence PCA

Real-Valued MIMs Up to this point, we have established that (i) we can leverage query access
in order to efficiently simulate gradient queries for the Ornstein–Uhlenbeck smoothed label Tρy, and
(ii) learning from the smoothed label Tρy is approximately equivalent to learning from the original
label y(x). We will now describe an efficient learner that uses the gradient queries to Tρy.

Our learner is based on estimating the influence matrix of Tρy, i.e., M = Ex∼N [∇Tρy(x)(∇Tρy(x))⊤],
using gradient queries. Our main structural result is a general dimension-reduction tool establishing
the following: given (an approximation of) the influence matrix of the smooth function Tρy, we can
perform PCA and learn a low-dimensional subspace V so that a bounded variation function that
depends only on V can achieve ǫ excess error with respect to Tρy in L2

2. This dimension-reduction
step crucially relies on the target concept being low-dimensional (see Definition 1.4).

In fact, our dimension-reduction proof for real-valued concepts shows directly that a low-degree
polynomial that depends only on the low-dimensional space V exists.

Proposition 2.2 (Informal– Dimension Reduction via Influence PCA: Real-Valued Functions). Let
ỹ(x) = Tρy(x) and let M = Ex∼N [∇ỹ(x)(∇ỹ(x))⊤]. Moreover, let V be the subspace spanned by all
the eigenvectors of M whose corresponding eigenvalues are at least ǫ2/(kM). The following holds:

• The dimension of V is at most poly(M,k, 1/ρ, 1/ǫ).

• There exists a polynomial q : V 7→ R of degree m = O(L/ǫ2) such that

E
x∼N

[(q(projV (x)) − ỹ(x))2] ≤ inf
f∈R(M,L,k)

E
x∼N

[(f(x)− ỹ(x))2] + ǫ .

To prove Proposition 2.2, we explicitly construct a low-dimensional polynomial as follows: we
first marginalize out the low-influence directions of ỹ(·), and then we keep its low-degree Hermite
approximation.

Marginalizing Low-Influence Directions We first construct a low-dimensional (not necessarily
polynomial) version of the noisy label ỹ that preserves the correlation with the target function f(·).
By the assumption of Proposition 2.4, all directions in the orthogonal complement V ⊥ are low-
influence, i.e., for h ∈ V ⊥ it holds Ex∼N [(h · ∇ỹ(x))2] ≤ O(ǫ2/k). In words, the function ỹ is
“approximately constant” along some low-influence direction h. Let us first assume that ỹ is exactly
constant on all directions of V ⊥. Then, in order to preserve the correlation of ỹ with f , we only need
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to match the expected value of ỹ over V ⊥. This motivates the following “Gaussian Marginalization
Operator” (ΠV g)(x) := Ez∼N [g(projV x + projV ⊥z)] (see Definition 6.5 and Lemma 6.6). So a
natural low-dimensional “approximation” of ỹ is ΠV ỹ. Indeed, if ỹ was constant on V ⊥, using the
fact that projV x and projV ⊥x are independent standard Gaussians, we would obtain that

E
z∼N

[ E
x∼N

ỹ(projV (x) + projV ⊥(z))f(x)]] − E
x∼N

[ỹ(x)f(x)] = 0 .

Our goal is to show that the Gaussian marginalization ΠV ỹ achieves similar correlation with ỹ as f ,
when ỹ is not constant in V ⊥ but “approximately constant”, i.e., it has low-influence in directions
of V ⊥. In Lemma 6.12 we show that when V ⊥ contains only low-influence directions, the same is
approximately true (up to some additive ǫ error): Ez∼N [(ỹ(x)−ΠV ỹ(x))f(x)] ≤ O(ǫ) . To do this,
we first observe that, since f depends only on the subspace U , it holds that ΠUf = f and ΠV f
depends only on the directions inside the relevant subspace W = U + V . We can thus restrict our
attention on W , i.e., bound the difference Ez∼NW

[(ỹ(z) − ΠV ỹ(z))f(z)], where NW is a standard
normal on the subspace W . We will show that this correlation difference can be bounded by the
variance of ỹ in the irrelevant directions. Indeed, by the Cauchy-Schwarz inequality, we have

E
z∼NW

[(ỹ(z) −ΠV ỹ(z))f(z)] ≤
(

E
x∼NW

[f2(x)]

)1/2 (
E

z∼NW

[(ỹ(z)−ΠV ỹ(z))
2]

)1/2

.

We next relate the L2
2 error introduced by the marginalization operation ΠV on ỹ with the influence

matrix M. We use the Gaussian Poincare inequality, which states that for some g(t) : R 7→ R

it holds Vart∼N [g(t)] ≤ Et∼N [(g′(t))2]. We obtain that for any subspace R = r⊥ (the orthogo-
nal complement to the direction r) the variance Ez∼NW

[(ỹ(z) − ΠRỹ(z))
2] is bounded above by

Ex∼NW
[(∇ỹ(x) · r)2] = r⊤Mr. By repeatedly applying the Gaussian Poincare inequality on a basis

of the (at most) k-dimensional subspace V ⊥ ∩W , we show that

E
x∼NW

[(ỹ(z) −ΠV ỹ(z))
2] ≤Mk max

r∈V ⊥,‖r‖2=1
r⊤Mr ≤ k O(ǫ2/(kM) = O(ǫ2) .

In the above bound, we observe that accepting eigenvectors with corresponding eigenvalues at least
ǫ2/(Mk) ensures that ΠV ỹ achieves at most O(ǫ) worse correlation with f than ỹ.

The Low-Degree Polynomial Approximation We have established that ΠV ỹ is similar to ỹ
in the sense that it has similar (up to ǫ2) correlation with the target function f(·). To obtain a
polynomial with a similar behavior, we use the low-degree Hermite expansion of ΠV ỹ, which we
denote by PmΠV ỹ, where Pmg maps the function g to its degree Hermite expansion. We show
that in order for PmΠV ỹ to achieve low L2

2 excess error, it suffices to pick the degree m so that
Pmf(x) is close to f(x) (in L2

2). We show that the following bound for the excess error defined as
E2(q, f ; ỹ) = Ex∼N [(ỹ(x)− q(x))2]−Ex∼N [(ỹ(x)− f(x))2]. We refer to Lemma 6.11 for the formal
statement and proof.

Lemma 2.3 (Informal – Excess L2
2 Error Decomposition). It holds

E2(PmΠV ỹ, f ;ψ) ≤ O(1)
(

E
x∼N

[(f(x)− Pmf(x))2]
︸ ︷︷ ︸

Polynomial Approximation Error

+ E
x∼N

[(ỹ(x)−ΠV ỹ(x))f(x)]
︸ ︷︷ ︸

Correlation Error

)
.

Since f(x) has bounded variation (see Definition 1.4), we can show using a result from [KTZ19]
(see Lemma 6.4) that with degree m = O(L/ǫ2), it holds that Ex∼N [(f(x)− Pmf(x))2] = ǫ. More-
over, in the previous paragraph, we have already established that the correlation error is also O(ǫ).

12



Polynomial Regression in V So far, we have identified the subspace V and we know that there
exists a polynomial that depends on V and achieves low L2

2 error with the smoothed label ỹ = Tρy.
Since we have established that the smoothing operation Tρ does not affect the excess error of a
bounded-surface area concept by a lot (see Proposition 2.1), we know that the same concept will
achieve low excess-error with respect to the original label y. Having established this, for our final
step we may directly perform polynomial regression in the low-dimensional subspace V to learn a
polynomial with low-excess error. Since the dimension of V is roughly poly(Mk/ǫ) and the degree of
the polynomial is poly(L/ǫ), the total sample and computational complexity of this task is roughly
kpoly(L/ǫ).

Boolean MIMs At a high level, the proof and algorithm for Boolean MIMs is similar to that for
real-valued MIMs. We show the following dimension reduction lemma that essentially reduces the
initial problem to learning a bounded surface area concept in a poly(k/ǫ)-dimensional subspace V .

Proposition 2.4 (Informal – Dimension-Reduction via Influence PCA: Boolean Concepts). Let V
be the subspace spanned by all the eigenvectors of M = Ex∼N [∇Tρy(x)(∇Tρy(x))⊤] whose corre-
sponding eigenvalues are at least Ω(ǫ2/k). The following holds:

• The dimension of V is at most poly(k/(ǫρ)).

• There exists g : Rd → {±1} with Γ(g) ≤ Γ and g(x) = g(projV x) for all x ∈ Rd such that

E
x∼N

[|g(x) − Tρy(x)|] ≤ inf
f∈B(Γ,k)

E
x∼N

[|f(x)− Tρy(x)|] + ǫ .

So far, we have identified the subspace V and we know that there exists a bounded surface area
Boolean concept that depends on V and achieves low L1 error with the smoothed label Tρy. Since
we have established that the smoothing operation Tρ does not affect the excess error of a bounded-
surface area concept by a lot (see Proposition 2.1 and Lemma 5.11), we know that the same concept
will achieve low excess-error with respect to the original label y. Having established this, for our
final step we may use the L1-agnostic learner of [KOS08] on the k-dimensional subspace V to learn
a PTF of degree poly(Γ/ǫ) with (dim(V ))poly(Γ/ǫ) = kpoly(Γ/ǫ) samples and time.

2.3 Hardness of Proper Agnostic Query Learning for ReLUs and Halfspaces

Here we sketch our hardness reduction, establishing that the exponential dependence in 1/ǫ is
inherent for proper agnostic learners, even with query access to the function (see Theorem 8.3
and Theorem 8.4). In particular, we show that assuming there are no polynomial-time algorithms
for the Small-Set Expansion (SSE) problem [RS10], then there are no polynomial time proper
agnostic learning algorithms for ReLUs and homogeneous halfspaces with respect to the Gaussian
distribution.

The basic idea of our argument is to reduce to the problem of (approximately) optimizing
a homogeneous degree-4 polynomial over the unit sphere (for the case of halfspaces we reduce
to optimizing a degree-5 polynomial). As there are already known reductions from SSE to the
problem of finding approximate maxima of degree-4 polynomials (and for halfspaces we can do a
simple reduction from degree-4 to degree-5) this will suffice.

For this, we note that if f(x) is a polynomial and g(x) = ReLU(v · x) for v a unit vector,
then E[f(x)g(x)] is a low-degree polynomial in v. In fact, by specifying f , we can make this into
any homogeneous degree-5 polynomial we desire. This gives us SSE hardness of approximating
E[f(x)g(x)].
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If f were a Boolean function we would be done. However, as this is not the case, we need two
additional steps. Firstly, we scale down f and truncate it so that its values stay within [−1, 1] (note
that this introduces only a small error if the average size of f is small). Second, we replace f by a
random Boolean function f̃ so that E[f̃(x)] = f(x). Doing this, it is not hard to see that with high
probability over the randomness of defining f̃ that E[f̃(x)g(x)] is arbitrarily close to E[f(x)g(x)]
for all functions g.

Now even if the algorithm was given an explicit description of our function f̃ , finding a ReLU
function g that approximately maximizes E[f̃(x)g(x)] is essentially equivalent to approximately
optimizing a homogeneous degree-5 polynomial of the sphere, which is SSE-hard.

3 Related Work

Here we discuss prior and related work that was not already discussed in the introduction.

Comparison to Prior Work We start by providing an explicit comparison with prior work.
Our algorithmic template involves two steps to agnostically learn multi-index models under

the Gaussian distribution. First, we use queries to “smooth” the label function without adding
a lot of noise to the instance. We then use PCA on the expected gradient outer-product of the
“smoothed” concept Ex∼Dx

[∇f(x)∇f(x)T ] to find a low-dimensional space containing an (nearly)
optimal hypothesis.

Using PCA on the expected gradient outer-product is a well-known dimension reduction tech-
nique that has been applied in many supervised learning settings, see, e.g., [XTLZ02, MW06,
MZST06, WGMM10]. We emphasize that prior results of this type focus on (i) the noiseless (realiz-
able) setting, and (ii) the case of differentiable target functions. In comparison, we perform agnostic
learning with non-differentiable functions by crucially exploiting query access. Using sample access
only, estimating the gradient of f(x) requires exponentially many examples in the dimension, see,
e.g., [MZST06].

[GKK08a] developed an efficient agnostic query learner for decision trees under the uniform
distribution on the Boolean hypercube. The approach of [GKK08a] crucially relies on the fact that
the target hypothesis can be represented as a sparse polynomial. The class of functions we consider
(Definition 1.12) — and in particular even a single halfspace or ReLU — does not have this property,
and therefore methods relying on sparsity [KM93, GKK08a] are not applicable.

In the context of property testing, [DMN21] used a similar approach based on PCA on the ex-
pected outer gradient product to test whether the observed label is close to a smooth low-dimensional
junta (similarly to Definition 1.12). An important difference with the current work is that in many in-
teresting applications the link function may assumed to be known, e.g., agnostically learning a ReLU
or a halfspace, and the goal is to learn a good hypothesis — a task that information-theoretically
requires Ω(d) samples. In contrast, [DMN21] focuses on the semi-parametric task of only testing
the unknown link function (and not identifying the underlying low-dimensional subspace) while
avoiding a poly(d) dependence in the sample complexity.

Finally, related to our setting is the more recent work of [DKK+21], where a combination
of polynomial regression and PCA on the average outer product of the gradient was employed for
proper, agnostic learning of a single halfspace with runtime and sample complexity dpoly(1/ǫ). In this
work, we crucially exploit the query access to bypass the polynomial regression step and significantly
improve the runtime to poly(d)2poly(1/ǫ) (for the special case of a single halfspace).
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Agnostically Learning Boolean Functions with Queries It is known (see, e.g., [Fel08]) that
the availability of queries does not help computationally in the distribution-free agnostic setting.
Specifically, Feldman [Fel08] showed that every concept class that is agnostically learnable with
queries is also agnostically learnable from random samples only (while preserving computational
efficiency within a polynomial factor). This simple yet powerful fact has motivated the study of
agnostic query learning with respect to specific natural distributions, such as the uniform distribution
on the hypercube or the Gaussian distribution.

In the context of learning Boolean functions, the study of distribution-specific agnostic learning
with queries has a rich history. One of the earliest results in this vein is the classical algorithm of
Goldreich and Levin [GL89] that uses queries to efficiently agnostically learn parity functions under
the uniform distribution. (Recall that the problem of learning parities with noise is conjectured to
be computationally hard with random samples only.) Kushilevitz and Mansour [KM93], building
on the ideas of [GL89], developed an efficient (non-agnostic) query learner for decision trees under
the uniform distribution. As already mentioned, [GKK08a] subsequently gave a polynomial-time
agnostic query learner for decision trees under the uniform distribution.

4 Roadmap, Notation, and Preliminaries

4.1 Roadmap

In Section 5.1, we show that we can use queries to simulate gradient access to the Ornstein–Uhlenbeck
smoothing Tρy. In Sections 5.2 and 5.3, we show that the noise operator we use does not affect
the agnostic learning task for real-valued functions and Boolean concepts. In Section 6, we show
our result for learning real-valued functions and prove Theorem 1.5. In Section 6.3, we show how
Theorem 1.5 implies agnostic learning for linear combinations of ReLU activations and deep net-
works. In Section 7, we give our agnostic learner for Boolean concepts with bounded surface area
and establish Theorem 1.13 and the associated applications. In Section 8, we show that under the
SSE hypothesis, no polynomial-time proper query learner for agnostically learning ReLUs or LTFs
exists. In Appendix A and Appendix B, we give our result for proper agnostic learning of LTFs and
ReLUs.

4.2 Notation and Preliminaries

Basic Notation For n ∈ Z+, let [n] := {1, . . . , n}. We use small boldface characters for vectors
and capital bold characters for matrices. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate of
x, and ‖x‖2 := (

∑d
i=1 x

2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y for the inner product of
x,y ∈ Rd and θ(x,y) for the angle between x,y. We slightly abuse notation and denote ei the i-th
standard basis vector in Rd. We will use 1A to denote the characteristic function of the set A, i.e.,
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

Asymptotic Notation We use the standard O(·),Θ(·),Ω(·) asymptotic notation. We also use
Õ(·) to omit poly-logarithmic factors.

Probability Notation We use Ex∼D[x] for the expectation of the random variable x according
to the distribution D and Pr[E ] for the probability of event E . For simplicity of notation, we may
omit the distribution when it is clear from the context. For (x, y) distributed according to D, we
denote Dx to be the distribution of x and Dy to be the distribution of y. For unit vector v ∈ Rd,
we denote Dv the distribution of x on the direction v, i.e., the distribution of xv.
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Gaussian Space Let N (µ,Σ) denote the d-dimensional Gaussian distribution with mean µ ∈
Rd and covariance Σ ∈ Rd×d, we denote φd(·) the pdf of the d-dimensional Gaussian and we
use the φ(·) for the pdf of the standard normal. In this work we usually consider the standard
normal, i.e., µ = 0 and Σ = I, and therefore, we denote it simply N . We define the standard
Lp norms with respect to the Gaussian measure, i.e., ‖g‖Lp = (Ex∼N [|g(x)|p)1/p. We denote by
L2(N ) the vector space of all functions f : Rd → R such that Ex∼N0

[f2(x)] < ∞. The usual
inner product for this space is Ex∼N0

[f(x)g(x)]. While, usually one considers the probabilists’s
or physicists’ Hermite polynomials, in this work we define the normalized Hermite polynomial of
degree i to be H0(x) = 1,H1(x) = x,H2(x) = x2−1√

2
, . . . ,Hi(x) = Hei(x)√

i!
, . . . where by Hei(x) we

denote the probabilists’ Hermite polynomial of degree i. These normalized Hermite polynomials
form a complete orthonormal basis for the single dimensional version of the inner product space
defined above. To get an orthonormal basis for L2(N ), we use a multi-index V ∈ Nd to define
the d-variate normalized Hermite polynomial as HV (x) =

∏d
i=1Hvi(xi). The total degree of HV

is |V | = ∑
vi ∈ V vi. Given a function f ∈ L2 we compute its Hermite coefficients as f̂(V ) =

Ex∼N [f(x)HV (x)] and express it uniquely as
∑

V ∈Nd f̂(V )HV (x). We denote by Pkf(x) the degree

k partial sum of the Hermite expansion of f , Pkf(x) =
∑

|V |≤k f̂(V )HV (x). Then, since the basis of

Hermite polynomials is complete, we have limk→∞Ex∼N [(f(x)− Pkf(x))
2] = 0. Parseval’s identity

states that Ex∼N [(f(x)− Pkf(x))
2] =

∑∞
|V |=k f̂(V )2.

5 From Zero- to First-Order: Derivative Queries via Oracle Queries

In this section, we show that we can efficiently simulate gradient access to a smoothed version of
the label y using queries. In Section 5.1 we show how to use the Ornstein–Uhlenbeck operator to
get acecss to gradient queries of y. In Section 5.3 and Section 5.2 we show that the noise that we
introduce in order to simulate the gradient queries does not affect the agnostic learning task for
Boolean and real valued concepts as long as the Gaussian surface area (for Boolean concepts) and
the expected gradient norm (for real-valued functions) are bounded.

5.1 Gradient Queries via Oracle Queries

We first formally define the Ornstein–Uhlenbeck smoothing operator.

Definition 5.1 (Ornstein–Uhlenbeck Operator). Let ρ ∈ (0, 1). We denote as Tρ the linear operator
that maps a function g ∈ L2(N ) to the function Tρg defined as:

(Tρg)(x) := E
z∼N

[
g(
√

1− ρ2x+ ρz)
]
.

To simplify notation, we often write Tρg(x) instead of (Tρg)(x).

The Ornstein–Uhlenbeck operator is well studied (see, e.g., [Bog98, KOS08] and references
therein) and has several structural properties that enable the analysis of our algorithm. Its crucial
property is that regardless of how complex the initial function g is, Tρg is always everywhere
differentiable and also the norm of the gradient of Tρg only depends on the maximum value of the
function g. In the next fact we collect the properties that we use.

Fact 5.2 (see, e.g., [Bog98]). Let g : Rd 7→ R. For the function Tρg(x) the following properties hold

1. Tρg(x) is differentiable at every point x.

16



2. Tρg(x) is 1/ρ-Lipschitz, i.e., ‖∇Tρg(x)‖2 ≤ ‖g‖∞/ρ.

3. For any p ≥ 1, Tρ is a contraction with respect the ‖ · ‖p, i.e., it holds ‖Tρg‖Lp ≤ ‖g‖Lp .

Using it allows the gradient of the smoothed function Tρg(x) to be computed directly given
value access to the underlying function g. We now present the main result of this section showing
that given query access to the label y(·) we can efficiently simulate gradient queries to the smoothed
label Tρy(·) with roughly Õ(d/ǫ) queries.

Lemma 5.3 (Gradient Queries from Oracle Queries). Fix ǫ, δ, ρ > 0. Let y(x) : Rd 7→ R be a
function in L2

2(N ) with |y(x)| ≤M . There exists an algorithm (see Algorithm 1) that given a point

x ∈ Rd makes N = Ω̃(dM/ǫ) log(1/δ) queries to y(x) and, in polynomial time, returns a vector ξ̃
such that, with probability at least 1− δ, it holds ‖ξ̃ −∇Tρy(x)‖2 ≤ ǫ.

Proof. To show the lemma, we first need to show that for any point x ∈ Rd, we can use enough
queries to estimate Dρy(x) accurately, meaning that we need to estimate the random variable

Z =

√
1−ρ2
ρ Ez∼N (0,I)

[
y(
√

1− ρ2x+ ρz)z
]

accurately. Note that by definition the random variable

Z is 1/ρ2 sub-gaussian, therefore from a simple application of the Hoefding inequality, we get that
with O(dM/(ρǫ)2 log(1/δ1)) queries, we can find a Z̃ such that ‖Z̃−E[Z]‖2 ≤ ǫ with probability at
least 1− δ1.

Lemma 5.4 (Gradient of Smoothed Label). Let ρ ∈ (0, 1). We denote as Dρ the linear operator
that maps a function g ∈ L2(N ) to the function Dρg defined as: (Dρg)(x) := ∇(Tρg)(x). It holds
that

(Dρg)(x) =

√
1− ρ2
ρ

E
z∼N

[
g(
√

1− ρ2x+ ρz)z
]
.

To simplify notation, we often write Dρg(x) instead of (Dρg)(x).

Proof. We first observe that for any fixed x the random variable
√

1− ρ2x + ρz is distributed
according to N (

√
1− ρ2x, ρ2I). Therefore, we have

Tρg(x) = E
z∼N

[g(
√

1− ρ2x+ ρz)] = E
u∼N (

√
1−ρ2x,ρ2I)

[g(u)]

We can now directly compute the gradient of the smoothed function Tρg:

∇x(Tρg)(x) = ∇x E
u∼N (

√
1−ρ2x,ρ2I)

[g(u)] =

√
1− ρ2
ρ2

E
u∼N (

√
1−ρ2x,ρ2I)

[
g(u)(u −

√
1− ρ2x)

]

=

√
1− ρ2
ρ

E
z∼N

[
g(
√

1− ρ2x+ ρz)z
]
.

5.2 Smoothing the Labels for Learning Real-valued Functions

In this section we show that adding noise to the label y(x) in order to make it smooth and compute
its gradients does not “change” the agnostic learning task significantly. Assume that there exists a
learning algorithm that can learn a hypothesis h(·) that achieves ǫ-excess error compared to a class
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Input: ǫ > 0, δ > 0, ρ > 0, location x ∈ Rd.
Requries: Sample and query access to distribution of labeled examples D
Output: An estimation ξ̃ = ∇Tρy(x) such that ‖ξ̃ −∇Tρy(x)‖2 ≤ ǫ.

1. Sample N = Õ(d/ǫ) log(1/δ) points z(1), . . . , z(N) ∼ N .

2. Perform N Queries at the locations q(j) =
√

1− ρ2x+ ρz(j) and obtain y(j).

3. Return the empirical estimate ξ̃ =

√
1−ρ2
Nρ

∑N
j=1 y

(j)z(j) .

Algorithm 1:Simulating Gradient Queries with Queries

of concepts C, given access to the smooth labels Tρy(x). In other words, assume that we are given
a learner that finds a hypothesis h(·) that satisfies

E
x∼N

[(h(x) − Tρy(x))2] ≤ inf
f∈C

E
x∼N

[(f(x)− Tρy(x))2] + ǫ .

Then, can we say that h(·) will perform well compared to the same class C under the original
(non-smooth) label y(·)? We show that this is true when (i) the hypothesis h(·) produced by the
learner is not very complicated in the sense that it has bounded variation and (ii) the hypothesis
class C that we are comparing h(·) against has also bounded variation.

In particular, we show that a hypothesis h(·) achieves ǫ-excess error compared to some concept
class C in the smoothed instance, achieves (ǫ + O(

√
ρ)-excess error with respect to the original

instance. In other words, as long as the variation and L2
2 norms of the target concept class and the

hypothesis produced by the learner are bounded, smoothing the noisy label y(x) does not introduce
significantly more noise to the instance. To simplify notation, we first define the excess error, i.e.,
the error of a classifier minus the error of the best-in-class classifier of some class C.

Definition 5.5 (Excess Error). Given hypotheses h, f : Rd 7→ R we define the L1-excess error
of h(·) compared to f(·) with respect to the label y(·) to be E1(h, f ; y) = Ex∼N [|h(x) − y(x)|] −
Ex∼N [|f(x) − y(x)|]. Moreover, for a class of concepts C we define the excess error of h(·) com-
pared to C with respect to y(·) as supf∈C E1(h, f ; y). Similarly, we define the L2

2-excess error as
E2(h, f ; y) = Ex∼N [(h(x) − y(x))2]−Ex∼N [(f(x)− y(x))2] and E2(h,C; y) = supf∈C E2(h, f ; y).

We now show that that the Ornstein–Uhlenbeck noise operator also preserves the L2
2-excess error

of a classifier h : Rd 7→ R as long as the target class and the classifier h have bounded expected
gradient.

Proposition 5.6 (Smoothing the Noisy Labels). Fix f ∈ R(M,L, k). Let y : Rd 7→ R be a function
in L2(N ) with Ex∼N [y2(x)] ≤M . Moreover, let p(x) : Rd 7→ R be an almost everywhere differential
function in L2(N ) with Ex∼N [‖∇p(x)‖22] ≤ L. It holds that

E2(p,C; y) ≤ E2(p,C;Tρy) +O(
√
ρML) .

Proof of Proposition 5.6. We first prove the following lemma that connects the excess error of a
real-valued function h(·) with respect to the smoothed label Tρy(·) to its excess error with respect
to the original label y(·). If the operator Tρ preserves the correlation of all concepts f ∈ C, i.e.,
|Ex∼N [f(x)y(x)]−Ex∼N [f(x)Tρy(x)]| ≤ ǫ for all f ∈ C and it also preserves the correlation of the
hypothesis h(·), i.e., |Ex∼N [h(x)y(x)] −Ex∼N [h(x)Tρy(x)]| ≤ ǫ, then the excess error of h(·) with
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respect to y(·) is at most 2ǫ worse than its excess error with respect to the smoothed label Tρy(·).
In the following lemma, we show that we can connect the L2-excess error with the correlation of
concepts.

Lemma 5.7 (From Excess Error to Correlation Preservation). Let h : Rd 7→ R be a real-valued
hypotheses and C be a class of real-valued hypotheses. It holds

E2(h,C;Tρy)− E2(h,C; y) ≤ 2 sup
f∈C

∣∣∣ E
x∼N

[f(x)Tρy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣+

2
∣∣∣ E
x∼N

[h(x)Tρy(x)] − E
x∼N

[h(x)y(x)]
∣∣∣ .

Proof. We first note that E2(h,C;Tρy) − E2(h,C; y) = supf∈C E2(h, f ;Tρy) − supf∈C E2(h, f ; y) ≤
supf∈C

∣∣E2(h, f ;Tρy)− E2(h, f ; y)
∣∣. For some fixed concept f ∈ C, we have

E2(h, f ;Tρy) = E
x∼N

[h2(x)] − E
x∼N

[f2(x)] + 2 E
x∼N

[(f(x)− h(x))(Tρy)] .

Therefore, we have

E2(h, f ;Tρy)− E2(h, f ; y)

= 2

(
E

x∼N
[f(x)(Tρy(x)− y(x))] + E

x∼N
[h(x)(Tρy(x)− y(x))]

)
.

By taking the supremum over the f , we complete the proof.

Note that Ex∼N [f(x)(Tρy(x)− y(x))] = Ex∼N [y(x)(Tρf(x)− f(x))]. Therefore, using Cauchy-
Schwarz inequality we have that

E
x∼N

[y(x)(Tρf(x)− f(x))] ≤
(

E
x∼N

[y2(x)] E
x∼N

[(Tρf(x)− f(x))2]
)1/2

≤
√
M

(
E

x∼N
[(Tρf(x)− f(x))2]

)1/2

,

where we used that Ex∼N [y2(x)] ≤
√

Ex∼N [y4(x)] ≤ M . To bound the remaining term, we prove
the following claim.

Claim 5.8. Let f ∈ L2(N ) be a continuous and (almost everywhere) differentiable function. Then,
Ex∼N [(Tρf(x)− f(x))2] ≤ 2ρ2 Ex∼N [‖∇f(x)‖22.

Proof. We will use the following result from [KTZ19].

Fact 5.9 (Correlated Differences, (Lemma 7 in [KTZ19])). Let f ∈ L2(N ) be an (almost everywhere)
differentiable function. Denote by

Dτ = N
(
0,

(
I (1− τ)I

(1− τ)I I

))
.

It holds E(x,z)∼Dτ
[(f(x)− f(z))2] ≤ 2τ Ex∼N [‖∇f(x)‖22] .
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Therefore, using Jensen’s inequality, we have that

E
x∼N

[(Tρf(x)− f(x))2] = E
x∼N

[( E
z∼N

[f(
√

1− ρ2x+ ρz)] − f(x))2] ≤ E
(x,z′)∼Dτ

[(f(z′)− f(x))2] ,

for τ = 1−
√

1− ρ2. Therefore, using Fact 5.9, we obtain

E
x∼N

[(Tρf(x)− f(x))2] ≤ 2(1−
√

1− ρ2) E
x∼N

[‖∇f(x)‖22 ≤ 2ρ2 E
x∼N

[‖∇f(x)‖22 ,

where we used the fact that
√

1− ρ2 ≥ 1 − ρ2 which holds for all ρ ∈ [0, 1] and implies that
1−

√
1− ρ2 ≤ ρ2.

Therefore, from Claim 5.8, we have that

E2(p,C; y) ≤ E2(p,C;Tρy) +O(
√
ρM)

(√
E

x∼N
[‖∇f(x)‖22] +

√
E

x∼N
[‖∇p(x)‖22]

)
.

Using that Ex∼N [‖∇f(x)‖22],Ex∼N [‖∇p(x)‖22] ≤ L, we complete the proof of Proposition 5.6.

5.3 Smoothing Labels for Learning Boolean Concepts

The following proposition shows that the L1-excess error of a hypothesis h with respect to the
original label y is close to its L1-excess error with respect to the smoothed label Tρy as long as (i)
the class C contains concepts with bounded surface area and (ii) the classifier h also has bounded
surface area.

Proposition 5.10 (Smoothing the Noisy Labels Preservs L1-Excess Error). Fix y : Rd 7→ {±1}
and let C be a class of Boolean concepts. It holds

E1(h,C; y) ≤ E1(h,C;Tρy) +O(ρ) (Γ(C) + Γ(h)) ,

where E(·, ·; ·) is the excess error defined in Definition 5.5

Proof. We first prove the following lemma showing that connects the excess error of a classifier h(·)
with respect to the smoothed label Tρy(·) to its excess error with respect to the original label y(·).
This is analogous to the real-valued case (Lemma 5.7). In the following lemma we show that we can
connect the L1-excess error with the correlation of concepts (which basically relies on the identity
|t− s| = 1− ts when t ∈ [−1, 1] and s ∈ {±1}.
Lemma 5.11 (From Excess Error to Correlation Preservation: Boolean Concepts). Let h : Rd 7→
{±1} and C be a class of Boolean hypotheses. It holds

E1(h,C;Tρy)− E1(h,C; y) ≤ sup
f∈C

∣∣∣ E
x∼N

[f(x)Tρy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣+

∣∣∣ E
x∼N

[h(x)Tρy(x)]− E
x∼N

[h(x)y(x)]
∣∣∣ .

Proof. We first note that E1(h,C;Tρy) − E1(h,C; y) = supf∈C E1(h, f ;Tρy) − supf∈C E1(h, f ; y) ≤
supf∈C

∣∣E1(h, f ;Tρy)−E1(h, f ; y)
∣∣. Using the fact that Ex∼N [|f1(x)−f2(x)|] = 1−Ex∼N [f1(x)f2(x)],

for any functions f1 : R
d 7→ [−1, 1] and f2 : R

d 7→ {±1}, we have that

E1(h, f ;Tρy) = E
x∼N

[|Tρy(x)− h(x)|] − E
x∼N

[|Tρy(x)− f(x)|] = E
x∼N

[Tρy(x)f(x)] − E
x∼N

[Tρy(x)h(x)] .

Therefore, for some concept f ∈ C, we have that
∣∣E1(h, f ;Tρy)− E1(h, f ; y)

∣∣ =
∣∣ E
x∼N

[(Tρy(x)− y(x))f(x)]
∣∣ +

∣∣ E
x∼N

[(Tρy(x)− y(x))h(x)]
∣∣ .

Taking the supremum over the C completes the proof.
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First, note that since |y(x)| ≤ 1, it also holds that |Tρy(x)| ≤ 1. Using Lemma 5.11, we have
that Proposition 5.10 is equivalent to showing that for a Boolean function f : Rd 7→ {±1} it holds
|Ex∼N [(Tρy(x)− y(x))f(x)]| ≤ O(ρ) Γ(f) . We do this in the following lemma.

Lemma 5.12 (Tρ Preserves Correlation). Let y : Rd 7→ {±1} and let f : Rd 7→ {±1} be a (Borel)
Boolean function. It holds that

∣∣∣ E
x∼N

[f(x)Tρy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣ ≤ O(ρ) Γ(f) .

Proof. Using the fact that the Ornstein–Uhlenbeck noise operator Tρ is a symmetric linear operator
on L2(N ), we have

E
x∼N

[f(x)Tρy(x)] = E
x∼N

[y(x)Tρf(x)] = E
x∼N

[y(x)f(x)] + E
x∼N

[y(x)(Tρf(x)− f(x))] .

Therefore,

∣∣∣ E
x∼N

[f(x)Tρy(x)]− E
x∼N

[f(x)y(x)]
∣∣∣ =

∣∣∣ E
x∼N

[y(x)(Tρf(x)− f(x))]
∣∣∣ ≤ E

x∼N
[|Tρf(x)− f(x)|] ,

where, for the inequality we used the fact that the label y(x) ∈ {±1}. We next bound the term
Ex∼N [|Tρf(x)−f(x)|]. We will use the following result from Ledoux and Pisier as stated in [KOS08].

Fact 5.13 (Ledoux-Pisier [Led94b]). Let f : Rd 7→ {±1} be a Boolean function. It holds Ex∼N [f(x)Tρf(x)] ≥
1− 2

√
π Γ(f) ρ .

In what follows, we denote by K the set labeled as positive by the LTF f(x). Using the fact that
Ex∼N [|Tρf(x)−f(x)|] = 1−Ex∼N [Tρf(x)f(x)], which holds because |Tρf(x)| ≤ 1 and f(x) ∈ {±1},
we have

E
x∼N

[|Tρf(x)− f(x)|] = 1− E
x∼N

[f(x)Tρf(x)] ≤ O(ρΓ(f)) ,

where the inequality follows from Fact 5.13.

Applying Lemma 5.12 on f and g gives the result.

6 Agnostically Learning Real-valued Multi-index Models

In this section we present our algorithmic result Theorem 1.5 for learning real-valued function classes
in the L2

2 norm. For convenience, we first restate the class of bounded variation concepts that we
consider.

Definition 6.1 (Bounded Variation, Low-Dimensional Concepts). Fix L,M > 0 and k ∈ Z+. We
define the class R(M,L, k) of continuous, (almost everywhere) differentiable real-valued functions
with the following properties:

1. For every f ∈ R(M,L, k), it holds (Ex∼N d [f4(x)])1/2 ≤M and Ex∼N d[‖∇f(x)‖22] ≤ L.

2. There exists a subspace U of Rd of dimension at most k such that f depends only on U , i.e.,
for every x ∈ Rd, f(x) = f(projUx).

We now state the main result of this section (the formal version of Theorem 1.5).
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Theorem 6.2 (Improper Learner for Real-valued Functions). Fix k ∈ N and M,L ∈ R+. Let D be
a distribution on Rd×R+ such that the x-marginal of D is standard d-dimensional normal. There ex-
ists an algorithm that makes Nq = poly(d/ǫ) queries, draws Ns = poly(d)+poly((kM/ǫ)L

2/ǫ4 , 1/ǫ, log(1/δ))
samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with
probability at least 1− δ it holds

E
(x,y)∼D

[(p(x)− y)2] ≤ inf
f∈R(M,L,k)

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Before we proceed to the proof we define the Hermite expansion operator that maps a function
f to its degree m Hermite polynomial.

Definition 6.3 (Hermite Expansion Operator). Given a function f ∈ L2(N ), we denote by Pm(f)(x),
the linear operator that maps f to the Hermite polynomial of degree m of f , i.e.,

(Pmf)(x) =
∑

|I|≤m
f̂(I)HI(x),

where HI is the multivariate Hermite polynomial of degree I ∈ Nd and f̂(I) = Ex∼N [f(x)HI(x)] is
the corresponding Hermite coefficient of f(x).

The following lemma bounds the error of the polynomial approximation of degree m for “smooth”
functions. Its proof is implicit in [KTZ19]; we provide a short proof for completeness.

Lemma 6.4 (Polynomial Approximation of Smooth Functions). Let f(x) : Rd 7→ R be an (almost
everywhere) differentiable function and m ∈ N. It holds

E
x∼N

[(f(x)− Pmf(x))
2] ≤ O

( 1

m

)
E

x∼N
[‖∇f(x)‖22] .

Proof. We denote as P>mf the Hermite expansion of f , which contains the terms with degrees
higher than m. We have that

E
x∼N

[(f(x)− Pmf(x))
2] = E

x∼N
[(P>mf(x))

2] =
∑

I:|I|>m
(f̂(I))2 ≤ 1

m

∑

I:|I|>m
|I|(f̂ (I))2 ,

where in the last inequality, we used that 1 ≤ |I|/m. Furthermore, (see, e.g., the proof of Lemma
6 in [KTZ19]) we have that for a continuous and (almost everywhere) differentiable function f , it
holds that

E
x∼N

[‖∇f(x)‖22] =
∑

I∈Nd

|I|(f̂(I))2 .

Combining the above, the result follows.

As we discussed in Section 2 to show that an approximately optimal, low-dimensional concept
exists we will use the Gaussian Marginalization Operator defined below.

Definition 6.5 (Gaussian Marginalization Operator). Let U be a subspace of Rd. Denote by DU⊥

the standard normal distribution on the subspace U⊥ (we assume that a vector z ∼ DU⊥ is a d-
dimensional vector that lies in U⊥). Given a function f ∈ L2(N ), we denote by ΠUf the linear
operator defined by

(ΠUf)(x) = E
z∼D

U⊥

[f(projU (x) + z)] .
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Motivation about the Gaussian Marginalization Operator, ΠV By the assumption of
Proposition 2.4, all directions in the orthogonal complement V ⊥ are low-influence, i.e., for h ∈ V ⊥

it holds Ex∼N [(h · ∇ỹ(x))2] ≤ O(ǫ2/k). In words, the function ỹ is “approximately constant” along
some low-influence direction h. Let us first assume that ỹ is exactly constant on all directions of
V ⊥. Then, in order to preserve the correlation of ỹ with f , we only need to match the expected value
of f over V ⊥. This motivates the following “Gaussian Marginalization Operator” of Definition 6.5.
Indeed, if ỹ was constant on V ⊥, using the fact that projV x and projV ⊥x are independent standard
Gaussians, we would obtain that

E
z∼N

[ E
x∼N

f(projV (x) + projV ⊥(z))ỹ(x)]]− E
x∼N

[f(x)ỹ(x)] = 0 .

We observe that since ΠV f is a convex combination of different translations of f and B(Γ, k) is
closed under translations, we obtain that the Gaussian surface area of f is also bounded above by
Γ.

In the next lemma, we collect some useful properties of the Gaussian Marginalization Operator.

Lemma 6.6. Let g ∈ L2(N ) and V ⊆ Rd. We have the following properties for the operator ΠV .

• ΠV are contractions, i.e., Ex∼N [(ΠV g(x))
2] ≤ Ex∼N [g2(x)].

• Let U, V ⊆ Rd, it holds that ΠVΠU+V g = ΠV+UΠV+U⊥g = ΠV g.

Proof. To show that ΠV is a contraction, note that Ex∼N [(ΠV g(x))
2] ≤ Ex∼N Ez∼N

V ⊥
[g2(xV +

z)] = Ex∼N [g2(x)], where we used Jensen’s inequality. For the second part, let H = (U + V )⊥ and
note that

ΠVΠU+V g = ΠV E
z∼NH

[g(xU+V + z)] = ΠV E
z∼NH

[g(xV + xU/V + z)] = E
z∼NH

[ΠV g(xV + xU/V + z)]

= E
z∼NH

[ E
z′∼NU/V

[g(xV + z′ + z)] = ΠU+VΠU⊥+V g ,

where we used Fubini’s theorem.

Lemma 6.7. Let g ∈ L2(N ), m ∈ N and V ⊆ Rd. We have the following properties for the
operators Pm and ΠV .

• Pm is a contraction, i.e., Ex∼N [(Pmg(x))
2] ≤ Ex∼N [g2(x)].

• Pm and ΠV commute, i.e., PmΠV g = ΠV Pmg.

Proof. First, we show that Pm is a contraction. Using the g ∈ L2(N ), we have that g admits a
Hermite expansion. We denote as P>mg the Hermite expansion of g, which contains the terms with
degrees higher than m. We have that

E
x∼N

[g2(x)] = E
x∼N

[(Pmg(x) + P>mg(x))
2] = E

x∼N
[(Pmg(x))

2 + (P>mg(x))
2] ,

where in the last equality, we used that the Hermite basis is orthogonal, hence Ex∼N [Pmg(x)P>mg(x)] =
0. Therefore, Ex∼N [g2(x)] ≥ Ex∼N [(Pmg(x))

2].
Next, we show that ΠU and Pm commute.

Claim 6.8 (Pm and ΠU commute). Let g ∈ L2(N ), m ∈ N, and V be a subspace of Rd. It holds
that PmΠV g = ΠV Pmg.
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Proof. Because Pm and ΠV are linear operators, it suffices to show the above each term of the
Hermite basis, i.e.,

E
x∼N

[ΠV g(x)HI(x)]HI(x) = E
z∼N

V ⊥

[ E
x∼N

[g(x)HI (x)]HI(xV + z)] .

Note that if HI(x) does not depend on V ⊥, then Ez∼N
V ⊥

[HI(xV +z)] = HI(x). Therefore, we have

E
z∼N

V ⊥

[ E
x∼N

[g(x)HI(x)]HI(xV + z)] = E
x∼N

[g(x)HI(x)]HI(x) = E
x∼NV

[ E
z∼N

V ⊥

[g(xV + z)HI(x+ z)]]HI(x)

= E
x∼NV

[ E
z∼N

V ⊥

[g(xV + z)]HI(x)]HI(x)

= E
x∼N

[ΠV g(x)HI(x)]HI(x) .

In the case where HI(x) depends on V ⊥, we have that Ez∼V ⊥ [HI(xV +z)] = 0. Therefore, it suffices
to prove that Ex∼N [ΠV g(x)HI(x)]HI(x) = 0. Note that

E
x∼N

[ΠV g(x)HI(x)]HI(x) = E
x∼NV

[ E
z∼N

V ⊥

[ΠV g(x+ z)]HI(xV + z)]HI(x)

= E
x∼NV

[ΠV g(x) E
z∼N

V ⊥

[HI(xV + z)]]HI(x) = 0 .

This completes the proof of Lemma 6.7.

Input: ǫ > 0, δ > 0 and sample and query access to distribution D
Output: An estimation of M = Ex∼Dx

[Dρy(x)Dρy(x)
⊤].

1. ρ← Cǫ2, η ← Cǫ2, for C > 0 sufficiently small constant.

2. Let SN be the set that contains N samples x(1), . . . ,x(N) from the distribution D.

3. For each x ∈ SN , use Algorithm 1 to get a gradient estimate (̂Dρy)(x) of (Dρy)(x).

4. return M̂ = 1
N

∑N
i=1 (̂Dρy)(x

(i))(̂Dρy)(x
(i))⊤.

Algorithm 2:Estimation of the influence matrix M with Queries

Having access to the gradient, enables us to calculate the influence matrix of the function which
captures the sensitivity of the function in different directions. We formally define the influence
matrix of a function g.

Definition 6.9 (Influence Matrices). Given a differentiable g ∈ L2(N ), we define the influence
matrix as

Infg := E
x∼N

[∇g(x)∇g(x)⊤].

Fix ρ ∈ (0, 1). Given g ∈ L2(N ) (not necessarily differentiable), we define its ρ-smoothed influence
matrix as

Infρg := E
x∼N

[Dρg(x)(Dρg(x))
⊤] .
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6.1 Influence PCA for Learning in L
2
2

In this section we show that for learning real-valued concepts of bounded variation in L2
2 we can

effectively reduce the dimension of the problem via PCA in the influence of the smoothed label Tρy.
We show that the low-degree polynomial approximation of the smoothed label Tρy can be projected
down to the subspace V via the Gaussian Marginalization Operator. In other words, we construct
an explicit polynomial approximation of the label Tρ that depends only on the low-dimensional
subspace V . We now state our dimension-reduction result.

Proposition 6.10. Fix ǫ,M,L,Q > 0 and let ψ : Rd 7→ R with |ψ(x)| ≤ Q and ‖∇ψ(x)‖2 ≤ Ψ.
Let η be sufficiently small multiple of ǫ2/(kM) and m be sufficiently large multiple of (Q2L)/ǫ2. Let

M̂ so that ‖Infψ−M̂‖2 ≤ η/2 and let V be the subspace spanned by all the eigenvectors of M̂ whose
corresponding eigenvalues are at least η. Then, it holds

1.
E

x∼N
[(PmΠV ψ(x) − ψ(x))2] ≤ inf

f∈R(M,L,k)
E

x∼N
[((ψ(x) − f(x))2] + ǫ .

2. The dimension of V is at most O(Ψ2/η).

Proof of Proposition 6.10. Fix f ∈ R(M,L, k). By assumption, there exists a subspace U of dimen-
sion at most k, so that f depends only on U , i.e., f(x) = f(projUx). Therefore, ΠU+V f(x) = f(x).

Lemma 6.11 (Excess L2
2 Error Decomposition). We have

E2(PmΠV ψ, f ;ψ) ≤ Q ( E
x∼N

[(f(x)− Pmf(x))2])1/2
︸ ︷︷ ︸
Polynomial Approximation Error

+2 E
x∼N

[(ψ(x) −ΠV ψ(x))f(x)]
︸ ︷︷ ︸

Correlation Error

.

Proof. We have that

E
x∼N

[(ψ(x) − PmΠV ψ(x))
2]− E

x∼N
[(ψ(x) − f(x))2]

= E
x∼N

[(PmΠV ψ(x))
2 − f2(x)] + 2 E

x∼N
[ψ(x)(f(x) − PmΠV ψ(x))]

= E
x∼N

[(PmΠV ψ(x))
2 − f2(x)] + 2 E

x∼N
[ΠV ψ(x)(f(x) − PmΠV ψ(x))]

︸ ︷︷ ︸
I

+2 E
x∼N

[(ψ(x) −ΠV ψ(x))f(x)] ,

where we used that Ex∼N [(ψ(x)−ΠV ψ(x))PmΠV ψ(x)] = 0. Furthermore, note that Ex∼N [ΠV ψ(x)PmΠV ψ(x)] =
Ex∼N [(PmΠV ψ(x))

2], therefore, we have that

I = E
x∼N

[−(PmΠV ψ(x))2 − f2(x)] + 2 E
x∼N

[ΠV ψ(x)f(x)]

≤ E
x∼N

[−(PmΠV ψ(x))2 − (Pmf(x))
2] + 2 E

x∼N
[ΠV ψ(x)f(x)]

= − E
x∼N

[(PmΠV ψ(x) − Pmf(x))
2] + 2 E

x∼N
[ΠV ψ(x)(f(x) − Pmf(x))]

≤ 2 E
x∼N

[ΠV ψ(x)(f(x) − Pmf(x))] .

Using that Ex∼N [(ΠV ψ(x))
2] ≤ Ex∼N [(ψ(x))2] ≤ Q2 and Cauchy-Schwarz inequality we get that

Ex∼N [ΠV ψ(x)(f(x) − Pmf(x))] ≤ QEx∼N [(f(x) − Pmf(x))
2]1/2. This completes the proof of

Lemma 6.11.
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Lemma 6.12 (Correlation Error Bound). It holds

E
x∼N

[(ψ(x) −ΠV ψ(x))f(x)] ≤ O(ǫ) . (1)

Proof. Note that f(x) depends only on the subspace U , therefore, ΠU+V f(x) = f(x). Therefore,
we have that

E
x∼N

[(ψ(x) −ΠV ψ(x))f(x)] = E
x∼N

[(ΠV+Uψ(x)−ΠV+UΠV ψ(x))f(x)]

= E
x∼N

[(ΠV+Uψ(x)−ΠV ΠV+Uψ(x))f(x)]

≤
(

E
x∼N

[(ΠV +Uψ(x)−ΠVΠV+Uψ(x))
2] E

x∼N
[f2(x)]

)1/2

,

where in the last equality we used Lemma 6.7 and in the last inequality we used the Cauchy-
Schwarz inequality. Note that Ex∼N [f2(x)] ≤ M . To bound the other term we show that
Ex∼N [(ΠV +Uψ(x)−ΠVΠU+V ψ(x))

2] is small. For that, we prove a generalization of Lemma A.3.

Lemma 6.13 (Generalized Gaussian Marginalization Error). Let g : Rd 7→ R be a function in
L2(N ) such that ∇g ∈ L2(N ) and let V,U be subspaces of Rd. It holds

E
x∼N

[(ΠV +Ug(x) −ΠV ΠV+Ug(x))
2] ≤ dim(V ⊥ ∩ U) max

v∈V ⊥∩U,‖v‖2=1
E

x∼N
[(∇g(x) · v)2] .

Proof. Assume that dim(V ⊥ ∩ U) = k ≤ d. Using the rotation invariance of the Gaussian distribu-
tion, without loss of generality, we may assume that e1, . . . , ek is a basis of V ⊥ ∩ U . Note that it
holds ΠVΠU+V g(x) = ΠV+U⊥ΠV+Ug(x) = ΠV+UΠV+U⊥g(x). We have

E
x∼N

[(ΠU+V g(x) −ΠV ΠU+V g(x))
2] = E

x∼N
[(ΠU+V g(x) −ΠV+UΠV+U⊥g(x))2]

≤ E
x∼N

[(g(x) −ΠV+U⊥g(x))2]

= E
xk+1,...,xd∼N

[Varx1,...xk∼N [g(x1, . . . ,xd)]]

≤ 1

2
E

xk+1,...,xd∼N

[
k∑

i=1

E
x1,...,xk∼N

[Varxi∼N [g(x1, . . . ,xi, . . . xd)]]

]
,

where in the inequality, we used Efron-Stein’s inequality. Using Fact A.4, for each i ∈ [k] we have
Varxi∼N [g(x1, . . . ,xi, . . . xd)] ≤ Exi∼N [(∇g(x1, . . . ,xd) · ei)2], and therefore we have

E
x∼N

[(g(x) − r(x))2] ≤
k∑

i=1

E
x1,...,xd∼N

[(∇g(x) · ei)2] ≤ k max
v∈H⊥,‖v‖2=1

E
x∼N

[(∇g(x) · v)2] .

This completes the proof of Lemma 6.13.

From Lemma 6.13, we have that

E
x∼N

[(ΠV +Uψ(x)−ΠVΠU+V ψ(x))
2] ≤ dim(U ∩ V ⊥) max

v∈U∩V ⊥,‖v‖2=1
E

x∼N
[((∇ψ(x)) · v)2] .

Furthermore note that maxv∈U∩V ⊥,‖v‖2=1 Ex∼N [((∇ψ(x))·v)2 ] ≤ η/2+maxv∈U∩V ⊥,‖v‖2=1 v
⊤M̂v ≤

2η because the subspace U∩V ⊥ contains vectors with influence at most η. Note that dim(U∩V ⊥) ≤
dim(U) ≤ k and noting η = O(ǫ2/(Mk)) completes the proof of Lemma 6.12.
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Combining Lemmas 6.11 and 6.12 and using that Ex∼N [(f(x)−Pmf(x))2] ≤ L/m from Lemma 6.4,
we get that

E
x∼N

[(PmΠV ψ(x) − ψ(x))2] ≤ inf
f∈R(M,L,k)

E
x∼N

[((ψ(x) − f(x))2] + ǫ .

To show that the subspace V has small dimension, we show the following lemma

Lemma 6.14. Fix η > 0, ρ ∈ (0, 1). Let ψ be a function from Rd to R such that ‖∇ψ(x)‖2 ≤ Ψ
and let V be the subspace spanned by all the eigenvectors of Infg with eigenvalue at least η. Then
the dimension of the subspace V is dim(V ) = O(Ψ2/η).

Proof. Let m = dim(V ). V is spanned by the eigenvectors of Inf g = Ex∼N [∇ψ(x)(∇ψ(x))⊤ ] with
eigenvalue at least η, hence,

mη ≤ tr(Infg) = E
x∼N

[tr(∇ψ(x)(∇ψ(x))⊤)] = E
x∼N

[‖∇ψ(x)‖22] .

From the assumption, we have that Ex∼N [‖∇ψ(x)‖22] = O(Ψ2). Therefore, we have that m ≤
O(Ψ2/η).

An application of the lemma above (Lemma 6.14) gives, which gives that the subspace it at most
O(Ψ2/η). This completes the proof of Proposition 6.10

6.2 Proof of Theorem 6.2

We will use the following fact about the L2 polynomial regression.

Fact 6.15 (see, e.g., Theorem D.7 [DKK+21]). Let D be a distribution on Rd × R such that
the x-marginal of D is standard d-dimensional normal and the labels y are bounded by M . The
L2-regression algorithm draws N = poly((dm)m

2

, 1/ǫ,M, log(1/δ)) samples from D, runs in time
poly(N, d), and outputs a polynomial p : Rd 7→ R such that with probability at least 1− δ it holds

E
(x,y)∼D

[(p(x)− y)2] ≤ min
p∈Pm

E
(x,y)∼D

[(p(x)− y)2] + ǫ ,

where Pm is the class of polynomials with degree at most m.

We first show that we can truncate the labels with |y(x)| ≥M ′ =M1/2/ǫ1/2 without increasing
the error by a lot. From Markov’s inequality, we have that

Pr[|f(x)| ≥M ′] ≤ E
x∼N

[f2(x)]/(M ′)2 ≤
√

E
x∼N

[f4(x)]/(M ′)2 ≤ ǫ .

Let trunc(y(x)) = sign(y(x))min(|y(x)|,M ′). We have that

E
x∼N

[(f(x)− trunc(y(x)))2] = E
x∼N

[(f(x)− trunc(y(x)))2(1{|f(x)| ≤M ′}+ 1{|f(x)| > M ′})]

≤ E
x∼N

[(f(x)− y(x))2] + E
x∼N

[(f(x)− trunc(y(x)))21{|f(x)| > M ′}]

≤ E
x∼N

[(f(x)− y(x))2] + 2(
√

E
x∼N

[f4(x)] + (M ′)2)
√

Pr[|f(x)| ≥M ′]

≤ E
x∼N

[(f(x)− y(x))2] + ǫ .

For the rest of the proof, we assume that y(x) is truncated at M ′. Let ψ(x) = Tρy for ρ =
poly(ǫ/(ML)). Note that ‖∇ψ(x)‖2 ≤ M ′. From Lemma 5.3, with N = poly(d/ǫ) log(1/δ)
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queries, we get that with probability 1 − δ/2 a matrix M, so that ‖M − Infψ‖F ≤ ǫ. Apply-
ing Proposition 6.10 to the matrix M, we get that in the subspace V spanned by the eigenvec-
tors of the matrix M with eigenvalues larger than η = poly(ǫ/Mk)) with dimension at most
O(poly(M ′, 1/η, 1/ǫ)), there exists a polynomial p : V 7→ R of degree m = poly(M2/ǫ) with
Ex∼N [p2(x)] ≤ E[ψ2(x)] ≤ (M ′)2, so that

E
x∼N

[(p(x)− ψ(x))2] ≤ E
x∼N

[(f(x)− ψ(x))2] + ǫ/2 .

From Proposition 5.6, we get that for the same polynomial and using that Ex∼N [‖∇p(x)‖2 ≤
mEx∼N [p2(x)], it also holds that

E
x∼N

[(p(x) − y(x))2] ≤ E
x∼N

[(f(x)− y(x))2] + ǫ/2 .

Let P : Rd 7→ V be the projection matrix to the subspace V . Let (Px, y) ∼ D′, where (x, y) ∼ D.
We use the L2-regression algorithm on D′ and from Fact 6.15, using poly((kM/ǫ)L

2/ǫ4 , 1/ǫ, log(1/δ))
samples from D′, we get a polynomial p′ : V 7→ R so that with probability at least 1− δ, it holds

E
x∼N

[(p′(Px)− y(x))2] ≤ E
x∼N

[(p(x)− y(x))2] + ǫ/2 ≤ E
x∼N

[(f(x)− y(x))2] + ǫ .

This completes the proof of Theorem 6.2.

6.3 Applications of Theorem 6.2

In this section, we apply Theorem 6.2 for several real-valued activations. We start by applying our
theorem for the class of ReLU activations.

Theorem 6.16 (Improper Learner for ReLUs Activations). Fix M ∈ R+. Let C be the concept
class containing all the ReLU activations with normal vectors bounded in ℓ2 norm by M . Let D be a
distribution on Rd ×R such that the x-marginal of D is the standard d-dimensional normal. There
exists an algorithm that makes Nq = poly(dM/ǫ) queries, draws Ns = poly(d/ǫ)+2poly(M/ǫ) log(1/δ)
samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with
probability at least 1− δ it holds

E
(x,y)∼D

[(p(x) − y)2] ≤ inf
f∈C

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Proof. To prove the above theorem it suffices to show that C ⊆ R(
√
3M2,M2, 1). Note that

Ex∼N [(ReLU(w · x))4] ≤ Ex∼N [(w · x)4] ≤ 3M4. Furthermore, we bound the derivative of the
activation. We have that

E
x∼N

[‖∇xReLU(w · x)‖22] = E
x∼N

[‖1{w · x ≥ 0}w‖22] ≤M2 .

Therefore, it follows that C ⊆ R(
√
3M2,M2, 1). An application of Theorem 6.2 gives the result.

We next consider learning Single-index models (SIMs) with an unknown Lipschitz link function
g : R 7→ R, i.e., f(x) = g(w · x).

Definition 6.17. We define the class of L-Lipschitz SIMs on Rd denoted SIM(L,M) as follows.
For each f ∈ SIM(L,M), f(x) = g(w · x), for L-Lipschitz g : R 7→ R and ‖w‖2 ≤M .
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Theorem 6.18 (Improper Learner for SIMs). Fix L,M ∈ R+. Let D be a distribution on Rd × R

such that the x-marginal of D is the standard d-dimensional normal. There exists an algorithm that
makes Nq = poly(dL/ǫ) queries, draws Ns = poly(d/ǫ) + 2poly(LM/ǫ) log(1/δ) samples from D, runs
in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with probability at least 1− δ
it holds

E
(x,y)∼D

[(p(x)− y)2] ≤ inf
f∈SIM(L,M)

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Proof. Note that for any f ∈ SIM(L) by definition if holds that ‖∇f(x)‖2 ≤ L and also that
E[f4(x)] ≤ L4E[(w · x)4] . M4L4. Therefore, we have that f ∈ SIM(L,M) ⊆ R(M2L2, L, 1). An
application of Theorem 6.2 gives the result.

We define the class of linear combinations of ReLU networks.

Definition 6.19 (ReLU Networks). We define the class Re(M,k) of ReLU networks as follows.
For each f ∈ Re(M,k), f(x) = W2ReLU(W1x), for matrices W1 ∈ Rk×d,W2 ∈ {±1}k×1, with
‖W1‖op ≤M .

We give our result for learning linear combinations of ReLUs, i.e., real-valued functions of the
form f(x) =

∑k
i=1 aiReLU(w

(i) · x), where ai ∈ R.

Theorem 6.20 (Improper Learner for Linear Combinations of ReLUs). Fix k ∈ N and M ∈ R+.
Let D be a distribution on Rd × R such that the x-marginal of D is the standard d-dimensional
normal. There exists an algorithm that makes Nq = poly(dM/ǫ) queries, draws Ns = poly(d/ǫ) +
(kM/ǫ)poly(kM/ǫ) log(1/δ) samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial
p : Rd 7→ R so that with probability at least 1− δ it holds

E
(x,y)∼D

[(p(x) − y)2] ≤ inf
f∈Re(M,k)

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Proof. We show that Re(M,k) ⊆ R(M ′, L′, k) for appropriate parameters M ′, L′. We show the
following

Lemma 6.21. Let f(x) =
∑k

i=1 aiReLU(w
(i) · x) where ai ∈ {±1} ∈ R and w(i) ∈ Rd with

‖w(i)‖2 ≤M for all i ∈ [k]. Then, we have that f ∈ R(kM2, kM2, k).

Proof. We have that Ex∼N [f4(x)] ≤ Ex∼N [(
∑k

i=1 ReLU(w
(i) · x))4]. From the Cauchy-Schwarz

inequality we have that (
∑k

i=1 zi)
2 ≤ k

∑k
i=1 z

2
i . Therefore, applying this inequality twice, we get

that Ex∼N [f4(x)] ≤ k3
∑k

i=1Ex∼N [(ReLU(w(i) · x))4] ≤ O(k3M4). We then bound the derivative
of f . We have that

E
x∼N

[‖∇xf(x)‖22] = k

k∑

i=1

E
x∼N

[‖1{w(i) · x ≥ 0}w(i)‖22] ≤ O(kM2) .

Then the proof follows from Lemma 6.21 along with Theorem 6.2.

We now give an improved result for learning sums of ReLUs, i.e., real-valued functions of the
form f(x) =

∑k
i=1ReLU(w(i) · x). We first define the class of sum of ReLUs.

Definition 6.22 (Sums of ReLU Networks). We define the class Re+(M,k) of ReLU networks as
follows. For each f ∈ Re+(M,k), f(x) = ReLU(Wx), for matrices W ∈ Rk×d, with E[f2(x)] ≤M .
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Theorem 6.23 (Improper Learner for Sums of ReLUs). Fix k ∈ N and M ∈ R+. Let D be a distri-
bution on Rd×R+ such that the x-marginal of D is the standard d-dimensional normal. There exists
an algorithm that makes Nq = poly(dM/ǫ) queries, draws Ns = poly(d/ǫ)+(kM/ǫ)poly(M/ǫ) log(1/δ)
samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with
probability at least 1− δ it holds

E
(x,y)∼D

[(p(x)− y)2] ≤ inf
f∈Re+(M,k)

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Proof. Note that from Lemma 6.21 we have that for f(x) =
∑k

i=1 ReLU(w
(i) · x), where w(i) ∈ Rd

with Ex∼N [f2(x)] ≤ Ex∼N [(
∑k

i=1 ReLU(w
(i) ·x))4] ≤M2. We show that f ∈ R(kM2,M2, k). Sim-

ilar to Theorem 6.20, we have that Ex∼N [f4(x)] ≤ O(kM2). The proof differs from Theorem 6.20
on the fact that we can bound the gradient of f by the L2

2 norm of f yielding a bound independent
of k in the exponent. We show that Ex∼N [‖∇xf(x)‖22] ≤ O(M). We have that

E
x∼N

[‖∇xf(x)‖22] = E
x∼N

[‖
k∑

i=1

1{w(i) · x ≥ 0}w(i)‖22]

= E
x∼N

[
k∑

i,j=1

1{w(i) · x ≥ 0}1{w(j) · x ≥ 0}w(i) ·w(j)]

≤ 2 E
x∼N

[
k∑

i,j=1

ReLU(w(i) · x)ReLU(w(j) · x)]

≤ 2 E
x∼N

[f2(x)] ≤ O(M) .

Therefore, we have that C ⊆ R(M, 2M,k). An application of Theorem 6.2 gives the result.

Next we show our result for a general ReLU network. We first define the clas of Deep ReLU
networks.

Definition 6.24 (Deep ReLU Networks). We define the class D(M,L, k, S) of depth-(L+1) ReLU
networks as follows. For each f ∈ D(M,L, k), f(x) = WLReLU(WL−1 · · ·ReLU(W1x)), for
matrices W1 ∈ Rk×d, . . . ,WL ∈ RkL×1, with ‖Wi‖op ≤M and ki ≤ S.

We show the following theorem.

Theorem 6.25 (Agnostic Learner for Deep ReLU Networks). Fix k, S, L ∈ N and M ∈ R+.
Let D be a distribution on Rd × R+ such that the x-marginal of D is the standard d-dimensional
normal. There exists an algorithm that makes Nq = poly(dM/ǫ) queries, draws Ns = poly(d/ǫ) +
2poly(kSM/ǫ) log(1/δ) samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial p :
Rd 7→ R so that with probability at least 1− δ it holds

E
(x,y)∼D

[(p(x) − y)2] ≤ inf
f∈D(M,L,k,S)

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

Proof. We show that D(M,L, k, S) ⊆ R(M ′, L′, k) for appropriate parameters M ′, L′. We first calcu-
late for each f ∈ D(M,L, k, S), the Ex∼N [‖∇f(x)‖22]. Denote asDi(x) = WiReLU(Wi−1 · · ·ReLU(W1x))
the sub-network of f(x). From the product rule, we have that

∇f(x) = WLdiag(1{DL−1 ≥ 0})WL−1 · · · diag(1{W1x ≥ 0})W1 .

Therefore, we have that ‖∇f(x)‖2 ≤
∏L
i=1 ‖Wi‖op

√
ki ≤ (MS)L. Using the Poincare inequality,

we can show that Ex∼N [f2(x)] ≤ kEx∼N [‖∇f(x)‖22] ≤ k(MS)L. Therefore, D(M,L, k, S) ⊆
R((kMS)O(L), (kMS)O(L), k). Then the proof follows from Theorem 6.2.
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7 Agnostically Learning Boolean Multi-index Models

In this section, we present our results for Boolean multi-index models of bounded surface area. For
convenience, we restate the class of concepts that we consider.

Definition 7.1 (Bounded Surface Area, Low-Dimensional Boolean Concepts). We define the class
B(Γ, k) of Boolean concepts with the following properties:

1. For every f ∈ B(Γ, k), it holds Γ(f) ≤ Γ.

2. For every f ∈ B(Γ, k), there exists a subspace U of Rd of dimension at most k such that f
depends only on U , i.e., for every x ∈ Rd, f(x) = f(projUx).

3. B(Γ, k) is closed under translations, i.e., if f(x) ∈ B(Γ, k) then f(x + t) ∈ B(Γ, k) for all
t ∈ Rd.

We remark that B(Γ, k) is a general, non-parametric class. For example B(Ω(k), k) contains
LTFs, intersections of k LTFs, and Polynomial Threhsold Functions (PTFs) of degree at most k
(that depend on a k-dimensional subspace). Our learner is able to learn a hypothesis of low excess
error when compared against all concepts of B(Γ, k) with roughly poly(d/ǫ) + kpoly(Γ/ǫ) runtime.

Theorem 7.2. Fix k ∈ N and M ∈ R+. Let D be a distribution on Rd × {±1} such that the
x-marginal of D is standard d-dimensional normal. There exists an algorithm that makes Nq =

poly(d/ǫ) queries and draws Ns = poly(d/ǫ) + poly((kΓ/ǫ)Γ
2/ǫ4 , 1/ǫ, log(1/δ)) samples from D and

runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with probability at least
1− δ it holds

Pr
(x,y)∼D

[sign(p(x)) 6= y] ≤ inf
f∈B(Γ,k)

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .

7.1 Influence PCA for Learning in L1-norm

In this section we show our main dimension-reduction tool for the concepts of bounded surface of
Definition 1.12. Our dimension-reduction tool establishes that: given (an approximation of) the
influence matrix of the smooth function Tρy, we can perform PCA and learn a low-dimensional
subspace V so that a bounded surface area concept that depends only on V can achieve ǫ excess
error with respect to Tρy in L1-norm. We now state our result.

Proposition 7.3 (Dimension Reduction). Fix ǫ > 0, k ∈ N and let ψ : Rd 7→ [−1, 1] be a differen-
tiable function with ‖∇ψ(x)‖2 ≤ Ψ for all x ∈ Rd. Let η be sufficiently small multiply of ǫ2/k let

M̂ ∈ Rd×d be such that ‖M̂− Infψ‖2 ≤ η/2. Let V be the subspace spanned by all the eigenvectors

of M̂ whose corresponding eigenvalues are at least η. The following hold true:

1. There exists g with Γ(g) ≤ Γ so that g(x) = g(projV x) such that

E
x∼N

[|g(x) − ψ(x)|] ≤ inf
f∈B(Γ,k)

E
x∼N

[|f(x)− ψ(x)|] + ǫ .

2. The dimension of V is at most O(Ψ2/η).

Before we proceed to the proof of Proposition 7.3 we give some intuition behind the choice of
the Gaussian Marginalization Operator defined above. We first give the following simple lemma
showing that in order to show that a concept class C2 (think of this as the class of concepts that
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depend on the subspace V of Proposition 7.3) has not much worse approximation error (to some
label y) than some other class C1 (think of this as the original concept class B(Γ, k)) as long as for
every concept f of C1, we can construct a distribution over concepts of C2 that (on expectation)
achieves at most ǫ worse correlation with the label y than the original concept f . Its proof relies on
the simple fact that for t ∈ [−1, 1] and s ∈ {±1}, it holds that |t− s| = 1− ts.

Lemma 7.4 (Correlating Convex Combinations). Fix a function y : Rd 7→ [−1, 1] and ǫ > 0. Let
C1, C2 be classes of Boolean concepts on Rd. Assume that for every f ∈ C1 there exists a distribution
Q over hypotheses of the class C2 such that

E
x∼N

[f(x)y(x)] − E
x∼N

[
E
g∼Q

[g(x) y(x)]
]
≤ ǫ .

Then infg∈C2
Ex∼N [|g(x) − y(x)|] − inff∈C1

Ex∼N [|f(x)− y(x)|] ≤ ǫ.

Proof. Fix f ∈ C1. By assumption, we have that there exists a distribution Qf over C2 so that

E
x∼N

[f(x)y(x)] − E
x∼N

[
E

g∼Qf

[g(x) y(x)]
]
≤ ǫ .

Note that g ∈ {±1} and |y(x)| ≤ 1, therefore the expectation is bounded and hence from Fubini’s
theorem, we have that

E
g∼Qf

[
E

x∼N
[f(x)y(x)] − E

x∼N
[g(x) y(x)]

]
≤ ǫ .

That means that there exists a rf ∈ C2 so that

E
x∼N

[f(x)y(x)]− E
x∼N

[rf (x) y(x)] ≤ ǫ .

Because f(x), rf (x) are Boolean functions we have that Ex∼N [f(x)y(x)] = 1 − Ex∼N [|f(x)y(x)]|
and Ex∼N [rf (x)y(x)] = 1−Ex∼N [|rf (x)y(x)]|. Therefore, we have

E
x∼N

[|rf (x)− y(x)|]− E
x∼N

[|f(x)− y(x)|] ≤ ǫ .

Furthermore, because rf ∈ C2, we have that Ex∼N [|rf (x) − y(x)|] ≥ infg∈C2
Ex∼N [|g(x) − y(x)|].

The proof is completed by taking the supremium over all the f ∈ C1. This completes the proof of
Lemma 7.4.

7.1.1 Proof of Proposition 7.3

We define that set of hypotheses BV (Γ, k) = {f ∈ B(Γ, k) : f(projV (x)) = f(x)}. We are going to
show that

inf
g∈BV (Γ,k)

E
x∼N

[|g(x) − ψ(x)|] ≤ inf
f∈B(Γ,k)

E
x∼N

[|f(x)− ψ(x)|] + ǫ . (2)

To prove Equation (2), by Lemma 7.4 it suffices to construct, for each f ∈ B(Γ, k), a distribution

Q over the set BV (Γ, k) and show that Ex∼N [f(x)ψ(x)] − Ex∼N
[
Eg∼Q[g(x) ψ(x)]

]
≤ ǫ. To this

end, we first show that
E

x∼N
[(f(x)−ΠV f(x))ψ(x)] ≤ ǫ . (3)

Note that ΠV f(x) is a distribution over BV (Γ, k). To see that note that ΠV f(x) = Ez∼N
V ⊥

[f(xV +

z)] and note that for each z ∈ Rd, we have that f(xV + z) ∈ BV (Γ, k). To prove Equation (2), we
prove the following lemma:
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Lemma 7.5 (Correlation via Gaussian Marginalization). Let y : Rd 7→ R be some function in
L2(N ). Fix some concept f ∈ B(Γ, k) and denote by U the subspace of Rd that f depends on (i.e.,
f(x) = f(projU (x)). Moreover, let V be some other subspace of Rd. Then it holds

E
x∼N

[(f(x)−ΠV f(x))y(x)] ≤ 2
√

E
x∼N

[(ΠU+V y(x)−ΠVΠU+V y(x))2] .

Proof. Note that by our assumption f(x) = f(xU ) = ΠUf(x), therefore, ΠVΠUf(x) = ΠV f(x). Ob-
serve that Ex∼N [(f(x)−ΠV f(x))ΠV ΠU+V y(x)] = Ex∼N [(ΠV ΠUf(x)−ΠV f(x))ΠV ΠU+V y(x)] = 0,
which gives that

E
x∼N

[(f(x)−ΠV f(x))y(x)] = E
x∼N

[(f(x)−ΠV f(x))(ΠU+V y(x)−ΠVΠU+V y(x))] .

Using that f is a Boolean function, we have that |ΠV f(x)| ≤ 1, hence, |f(x)−ΠV f(x)| ≤ 2, which
gives

E
x∼N

[(f(x)−ΠV f(x))y(x)] ≤ 2 E
x∼N

[|ΠU+V y(x)−ΠVΠU+V y(x)|] ≤ 2
√

E
x∼N

[(ΠU+V y(x)−ΠVΠU+V y(x))2] ,

where we used Cauchy-Schwarz inequality. This completes the proof of Lemma 7.5.

It remains to bound the term Ex∼N [(ΠU+V ψ(x)−ΠV ΠU+V ψ(x))
2]. Observe that dim(U∩V ⊥) ≤

dim(U) ≤ k, by applying Lemma 6.13 we get that

E
x∼N

[(ΠU+V ψ(x) −ΠVΠU+V ψ(x))
2] ≤ dim(U ∩ V ⊥) max

v∈U∩V ⊥,‖v‖2=1
E

x∼N
[(∇ψ(x) · v)2]

= k max
v∈U∩V ⊥,‖v‖2=1

v⊤Infψv .

Furthermore, using that ‖M̂− Infψ‖2 ≤ η/2, we have that

max
v∈U∩V ⊥,‖v‖2=1

v⊤Infψv ≤ η/2 + max
v∈U∩V ⊥,‖v‖2=1

v⊤M̂v ≤ 2η ,

where in the last inequality we used that v lies in the V ⊥ and for any v ∈ V ⊥, it holds v⊤M̂v ≤ η.
By choosing η = ǫ2/(32k), we have shown that

E
x∼N

[(f(x)−ΠV f(x))ψ(x)] ≤ ǫ .

The proof then follows from Lemma 7.4. It remains to bound the dimension of the subspace V . To
this end, we use Lemma 6.14 which gives that dim(V ) = O(Ψ2/η2). This completes the proof of
Proposition 7.3.

7.2 Proof of Theorem 7.2

For learning geometric concepts, we use the standard L1-regression algorithm from [KKMS08].

Fact 7.6 (Theorem 9 [KOS08]). Let C be a class of Boolean functions in Rd. Let D be a distribution
on Rd×{±1} such that the x-marginal of D is the standard d-dimensional normal. The L1-regression
algorithm draws N = poly(dΓ(C)

2/ǫ4 , 1/ǫ, log(1/δ)) samples from D and runs in time poly(N, d) and
outputs a polynomial p : Rd 7→ R so that with probability at least 1− δ it holds

Pr
(x,y)∼D

[sign(p(x)) 6= y] ≤ min
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .
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Let ψ(x) = Tρy(x) with ρ be less than a sufficiently small constant multiple of ǫ/Γ(f). Using
poly(d, 1/ǫ, log(1/δ) queries, we calculate an estimation M of the influence matrix Infψ (Lemma 5.3).
Let V be the subspace spanned with the eigenvectors of M with eigenvalue at least η, where η is a
sufficiently small constant multiply of ǫ2/k. Using Proposition 7.3, we have that V has dimension
at most O(Γ2k/ǫ4) and furthermore there exists g with Γ(g) ≤ Γ so that g(x) = g(projV x) such
that

E
x∼N

[|g(x) − ψ(x)|] ≤ E
x∼N

[|f(x)− ψ(x)|] + ǫ .

From Proposition 5.10, we have that it also holds

E
x∼N

[|g(x) − y(x)|] ≤ inf
f∈B(Γ,k)

E
x∼N

[|f(x)− y(x)|] +O(ǫ) .

Equivalently, we have that Prx∼N [g(x) 6= y(x)] ≤ inff∈B(Γ,k)Prx∼N [f(x) 6= y(x)] + O(ǫ). Let

P : Rd 7→ V be the projection matrix to the subspace V . Let (Px, y) ∼ D′, where (x, y) ∼ D. We
the L1-regression algorithm on D′ and from Fact 7.6, using poly((kΓ/ǫ)Γ

2/ǫ4 , 1/ǫ, log(1/δ)) samples
from D′, we get a polynomial p : V 7→ R so that with probability at least 1− δ, it holds

Pr
(x,y)∼D

[sign(p(Px)) 6= y] ≤ inf
f∈B(Γ,k)

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .

This completes the proof of Theorem 7.2.

7.3 Corollaries for Intersections of Halfspaces and PTFs

Using Theorem 7.2, we can show the following corollary for intersections of k halfspaces:

Corollary 7.7. Let C be the class of intersections k halfspaces in Rd. Let D be a distribution on Rd×
{±1} such that the x-marginal of D is the standard d-dimensional normal. There exists an algorithm
that makes Nq = poly(d/ǫ) queries and draws Ns = poly(d/ǫ) + poly((k/ǫ)log(k)/ǫ

4

, 1/ǫ, log(1/δ))
samples from D and runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with
probability at least 1− δ it holds

Pr
(x,y)∼D

[sign(p(x)) 6= y] ≤ min
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .

Proof of Corollary 7.7. For the proof, we need the following fact about the Gaussian surface area
of the intersection of k halfspaces.

Fact 7.8 (Theorem 20 of [KOS08]). The surface area Γ(f) of the intersection of k halfspaces is at
most O(

√
log k).

The proof follows from Theorem 7.2 and Fact 7.8.

We show that we can use Theorem 7.2 to learn low-degree polynomial threshold functions (PTFs)
that depend only on a small dimensional subspace.

Corollary 7.9. Let C be the class of degree-ℓ PTFs in Rd that depend on an unknown k-dimensional
subspace. Let D be a distribution on Rd × {±1} such that the x-marginal of D is the standard d-
dimensional normal. There exists an algorithm that makes Nq = poly(d/ǫ) queries, draws Ns =

poly(d/ǫ) + poly((k/ǫ)ℓ/ǫ
4

, 1/ǫ, log(1/δ)) samples from D, runs in time poly(Ns, Nq, d) and outputs
a polynomial p : Rd 7→ R so that with probability at least 1− δ it holds

Pr
(x,y)∼D

[sign(p(x)) 6= y] ≤ min
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .
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Proof of Corollary 7.9. For the proof, we need the following fact about the Gaussian surface area
of degree-ℓ PTFs.

Fact 7.10 (Gaussian Surface Area of PTFs, [Kan11]). The surface area Γ(f) of ℓ-degree polynomial
threshold functions is at most O(ℓ).

The proof follows from Theorem 7.2 and Fact 7.10.

Finally, we show that we can use Theorem 7.2 to learn arbitrary functions of ℓ halfspaces.

Corollary 7.11. Let C be the class of functions of ℓ halfspaces in Rd. Let D be a distribution on
Rd × {±1} such that the x-marginal of D is the standard d-dimensional normal. There exists an
algorithm that makes Nq = poly(d/ǫ) queries, draws Ns = poly(d/ǫ) + poly((ℓ/ǫ)ℓ/ǫ

4

, 1/ǫ, log(1/δ))
samples from D, runs in time poly(Ns, Nq, d) and outputs a polynomial p : Rd 7→ R so that with
probability at least 1− δ it holds

Pr
(x,y)∼D

[sign(p(x)) 6= y] ≤ min
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .

Proof of Corollary 7.11. We note that the Gaussian surface area of functions of ℓ halfspaces is
bounded above by ℓ. From [KOS08] (see, e.g., Fact 17), we have that the surface area of a Boolean
function f that depends on ℓ halfspaces, is bounded above by the sum of the surface area of the
individual halfspaces; therefore, we have that Γ(f) ≤ O(ℓ). The proof follows from Theorem 7.2.

8 Hardness of Agnostic Proper Learning of Halfspaces and ReLUs

with Queries

One might ask if the exponential dependence on 1/ǫ in our upper bound (Corollaries 1.6 and 1.14)
is necessary or just an artifact of our algorithmic approach. In this section, we provide some
evidence that it is inherent. Unfortunately, there are very few circumstances where one can prove
computational lower bounds against improper learners with query access to the function. So our
bounds will apply only to proper learners. The basic idea of our argument is that if f(x) = sign(v·x)
is a linear threshold function or f(x) = ReLU(v · x) with v a unit vector and p(x) a polynomial,
then E[f(x)p(x)] will be a polynomial in v. As approximately optimizing low-degree polynomials
over the unit sphere is conjectured to be computationally hard, this will prove hardness for proper
learning of linear threshold functions. In particular, our hardness reduction starts from the small-
set expansion problem [RS10]. We then rely on results of [BBH+12] to reduce this problem to one
about polynomial optimization. In particular we have:

Theorem 8.1. If there is a polynomial-time algorithm that given a1,a2, . . . ,an ∈ Rd outputs a
constant factor approximation to max‖x‖2=1

1
n

∑n
i=1(ai·x)4, then there is a polynomial time algorithm

for the small-set expansion problem.

We note here that max‖x‖2=1
1
n

∑n
i=1(ai · x)4 is a homogeneous degree-4 polynomial. It will be

important for our purposes that the polynomial in question have odd degree. Fortunately, we can
reduce to this case.

Corollary 8.2. If there is a polynomial-time algorithm that given a homogeneous degree-5 polyno-
mial p on Rd outputs a constant factor approximation to max‖x‖2=1 p(x), then there is a polynomial-
time algorithm for the small-set expansion problem.
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Proof. We give a reduction to this problem from the problem in Theorem 8.1. In particular, given
a1, . . . ,an ∈ Rd, we let q(x) = 1

n

∑n
i=1(ai ·x)4. We then define the homogeneous degree-5 polynomial

p on Rd+1 as p(x, y) = q(x)y (where x here represents the first d coordinates of the input and y
represents the last one). We note that if ‖(x, y)‖2 = 1, then ‖x‖2 = a and y = b for some a2+b2 = 1.
Letting x′ = x/a and using the homogeneity of q, we have that p(x, y) = a4bq(x′). For fixed x′, the
maximum of this over a, b is obtained when a =

√
4/5 and b =

√
1/5. Thus, the maximum value of

p(x, y) over the unit sphere equals the maximum value of q(x′) over the unit sphere times 16/52.5.
Thus, finding a constant-factor approximation to the maximum value of one is equivalent to finding
such an approximation of the other. This completes our proof.

We are now ready to state our main theorem.

Theorem 8.3 (Hardness of Proper Learning for LTFs). Suppose that there is an algorithm that given
query access to a Boolean function f on Rd runs in poly(d) time and approximates the minimum
misclassification error between f and a homogeneous LTF (with respect to the standard Gaussian
distribution) to additive error ǫ for some ǫ < d−10. Then there is a polynomial-time algorithm for
the small set expansion problem.

Before we prove Theorem 8.3, we note that any proper agnostic learner can be used to approxi-
mate this error merely by approximating the error between f and the learned function. Thus, this
result will imply a lower bound for learning.

Proof. We assume throughout that d is sufficiently large, as otherwise there is nothing to prove. We
proceed by a reduction from the problem in Corollary 8.2. In particular, let p be a homogeneous
degree-5 polynomial on Rd. Let T be the unique symmetric tensor so that p(x) = T(x,x,x,x,x).
By scaling T, we may assume that ‖T‖2 = 1. Let q(x) = (T · H(x)), where H(x) is the tensor
whose entries are the degree-5 Hermite polynomials in x.

Morally, we would like to take f(x) = q(x). Unfortunately, this does not work for two reasons.
First, f(x) needs to be Boolean, while q(x) distinctly is not. We can fix this by taking f to be

a random function, where the expected value of f(x) equals q(x).
Unfortunately, this cannot work because the expected value of f(x) must still be in [−1, 1], while

q is unbounded. To solve this, we first scale q down substantially and then truncate its extreme
values. To do this, we define:

t(x) =





1 if x > 1

−1 if x < −1
x otherwise.

We then divide Rd into tiny boxes of side length δ for some very small δ. For each box B, we pick
an x ∈ B and then (independently for each box) let f be 1 on B with probability (t(q(x)/d) + 1)/2
and −1 on B otherwise. We note that the expected value of f on B is t(q(x)/d), where x is the
representative element. As the difference between q at the representative element x of B and at
any other point in B will be small if δ is (and if the box is not too far from the origin), it is not
hard to see that the expectation over the randomness in defining f of |Ex∼N [f(x)sign(v · x)] −
Ex∼N [t(q(x)/d)sign(v ·x)]| goes to 0 with δ. As the variance of Ex∼N [f(x)sign(v ·x)] also goes to 0
with δ, if we take δ sufficiently small, then with high probability over the randomness in f , we have
that |Ex∼N [f(x)sign(v · x)] − Ex∼N [t(q(x)/d)sign(v · x)]| < ǫ/2 for all unit vectors v. Therefore,
finding an ǫ additive approximation to the minimum misclassification error between f and an LTF
is equivalent to finding a 2ǫ-additive approximation to the maximum value of Ex∼N [f(x)sign(v ·x)],
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which in turn is sufficient to find an ǫ-additive approximation of Ex∼N [t(q(x)/d)sign(v · x)]. We
will show that this is computationally hard.

To start with, we note that Ex∼N [q(x)2] = ‖T‖2 = 1. Therefore, by standard concentration
bounds, we have that Prx∼N [|q(x)| > d] = exp(−Ω(d2/5)) < ǫ3. Therefore, by the Cauchy-Scwartz
inequality, we have that

E
x∼N

[|q(x)/d − t(q(x))/d|] ≤
√

Pr
x∼N

(|q(x)| > d) E
x∼N

[q(Gx)2] ≤ ǫ/2 .

Thus, if one can approximate the maximum value of Ex∼N [t(q(x)/d)sign(v · x)] to additive error
ǫ, one can approximate the maximum value of Ex∼N [(q(x)/d)sign(v · x)] to additive error ǫ/2.
However, we can compute this expectation by comparing the Hermite expansions for q(x)/d and
sign(v · x). In particular, the former only has non-vanishing terms in degree 5, where they are
given by the tensor T/d. The latter has its degree-5 Hermite tensor given by c5v

⊗5, where c5 =
Ez∼N [h5(z)sign(z)] = (3/2)

√
1/(15π). Therefore, we have that

E
x∼N

[(q(x)/d)sign(v · x)] = (T/d) · (c5v⊗5) = (c5/d)T(v,v,v,v,v) = (c5/d)p(v) .

Thus, finding an ǫ/2-additive approximation to the maximum value of Ex∼N [(q(x)/d)sign(v · x)]
for unit vectors v is equivalent to finding an O(d−9)-additive approximation to the maximum value
of p(v) over unit vectors v. We claim that doing this would give a constant-factor multiplicative
approximation to the maximum value of p(v), finishing our reduction to the problem of Corollary 8.2.
To do this, we need to show that the maximum value of p(v) is much larger than d−9.

To show this, we note that because ‖T‖2 = 1, the sum of the squares of the entries of T is
1. Since T has only d5 entries, this means that it must have some entry with norm at least d−5.
Therefore, there must be unit vectors v1,v2, . . . ,v5 so that T(v1,v2,v3,v4,v5) ≥ d−5. However,
this value is proportional to

∑
ǫ1,...,ǫ5∈{±1} ǫ1ǫ2 · · · ǫ5p(ǫ1v1 + ǫ2v2 + . . . + ǫ5v5). As each term here

is proportional to p of some unit vector (using the fact that p is homogeneous), this implies that
there is some unit vector v with |p(v)| ≫ d−5. Replacing v by its negation if necessary, we have
that the maximum value of p(v) over unit vectors v is Ω(d−5). This completes our proof.

Theorem 8.4 (Hardness of Proper Learning for ReLUs). Suppose that there is an algorithm that
given query access to a real-valued function f on Rd runs in poly(d) time and approximates the
minimum L2

2 error between f and a homogeneous ReLU (with respect to the standard Gaussian
distribution) to additive error ǫ for some ǫ < d−4. Then there is a polynomial-time algorithm for
the small set expansion problem.

Proof. Let p be a homogeneous degree-4 polynomial on Rd. Let T be the unique symmetric tensor
so that p(x) = T(x,x,x,x). By scaling T, we may assume that ‖T‖2 = 1. Let f(x) = (T ·H(x)),
where H(x) is the tensor whose entries are the degree-4 Hermite polynomials in x.

We can compute this expectation by comparing the Hermite expansions for f(x) and ReLU(v·x).
In particular, the former only has non-vanishing terms in degree 4, where they are given by the tensor
T. The latter has its degree-4 Hermite tensor given by c4v

⊗4, where c4 = Ez∼N [h4(z)ReLU(z)] =
−(2π(24 +

√
2))−1. Therefore, we have that

E
x∼N

[f(x)ReLU(v · x)] = T · (c4v⊗4) = c4T(v,v,v,v) = c4p(v) .

Thus, finding an ǫ-additive approximation to the maximum value of Ex∼N [f(x)ReLU(v · x)]
for unit vectors v is equivalent to finding an O(d−5)-additive approximation to the maximum value
of p(v) over unit vectors v. We claim that doing this would give a constant-factor multiplicative
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approximation to the maximum value of p(v), finishing our reduction to the problem of Corollary 8.2.
To do this, we need to show that the maximum value of p(v) is much larger than d−5.

To show this, we note that because ‖T‖2 = 1, the sum of the squares of the entries of T is
1. Since T has only d4 entries, this means that it must have some entry with norm at least d−4.
Therefore, there must be unit vectors v1,v2,v3,v4 so that T(v1,v2,v3,v4) ≥ d−4. However, this
value is proportional to

∑
ǫ1,...,ǫ4∈{±1} ǫ1ǫ2 · · · ǫ4p(ǫ1v1 + ǫ2v2 + ǫ3v3 + ǫ4v4). As each term here is

proportional to p of some unit vector (using the fact that p is homogeneous), this implies that there
is some unit vector v with |p(v)| ≫ d−4. Replacing v by its negation if necessary, we have that the
maximum value of p(v) over unit vectors v is Ω(d−4). This completes our proof.
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Appendix

A Proper Agnostic Query Learner for LTFs

In this section we present our algorithmic result for agnostic proper learning of linear threshold
functions with membership queries. Our goal is to show Theorem A.1 which we state below.

Theorem A.1 (Proper Agnostic Query Learner for LTFs). Let C be the class of LTFs on Rd and
denote by y(x) ∈ {±1} the label (chosen by an adversary) of x ∈ Rd. There exists an algorithm
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that makes Ns = poly(d/ǫ) sample queries, Nq = poly(d/ǫ) queries, and, with runtime poly(d/ǫ) +
2poly(1/ǫ), computes an LTF f(x) : Rd 7→ {±1} such that, with probability at least 1 − δ, it holds
Prx∼N [h(x) 6= y(x)] ≤ infc∈C Prx∼N [c(x) 6= y(x)] + ǫ .

Our algorithm is presented in Algorithm 3. It uses membership queries to estimate a matrix M
corresponding to the influence matrix of the appropriately smoothed label function y(x). It then
restricts attention to a small subspace V given by the large eigenvectors of M and exhaustively
searches for a near-optimal halfspace with a normal vector in V .

Input: ǫ > 0, δ > 0 and sample and query access to distribution D
Output: A hypothesis h ∈ C such as errD0−1(h) ≤ minf∈C errD0−1(f) + ǫ with probability
1− δ.

1. ρ← Cǫ2, η ← Cǫ2, for C > 0 sufficiently small constant.

2. Estimate M = Ex∼Dx
[Dρy(x)Dρy(x)

⊤] using poly(d/ǫ) queries using Algorithm 2.

3. Let V be the subspace spanned by the eigenvectors of M whose eigenvalues are at
least η.

4. Let HV be the set of LTFs with normal vectors in V . Compute the ERM hypothesis
h ∈ HV using m = Θ(dim(V )

ǫ2
log(1/δ)) i.i.d. samples from D in time O(mdim(V )).

5. return h.

Algorithm 3:Agnostic Proper Learning of LTFs with Membership Queries

A.1 Reducing the Dimension via Influence PCA

In this section we show our main dimension-reduction tool. We prove that the subpspace correspond-
ing to eigvenvectors with large (i.e., larger than poly(ǫ)) eigenvalues contains the normal-vector of
an approximately optimal halfspace.

Proposition A.2 (Dimension Reduction via Influence PCA: LTFs). Fix ǫ > 0 and let ψ : Rd 7→
[−1, 1] be a differentiable function with ‖∇ψ(x)‖2 ≤ Ψ for all x ∈ Rd. Let η be a sufficiently small

multiple of ǫ2 and let M̂ ∈ Rd×d be such that ‖M̂− Infψ‖2 ≤ η/2. Moreover, let V be the subspace

spanned by all the eigenvectors of M̂ whose corresponding eigenvalues are at least η. The following
hold true:

1. There exists v ∈ V and t ∈ R such that

E
x∼N

[|sign(v · x+ t)− ψ(x)|] ≤ inf
w∈Rd,t∈R

E
x∼N

[|sign(w · x+ t)− ψ(x)|] + ǫ .

2. The dimension of V is at most O(Ψ2/η).

Proof. Suppose for the sake of contradiction that there exists a halfspace f ∈ C such that for every
halfspace g ∈ CV , it holds

E
x∼N

[(f(x)− g(x))ψ(x)] ≥ ǫ . (4)

We can write f(x) = sign(w · x + t) = sign(wV · x +wV ⊥ · x + t). Note that wV ⊥ 6= 0, since
otherwise we would have f ∈ CV . For simplicity, we denote h = wV ⊥/‖wV ⊥‖2. Notice that the
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direction h has low influence, since h ∈ V ⊥. Recall that by Nh we denote the projection of N
onto the (one-dimensional) subspace spanned by h. We define fV (x) = Ez∼Nh

[f(z + xV )] to be a
convex combination of halfspaces in CV . In particular, fV (x) is a smoothed version of the halfspace
sign(wV ·x+ t) whose normal vector belongs in V . Moreover, we define ψV (x) = Ez∼Nh

[ψ(z+xV )].
By adding and subtracting ψV (x), we get the following

E
x∼N

[(f(x)− fV (x))ψ(x)] = E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] + E
x∼N

[(f(x)− fV (x))ψV (x)]

= E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ,

where the last equality holds because the term ψV (x) does not depend on the direction h, therefore,

E
x∼N

[(f(x)− fV (x))ψV (x)] = E
x∼N

h⊥

[
E

z∼Nh

[(f(x+ z)− fV (x))ψV (x)]
]

= E
x∼N

h⊥

[(fV (x)− fV (x))ψV (x)] = 0 .

It remains to bound the term Ex∼N [(f(x)−fV (x))(ψ(x)−ψV (x))]. From Cauchy-Schwarz inequality,
we have

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤
√
2 E
x∼N

[(ψ(x) − ψV (x))2] .

First, we show the following to bound this term

Lemma A.3 (Gaussian Marginalization Error). Let g : Rd 7→ R be a function in L2(N ) such that
∇g ∈ L2(N ). Fix some direction v with ‖v‖2 = 1 and define r(x) = Ez∼N [g(projv⊥(x) + zv)].
Then it holds

E
x∼N

[(g(x) − r(x))2] ≤ E
x∼N

[(∇g(x) · v)2] .

Proof. Using the rotation invariance of the Gaussian distribution, without loss of generality, we may
assume that v = e1. We have

E
x∼N

[(g(x)−r(x))2 ] = E
x∼N

[(g(x)− E
z∼N

[r(z,x2, . . . ,xd)])
2] = E

x2,...,xd∼N d−1
[Varx1∼N [g(x1, . . . ,xd)]] .

To bound the variance in the above expression, we can use Poincare’s inequality.

Fact A.4 (Gaussian Poincare Inequality). Let g : R 7→ R be a function in L2(N ) such that g′ ∈
L2(N ). Then it holds Varz∼N [g(z)] ≤ Ez∼N [|g′(z)|2] .

Using Fact A.4, we have Ex∼N [(g(x)−r(x))2] ≤ Ex2,...,xd∼N d−1 [Ex1∼N [(∇g(x)·e1)2] = Ex∼N d [(∇g(x)·
e1)

2].

Therefore, from Lemma A.3, we get that

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤ 2
√

E
x∼N

[(∇ψ(x) · h)2] = 2
√

h⊤Infψh .

Furthermore, using that ‖M̂− Infψ‖2 ≤ η/2, we have that

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤ 2

√
η/2 + h⊤M̂h ≤ 4

√
η .
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where in the last inequality we used that h lies in the V ⊥ and for any v ∈ V ⊥, it holds Ex∼N [(v⊤M̂v)2] ≤
η. By choosing η = ǫ2/32, we have

E
x∼N

[(f(x)− g(x))ψ(x)] ≤ 2
√
η ≤ ǫ/2 ,

which from Equation (4), we get a contradiction. An application of Lemma 6.14 completes the proof
of Proposition A.2.

We require the following standard fact showing the existence of a small ǫ-cover of halfspaces for
of the set V .

Fact A.5 (see, e.g., Corollary 4.2.13 of [Ver18]). For any ǫ > 0, there exists an explicit ǫ-cover H
of halfspaces over the Rd over the L1 norm with respect the Gaussian distribution of size poly(1/ǫ)d,
i.e., for any f(x) = sign(w · x+ t) there exists f ′ ∈ H so that Ex∼N [|f(x)− f ′(x)|] ≤ ǫ.

We are now ready to prove the main theorem of this section.

Proof of Theorem A.1. We first show that there is a set H of size (1/ǫ)O(1/ǫ6) which contains tuples
(u, t) with u ∈ Rd and t ∈ R, such that

Pr
(x,y)∼D

[sign(u · x+ t) 6= y] ≤ inf
f∈C

Pr
(x,y)∼D

[f(x) 6= y] + ǫ .

First note we can assume that 1/ǫ6 ≤ d, since otherwise one can directly do a brute-force search
over an ǫ-cover of the d-dimensional unit ball: we do not need to perform our dimension-reduction
process. The runtime to perform this brute-force search will be (1/ǫ)O(d) log(1/δ) which, by the
assumption that 1/ǫ6 > d, is smaller than (1/ǫ)O(1/ǫ6) log(1/δ).

Let f ∈ C be such that the E(x,y)∼D[|f(x) − y(x)|] is minimized. Let ψ(x) = Tρy(x) for
ρ = Θ(ǫ2). Note that from Fact 5.2, we have that ‖∇ψ(x)‖2 ≤ 1/ρ. From Lemma 5.3 for N =
poly(d/ǫ) log(1/δ) queries, we get with probability at least 1 − δ/2, a matrix M so that ‖M −
Infψ‖F ≤ ǫ2. Applying Proposition A.2 to the matrix M, we get that the subspace V spanned by
the eigenvectors of the matrix M with eigenvalues larger than η = Θ(1/ǫ2) contains a vector v ∈ V ,
such that

min
t∈R

E
(x,y)∼D

[|ψ(x) − sign(v · x+ t)|] ≤ E
(x,y)∼D

[|ψ(x) − f(x)|] + ǫ .

Moreover, by Proposition A.2, the dimension of V is O(1/ǫ6). Applying Fact A.5, we get that there
exists an ǫ-cover H of halfspaces in V of size (1/ǫ)O(1/ǫ6), so that for any f(x) = sign(w ·x+ t) with
w ∈ V there exists f ′ ∈ H so that Ex∼N [|f(x)− f ′(x)|] ≤ ǫ. Hence, there exists f ′ ∈ H so that

min
f ′∈H

E
(x,y)∼D

[|ψ(x) − f ′(x)|] ≤ E
(x,y)∼D

[|ψ(x) − f(x)|] + 2ǫ .

Furthermore, from Proposition 5.10 and the fact that for halfspaces, Γ(f) = O(1) (see, e.g., [KOS08]),
we have that it also holds

min
f ′∈H

E
(x,y)∼D

[|y(x) − f ′(x)|] ≤ E
(x,y)∼D

[|y(x) − f(x)|] +O(ǫ) .

To complete the proof, we show that Step 4 of Algorithm 3 outputs the correct hypothesis. From
ERM for halfspaces, it follows that O( 1

ǫ2 log(H/δ)) samples are sufficient to guarantee that the excess
error of the chosen hypothesis is at most ǫ with probability at least 1− δ/2. To bound the runtime
of the algorithm, we note that the exhaustive search over an ǫ-cover takes time (1/ǫ)O(1/ǫ6) log(1/δ).
Thus, the total runtime of our algorithm in the case where 1/ǫ6 ≤ d is

(
poly(d/ǫ) + (1/ǫ)O(1/ǫ6)

)
log(1/δ) .

This completes the proof of Theorem A.1.
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B Proper Agnostic Query Learner for ReLUs

In this section we present our algorithmic result for agnostic proper learning of ReLU functions with
queries. Our goal is to show Theorem B.1 which we state below.

Theorem B.1 (Proper Agnostic Query Learner for ReLUs). Let C be the class of ReLUs on Rd

with normal vectors bounded by M > 0 and denote by y(x) ∈ R the label (chosen by an adversary)
of x ∈ Rd. There exists an algorithm that makes Ns = poly(d/ǫ) log(1/δ) sample queries, Nq =
poly(d/ǫ) log(1/δ) queries, and, with runtime poly(d)2poly(1/ǫ), computes a ReLU activation f(x)
such that, with probability at least 1 − δ, it holds Ex∼N [(h(x) − y(x))2] ≤ infc∈C Ex∼N [(c(x) −
y(x))2] + ǫ .

Our algorithm is presented in Algorithm 4. It uses membership queries to estimate a matrix M
corresponding to the influence matrix of the appropriately smoothed label function y(x). It then
restricts attention to a small subspace V given by the large eigenvectors of M and exhaustively
searches for a near-optimal halfspace with a normal vector in V .

Input: ǫ > 0, δ > 0 and sample and query access to distribution D
Output: A hypothesis h ∈ C such as Ex∼N [(h(x)−y(x))2] ≤ infc∈C Ex∼N [(c(x)−y(x))2]+ǫ
with probability 1− δ.

1. ρ← Cǫ2, η ← Cǫ2, for C > 0 sufficiently small constant.

2. Estimate M = Ex∼Dx
[Dρy(x)Dρy(x)

⊤] using poly(d/ǫ) queries using Algorithm 2.

3. Let V be the subspace spanned by the eigenvectors of M whose eigenvalues are at
least η.

4. Let HV be the set of ReLUs with normal vectors in V . Compute the ERM hypothesis
h ∈ HV using m = Θ(M dim(V )

ǫ2
log(1/δ)) i.i.d. samples from D in time O(mdim(V )).

5. return h.

Algorithm 4:Agnostic Proper Learning of ReLU Activations with Queries

B.1 Reducing the Dimension via Influence PCA

Proposition B.2 (Dimension Reduction via Influence PCA: ReLU). Fix ǫ > 0,M > 0 and let
ψ : Rd 7→ R be a differentiable function with ‖∇ψ(x)‖2 ≤ Ψ for all x ∈ Rd. Let η be a sufficiently

small multiple of ǫ2/M and let M̂ ∈ Rd×d be such that ‖M̂− Infψ‖2 ≤ η/2. Moreover, let V be the

subspace spanned by all the eigenvectors of M̂ whose corresponding eigenvalues are at least η. The
following hold true:

1. There exists v ∈ V with ‖v‖2 ≤M and t ∈ R such that

E
x∼N

[(ReLU(v · x+ t)− ψ(x))2] ≤ inf
w∈Rd,‖w‖2≤M,t∈R

E
x∼N

[(ReLU(w · x+ t)− ψ(x))2] + ǫ .

2. The dimension of V is at most O(Ψ2/η).
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Proof. Suppose for the sake of contradiction that there exists a w ∈ Rd, t ∈ R such that for every
v ∈ V, t′ ∈ R, it holds

E
x∼N

[(ReLU(v · x+ t′)− ψ(x))2] ≥ E
x∼N

[(ReLU(w · x+ t)− ψ(x))2] + ǫ ,

the above is equivalent to

2 E
x∼N

[(ReLU(w·x+t)−ReLU(v·x+t′))ψ(x))] ≥ ǫ+ E
x∼N

[(ReLU(w·x+t))2]− E
x∼N

[(ReLU(v·x+t′))2] ,
(5)

Let f(x) = ReLU(w · x + t) and fV (x) = ΠV f(x). Note that wV ⊥ 6= 0, since otherwise we
would have that the vector of f would be inside V . Note that fV is a convex combination of ReLUs
with vectors in V , hence Equation (5) becomes

2 E
x∼N

[(f(x)−ΠV f(x))ψ(x))] ≥ ǫ , (6)

where we used that Ex∼N [(f(x)2] = Ex∼N [(ReLU(wV ·x+wV ⊥ ·x+t))2], (by adding all the convex
combinations of ΠV ). Moreover, we define ψV (x) = Ez∼Nh

[ψ(z+ xV )]. By adding and subtracting
ψV (x), we get the following

E
x∼N

[(f(x)− fV (x))ψ(x)] = E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] + E
x∼N

[(f(x)− fV (x))ψV (x)]

= E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ,

where the last equality holds because the term ψV (x) does not depend on the directions inside
V ⊥. It remains to bound the term Ex∼N [(f(x) − fV (x))(ψ(x) − ψV (x))]. From Cauchy-Schwarz
inequality, we have

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤
√

2M E
x∼N

[(ψ(x) − ψV (x))2] .

From Lemma A.3, we get that

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤
√

2M E
x∼N

[(∇ψ(x) · h)2] =
√
2Mh⊤Infψh .

Furthermore, using that ‖M̂− Infψ‖2 ≤ η/2, we have that

E
x∼N

[(f(x)− fV (x))(ψ(x) − ψV (x))] ≤
√
2M

√
η/2 + h⊤M̂h ≤ 2

√
Mη .

where in the last inequality we used that h lies in the V ⊥ and for any v ∈ V ⊥, it holds Ex∼N [(v⊤M̂v)2] ≤
η. By choosing η = ǫ2/(M32), we have

E
x∼N

[(f(x)− g(x))ψ(x)] ≤ 2
√
M
√
η ≤ ǫ/2 ,

which from Equation (6), we get a contradiction. An application of Lemma 6.14 completes the
proof.

We require the following standard fact showing the existence of a small ǫ-cover of ReLU activa-
tions for of the set V .

Fact B.3 (see, e.g., Corollary 4.2.13 of [Ver18]). For any ǫ,M > 0, there exists an explicit ǫ-cover H
of ReLUs over the Rd over the L2 norm with respect the Gaussian distribution of size poly(M/ǫ)d.
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We are now ready to prove the main theorem of this section.

Proof of Theorem B.1. We first show that there is a set H of size (M/ǫ)poly(1/ǫ) which contains
tuples (u, t) with u ∈ Rd and ‖u‖2 ≤M and t ∈ R, such that

E
(x,y)∼D

[(ReLU(u · x+ t)− y)2] ≤ inf
f∈C

E
(x,y)∼D

[(f(x)− y)2] + ǫ .

First note we can assume that 1/ǫ6 ≤ d, since otherwise one can directly do a brute-force search
over an ǫ-cover of the d-dimensional M -ball. The runtime to perform this brute-force search will be
(M/ǫ)O(d) log(1/δ) which, by the assumption that poly(1/ǫ) > d, is smaller than (M/ǫ)poly(1/ǫ) log(1/δ).

Let f ∈ C be such that the E(x,y)∼D[(f(x)− y(x))2] is minimized.

Similar with the proof of Theorem 1.5, we can assume that |y(x)| ≤M1/2/ǫ1/2 as this does not
increase the error by a lot. Let ψ(x) = Tρy for ρ = poly(ǫ/(M)). Note that ‖∇ψ(x)‖2 ≤M ′. From
Lemma 5.3, with N = poly(d/ǫ) log(1/δ) queries, we get that with probability 1− δ/2 a matrix M,
so that ‖M− Infψ‖F ≤ ǫ. Applying Proposition B.2 to the matrix M, we get that in the subspace
V spanned by the eigenvectors of the matrix M with eigenvalues larger than η = poly(ǫ/M)) with
dimension at most O(poly(M ′, 1/η, 1/ǫ)), there exists a ReLU activation h with vector lying in the
subspace V so that

min
t∈R

E
(x,y)∼D

[(ψ(x) − ReLU(v · x+ t))2] ≤ E
(x,y)∼D

[(ψ(x) − f(x))2] + ǫ .

Applying Fact B.3, we get that there exists an ǫ-cover H of halfspaces in V of size (M/ǫ)poly(1/ǫ), so
that for any f(x) = ReLU(w·x+t) with w ∈ V there exists f ′ ∈ H so that Ex∼N [(f(x)−f ′(x))2] ≤ ǫ.
Hence, there exists f ′ ∈ H so that

min
f ′∈H

E
(x,y)∼D

[(ψ(x) − f ′(x))2] ≤ E
(x,y)∼D

[(ψ(x) − f(x))2] + 2ǫ .

Furthermore, from Proposition 5.6 we have that it also holds

min
f ′∈H

E
(x,y)∼D

[(y(x)− f ′(x))2] ≤ E
(x,y)∼D

[(y(x) − f(x))2] +O(ǫ) .

To complete the proof, we show that Step 4 of Algorithm 4 outputs the correct hypothesis.
From ERM it follows that O(M

ǫ2
log(H/δ)) samples are sufficient to guarantee that the excess error

of the chosen hypothesis is at most ǫ with probability at least 1 − δ/2. To bound the runtime of
the algorithm, we note that the exhaustive search over an ǫ-cover takes time (M/ǫ)poly(1/ǫ) log(1/δ).
Thus, the total runtime of our algorithm in the case where poly(1/ǫ) ≤ d is

(
poly(d/ǫ) + d(1/ǫ)poly(1/ǫ)

)
log(1/δ) .

This completes the proof of Theorem B.1.

49


	Introduction
	Our Results
	Agnostically Learning Real-valued Multi-index Models
	Agnostically Learning Boolean Multi-index Models


	Technical Overview
	From Zero- to First-Order: Gradient Queries via Oracle Queries
	Learning Bounded Variation Functions via Influence PCA
	Hardness of Proper Agnostic Query Learning for ReLUs and Halfspaces

	Related Work
	Roadmap, Notation, and Preliminaries
	Roadmap
	Notation and Preliminaries

	From Zero- to First-Order: Derivative Queries via Oracle Queries
	Gradient Queries via Oracle Queries
	Smoothing the Labels for Learning Real-valued Functions
	Smoothing Labels for Learning Boolean Concepts

	Agnostically Learning Real-valued Multi-index Models
	Influence PCA for Learning in L22
	Proof of thm:non-proper-real-valued
	Applications of thm:non-proper-real-valued

	Agnostically Learning Boolean Multi-index Models
	Influence PCA for Learning in L1-norm
	Proof of prop:dimension-reduction-geometric-concepts

	Proof of thm:non-proper-geometric
	Corollaries for Intersections of Halfspaces and PTFs

	Hardness of Agnostic Proper Learning of Halfspaces and ReLUs with Queries
	Proper Agnostic Query Learner for LTFs
	Reducing the Dimension via Influence PCA

	Proper Agnostic Query Learner for ReLUs
	Reducing the Dimension via Influence PCA


