Math 184 Homework 6

Spring 2022

This homework is due on gradescope Friday May 27th at 11:59pm pacific time. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \texttt{LATEX} is recommend though not required.

Question 1 (Matchings Again, 20 points). Let a_n be the number of matchings on a set of size n. Give a way of writing the exponential generating function for a_n as a composition. Use this to compute an explicit formula for a_n.

Question 2 (Binary Trees, 20 points). A binary tree is either empty (has no nodes) or has a root node and two more binary trees known as the left and right subtrees. Letting b_n be the number of binary trees with nodes labelled $1, 2, \ldots, n$ and

$$B(x) = \sum_{n=0}^{\infty} b_n x^n / n!,$$

show that

$$B(x) = 1 + x(B(x))^2.$$

Conclude that $b_n = n!C_n$.

Question 3 (Stack-Sortable Permutations, 30 points). It is not hard to show directly that the number of stack-sortable permutations of $[n]$ is given by the n^{th} Catalan number. In particular, if a permutation of $[n]$ is stack sortable, there is some pattern of push and pop operations needed to sort it (a push adds the next element in line onto the stack and a pop removes the element on the top of the stack). Find a bijection between such sequences of pushes and pops and lattice paths from $(0,0)$ to (n,n) that stay above the line $x = y$. Show that each such pattern of pushes and pops corresponds to exactly 1 unique stack-sortable permutation.

Question 4 (Packing Patterns, 30 points). Show that for every positive integer n there is a permutation π of $[n^2]$ so that for every permutation ρ of $[n]$, there is a copy of ρ inside π.

Question 5 (Extra credit, 1 point). Free point!