Question 1 (Power Series, 25 points). What are the first five terms (i.e. the x^0 through x^4 terms) of the power series for $(1 - 2x)^{3/2}$ about $x = 0$?

Using Newton’s Formula we have that

$$(1 - 2x)^{3/2}$$

$= 1 + (3/2)(-2x) + (3/2)(1/2)(-2x)^2/2 + (3/2)(1/2)(-1/2)(-2x)^3/6 + (3/2)(1/2)(-1/2)(-3/2)(-2x)^4/24 + \ldots$

$= 1 - 3x + (3/2)x^2 + (1/2)x^3 + (3/8)x^4 + \ldots$
Question 2 (Subset Counting, 25 points). How many subsets of \(\{1,2,\ldots,7\} \) either:

- Contain 1, 2, and 3,
- Contain 3, 4, and 5, OR
- Contain exactly five elements?

Let \(A \) be the set of subsets containing 1,2,3, \(B \) the set of subsets containing 3,4,5, and \(C \) the set of subsets with 5 elements. By Inclusion-Exclusion, we have that

\[
|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|.
\]

We have \(|A| = 2^4 = 16, \ |B| = 2^4 = 16, \ |C| = \binom{7}{3} = 21, \ |A \cap B| = 2^2 = 4, \ |B \cap C| = \binom{4}{2} = 6, \ |C \cap A| = \binom{4}{2} = 6, \ |A \cap B \cap C| = 1. \) Therefore the answer is

\[
16 + 16 + 21 - 4 - 6 - 6 + 1 = 38.
\]
Question 3 (Same Cycle Counting, 25 points). Let i, j, k be three distinct numbers between 1 and n. For how many permutations of $[n]$ is k in the same cycle as i but not the same cycle as j. Justify your answer.

We note that we get the same answer no matter what i, j, k are, so we may assume that $k = n$. Writing the permutation in canonical cycle notation, we note that k is in the same cycle as i but not the same cycle as j if and only if j comes before k comes before i in canonical cycle notation. To construct such a canonical cycle notation, there are $\binom{n}{3}$ ways to select the three locations for i, j, k (and then j goes on the first of these, k in the second and i in the third), and $(n-3)!$ ways to arrange the other elements. Thus the answer is $\binom{n}{3}(n-3)! = n!/6$.

Question 4 (Partitions with Distinct Part Sizes, 25 points). Let \(p(n, k) \) denote the number of integer partitions of \(n \) with exactly \(k \) parts of different sizes. For example, \(p(6, 2) = 6 \) due to the partitions 5 + 1, 4 + 2, 4 + 1 + 1, 3 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1. Write the generating function \(f(x, y) = \sum_{n,k=0}^{\infty} p(n, k)x^n y^k \) as an infinite product. Hint: For each \(m \geq 1 \) have a term in your product to account for the number of parts in the partition of size equal to \(m \).

Letting \(a_i \) be the number of copies of \(i \) in a partition, \(p(n, k) \) is the number of sequences of non-negative numbers \(a_k \) with \(a_1 + 2a_2 + 3a_3 + \ldots = n \) and the number of non-zero \(a_i \)'s equal to \(k \). Thus,

\[
 f(x, y) = \sum_{a_i} x^{a_1+2a_2+3a_3+\ldots} y^{(1 \text{ if } a_1>0)+(1 \text{ if } a_2>0)+(1 \text{ if } a_3>0)+\ldots} \\
 = \prod_{n=1}^{\infty} \sum_{a_n=0}^{\infty} x^{na_n} y^{(1 \text{ if } a_n>0)} \\
 = \prod_{n=1}^{\infty} (1 + x^n y + x^{2n} y + x^{3n} y + \ldots) \\
 = \prod_{n=1}^{\infty} \left(1 + \frac{x^n y}{1 - x^n} \right).
\]