
Math 96:

Number Theory Techniques

October 4th, 2024

1 Introduction

Number theory broadly speaking is the study of the integers and their arith-
metic. This deals with a number of topics including looking for integer solutions
to polynomial equations and primes and factorization. In this lecture we will
introduce some of the most basic concepts in number theory along with the
most important results.

2 Primes and Factorization

Perhaps the most basic concept in number theory are primes and factoriza-
tion. These can be used to understand what the multiplicative structure of the
integers looks like. A prime number is a natural number larger than 1 that
cannot be written as a product of two strictly smaller numbers. The Funda-
mental Theorem of Arithmetic says that any natural number can be written as
a product of prime numbers and that furthermore, this representation is unique
up to reordering of the factors. The fundamental theorem of arithmetic is very
useful when thinking about multiplying numbers together. Essentially you can
think of a natural number as a bag of primes that are being multiplied together.
Multiplying two numbers together amounts to simply combining their bags.

This way of looking at things is also useful for thinking about other mul-
tiplicative properties of these numbers. For example, we say that a number n
divides another number m if there is a third integer k so that n · k = m. This
will be possible if and only if there is some collection of primes that you can
add to n’s bag in order to reproduce m’s. This will be possible if and only if
every prime that appears in n’s bad also appears in m’s at least as many times.

Two other concepts that show up frequently are those of the greatest common
divisor (gcd) of two numbers or the least common multiple (lcm). The gcd
of n and m is the largest number k that divides both n and m. Using the
Fundamental Theorem of Arithmetic, we can see that the number of copies of
any prime p in the factorization of k is at most the minimum of the number
of copies in the factorization of n and the number of copies of m. If you let
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k be the number for which this holds for every prime p, you will get the gcd.
Furthermore, it is not hard to see that any common divisor of n and m is a
divisor of the greatest common divisor. Similarly, the least common multiple of
n and m is the smallest number that is both a multiple of n and a multiple of
m. You can get this by for each prime p taking the maximum of the number of
copies of p in the factorization of n and in the factorization of m. Furthermore
any common multiple of n and m will be a multiple of their lcm.

1999 B6: Let S be a finite set of integers, each greater than 1. Suppose that
for each integer n there is some s ∈ S such that gcd(s, n) = 1 or gcd(s, n) = s.
Show that there exist s, t ∈ S such that gcd(s, t) is prime.

3 Modular Arithmetic

If you add or multiply two numbers, you can determine the last digit of the result
only knowing the last digit of the initial numbers. This observation allows you to
define a ‘last digit arithmetic’ for numbers that can be useful. The generalization
of this is what is known as modular arithmetic, which is a quite useful tool in
number theory.

Given integers a, b, and m we say that a is congruent to b modulo m (written
a ≡ b (mod m)) if m divides a− b. This has a bunch of important properties:

• Congruence modulo m is an equivalence relation, namely:

– a ≡ a (mod m)

– If a ≡ b (mod m) then b ≡ a (mod m)

– If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

• Each number is equivalent to its remainder upon dividing by m. In partic-
ular, for every pair of integers a,m there is a unique r ∈ {0, 1, 2, . . . ,m−1}
so that a ≡ r (mod m).

• Arithmetic modulo m is well defined, namely if a′ ≡ a (mod m) and
b′ ≡ b (mod m) then:

– a′ + b′ ≡ a+ b (mod m)

– a′ · b′ ≡ a · b (mod m).

This last point means that arithmetic of numbers modulo m is well defined.
You can do algebra on mod m numbers in more or less the same way that you
could with normal integers (though division is now a bit more complicated), but
things are often simplified because there are now only finitely many possible
numbers to consider (0 through m − 1), and because m is now equivalent to 0
(which can often be used to simplify things considerably). This is often a useful
tool for gaining information about solutions to integer equations by considering
them modulo m for some carefully chosen m. It should be noted that it is usually
best to take m a power of a prime as the Chinese Remainder Theorem says that
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information about what happens modulo more general m can be pieced together
from this.

In particular, the Chinese Remainder Theorem says that if m and m′ are
relatively prime (i.e. gcd(m,m′) = 1), then:

• a ≡ b (mod mm′) if and only if a ≡ b (mod m) and a ≡ b (mod m′).

• For any integers y, y′ there is an x so that x ≡ y (mod m) and x ≡ y′

(mod m′).

Together these mean that doing arithmetic modulo mm′ is essentially the same
as doing arithmetic mod m and mod m′ at the same time.

2019 B6: Let Zn be the integer lattice in Rn. Two points in Zn are called
neighbors if they differ by exactly 1 in one coordinate and are equal in all other
coordinates. For which integers n ≥ 1 does there exist a set of points S ∈ Zn

satisfying the following two conditions?

1. If p is in S, then none of the neighbors of p is in S.

2. If p ∈ Zn is not in S, then exactly one of the neighbors of p is in S.

4 Multiplicative Structure Modulo p

Another important set of results involves what happens when you multiply
numbers modulo a prime p. Clearly, multiplying anything by 0 gives 0, but if
you take any other number a not divisible by p and keep multiplying by a, you
will eventually get 1 modulo p. In particular, Fermat’s Little Theorem states
that if p is a prime and a is not a multiple of p then ap−1 ≡ 1 (mod p). This
is a quite useful fact to know if you are interested in taking powers of a number
modulo p. Furthermore, for every prime p there is always at least one primitive
generator g so that every number mod p except for 0 can be written as a power of
g. In particular, this gives you a new way to think about the non-zero numbers
modulo p as just the different powers of g, which is particularly useful if you
want to understand how they multiply.

1994 B6: For any integer n, set

na = 101a− 100 · 2a.

Show that for 0 ≤ a, b, c, d ≤ 99, na + nb ≡ nc + nd (mod 10100) implies
{a, b} = {c, d}.

5 Multiplicative Functions

A function on the natural numbers N is called multiplicative if for every pair of
relatively prime integers n and m that f(nm) = f(n)f(m). In particular, this
means that if n factors as pa1

1 p
a2
2 · · · p

ak

k then f(n) = f(pa1
1 ) · · · f(pak

k ). Therefore,
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all the values of f are determined by their values on products of primes. There
are a bunch of well known examples of multiplicative functions including:

• The identity function - Id(n) = n. Id(pn) = pn.

• The divisor function - d(n) is the number of integers that divide n. d(pa) =
a+ 1.

• The sigma function - σ(n) is the sum of all positive divisors of n. σ(pa) =
1 + p+ p2 + . . .+ pa = (pa+1 − 1)/(p− 1).

• The totient function - phi(n) is the number of integers modulo n that are
relatively prime to n. φ(pa) = (p− 1)pa−1.

There are some nice ways of combining multiplicative functions. For exam-
ple, if f and g are multiplicative then so is:

• Their product - (f · g)(n) = f(n)g(n).

• Their convolution - (f ? g)(n) =
∑

m|n f(m)g(n/m).

1964 B5: Let un (n = 1, 2, 3, . . .) denote the least common multiple of the first
n terms of a strictly increasing sequence of positive integers (for example the
sequence 1, 2, 3, 4, 5, 6, 10, 12, . . .). Prove that the series

∞∑
n=1

1/un

is convergent.
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