Exam 2 Review

Math 184
Spring 2022
Exam Details

- 4Q in 45 min
- 6 one-sided pages of notes
- Assigned Seating
Binomial Theorem and Related Identities (Chapter 4)

• Binomial Theorem
• Applications
• Generalizations
The Binomial Theorem

Theorem: For integers $n \geq 0$, and real numbers x and y, we have that

$$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.$$
Multinomial Theorem

What is \((x_1+x_2+...+x_k)^n\)?

• Expand out, get a sum of terms of the form \(x_1^{a_1}x_2^{a_2}...x_k^{a_k}\).
 – Must have \(a_1+a_2+...+a_k = n\).

• What is the coefficient of this term?
 – Number of ways to pick \(x_1\) coefficient from \(a_1\) terms, pick \(x_2\) from \(a_2\) terms, etc.
 – Given by multinomial coefficient

\[
\binom{n}{a_1, a_2, \ldots, a_k} = \frac{n!}{a_1!a_2!\ldots a_k!}.
\]
Non-Integer Exponents

\((1+x)^a = 1 + ax + a(a-1)x^2/2 + ... + (a)_k x^k/k! + ...\)
Generating Functions (Chapter 8)

- Basic Idea
- Ordinary Generating Functions
 - Recurrence Relations
 - Binomial Coefficients Identities
 - Catalan Numbers
 - Partition Numbers
- Exponential Generating Functions
 - Multiplication Formula
 - “Hands” Method
 - Sterling Numbers
Basic Method: In order to study some interesting sequence of numbers, a_0, a_1, a_2,\ldots instead turn these numbers into a single function: $f(x) = a_0 + a_1x + a_2x^2 + \ldots$ and study $f(x)$.

This function $f(x)$ is called a generating function for the sequence $\{a_i\}$.
Generating Functions

Why is this a good idea?

1) The function f can be encode the entire sequence $\{a_i\}$ with a single function.

2) Complicated combinatorial properties of the sequence $\{a_i\}$ can often be encoded as algebraic or analytic properties of $f(x)$.

3) This often lets us reduce solving complicated problems to basic algebra.
Application 1: Recurrence Relations

A recurrence relation is a way of defining a sequence of numbers by giving a formula for each element in terms of previous ones.
Basic Tools

• If two generating functions are the same, the coefficients are the same:
 If $\sum_n a_n x^n = \sum_n b_n x^n$ then $a_n = b_n$ for all n.

• **Geometric series:**
 $1/(1-cx) = \sum_n (cx)^n = \sum_n c^n x^n$.

• **Sums of Generating Functions:**
 $(\sum_n a_n x^n) + (\sum_n b_n x^n) = \sum_n (a_n + b_n) x^n$

• **Shifts:** If $F(x) = \sum_n a_n x^n$,
 $xF(x) = \sum_n a_n x^{n+1} = \sum_{n>0} a_{n-1} x^n$.
Products of Generating Functions

Let A and B be sets of non-negative integers and let

$$f_A(x) = \sum_{a \in A} x^a, \quad f_B(x) = \sum_{b \in B} x^b.$$

Then,

$$f_A(x) \cdot f_B(x) = \sum x^{a+b} = \sum_n x^n \# \{ a \in A, b \in B : a+b = n \}.$$

Coefficients of the product are the number of ways to write n as a sum of elements.
Partition Generating Function

An integer partition of \(n \) is a way of writing \(n \) as the sum of some number of 1s plus some number of 2s and so on.

In other words, it’s the number of ways to write \(n \) as \(a_1 + 2a_2 + 3a_3 + \ldots \) for non-negative integers \(a_k \).

Note that: \(\frac{1}{1-x^k} = \sum_a x^{ka} \).

So, \(\frac{1}{(1-x)(1-x^2)(1-x^3)\ldots} = \sum_p(n) x^n \).
General Products of Generating Functions

\[A(x) = \sum_n a_n x^n, \]
\[B(x) = \sum_n b_n x^n. \]
\[A(x) \cdot B(x) = C(x) = \sum_n c_n x^n. \]

What is \(c_n \)?

\[C(x) = (\sum_n a_n x^n)(\sum_m b_m x^m) \]
\[= \sum_{n,m} a_n b_m x^{n+m} \]
\[= \sum_k x^k (\sum_{n+m=k} a_n b_m) \]
\[c_k = (\sum_{n+m=k} a_n b_m). \]
Combinatorial Interpretation

Suppose that you have objects of type-A and objects of type-B. Each has a size which is a non-negative integer, and there are a_n objects of type-A of size n, and b_m objects of type-B of size m.

Then c_k is the number of ways to find a pair of an object of type-A and an object of type-B where the sum of the sizes is k.
Useful Identity

\[(1 - x)^{-m-1} = \sum_{n} \binom{n + m}{m} x^n.\]

Can be used to express generating functions with polynomials in \(n\) as coefficients.
Catalan Numbers

Definition: The nth Catalan Number C_n is the number of up-left lattice paths from $(0,0)$ to (n,n) that stay on or above the line $x = y$.

Note: Catalan numbers count many other things including matching parentheses sequences.
Recursion

\[C_n = \sum_{k=1}^{n} C_{k-1}C_{n-k}. \]
Define the generating function:

\[H(x) = \sum_n C_n x^n. \]

\[H^2(x) = \sum_n \left(\sum_k C_k C_{n-k} \right) x^n \]

\[= \sum_n C_{n+1} x^n. \]

\[xH^2(x) = \sum_n C_{n+1} x^{n+1} = H(x) - 1. \]
Quadratic Formula

We have
\[xH^2(x) - H(x) + 1 = 0. \]

What is \(H(x) \)?

\[
H(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}.
\]

Note: Only the \(-\) term makes sense, since \(H(0) \) needs to be finite.
Coefficients

Recall:

\[
\sqrt{1 - 4x} = 1 - 2x - 2x^2\binom{2}{1}/2 - 2x^3\binom{4}{2}/3 - 2x^4\binom{6}{3}/4 - \ldots
\]

So,

\[
\frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x\binom{2}{1}/2 + x^2\binom{4}{2}/3 + x^3\binom{6}{3}/4 + \ldots
\]

Therefore,

\[
C_n = \frac{1}{n + 1} \binom{2n}{n}.
\]
Composition of Generating Functions

Suppose:

• \(F(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots \)
• \(G(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \ldots \)
• \(F(G(x)) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots \)

What is the combinatorial interpretation of the \(c_i \)'s?

Note: We almost always want to take \(b_0 = 0 \) for this. Otherwise, \(F(G(x)) \) isn’t necessarily defined even at \(x = 0 \).
Composition of Generating Functions

\[F(G(x)) = a_0 + a_1 G(x) + a_2 G^2(x) + a_3 G^3(x) + \ldots \]

Let \(G^k(x) \) have coefficients given by

\[G^k(x) = \sum_n c_{n,k} x^n. \]

We then have that

\[c_n = \sum_k a_k c_{n,k}. \]

What is the combinatorial interpretation of the \(c_{n,k} \)?
Powers of Generating Functions

Note $G^k(x)$ is a product of generating functions. Define a B-structure as a thing where there are b_i B-structures of size i. Then $c_{n,k}$ is the number of ways to find an ordered list of k B-structures whose total size is n.
Powers to Compositions

So we have an interpretation of $c_{n,k}$. What about $c_n = \sum_k a_k c_{n,k}$?

Define an A-structure on a set to be a thing where there are a_k ways to build an A-structure on a set of size k.

Then we have that c_n is the number of ways to find an ordered list of B-structures of total size n and then build an A-structure on top of them.
Exponential Generating Functions

Ordinary generating functions:
Store terms in a sequence as coefficients in a power series: \(\{a_n\} \leftrightarrow \Sigma_n a_n x^n \).

Why do we need to multiply \(a_n \) just by \(x^n \)?

Exponential generating functions:
Store terms in a sequence as coefficients in a power series: \(\{a_n\} \leftrightarrow \Sigma_n a_n x^n / n! \).
Comparison

Ordinary:
• $F(x) = \sum_n a_n x^n$.
• $a_n = 1$, $F(x) = 1/(1-x)$.
• $a_n = n$, $F(x) = x/(1-x)^2$.
• $\sum_n a_{n-1} x^n = x F(x)$.
• Converges only if a_n grows at most exponentially.

Exponential:
• $F(x) = \sum_n a_n x^n/n!$.
• $a_n = 1$, $F(x) = e^x$.
• $a_n = n$, $F(x) = xe^x$.
• $\sum_n a_{n+1} x^n/n! = F'(x)$.
• Converges more generally.
Multiplication of Exponential Generating Functions

- Multiplication of ordinary generating functions important.
- Multiplication of exponential generating functions a bit different.
- This difference is one of the most important distinguishing features.
Multiplication of Exponential Generating Functions

\[A(x) = \Sigma_n a_n \frac{x^n}{n!} \]
\[B(x) = \Sigma_n b_n \frac{x^n}{n!} \]
\[C(x) = A(x)B(x) = \Sigma_n c_n \frac{x^n}{n!} \]

What is \(c_n \)?
Multiplication Formula

\[
C(x) = A(x)B(x) = \left(\sum_{m=0}^{\infty} \frac{a_m x^m}{m!} \right) \left(\sum_{k=0}^{\infty} \frac{b_k x^k}{k!} \right)
\]

\[
= \sum_{m,k=0}^{\infty} a_m b_k x^{m+k} / (m!k!)
\]

\[
= \sum_{n=0}^{\infty} x^n \left(\sum_{m+k=n} a_m b_k / (m!k!) \right)
\]

\[
= \sum_{n=0}^{\infty} x^n / n! \left(\sum_{m+k=n} \binom{n}{k} a_m b_k \right).
\]

\[
c_n = \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k}.
\]

Difference from ordinary formula
Combinatorial Interpretation

Define A-structure a thing so that there are a_n A-structures on a set of size n.

Define B-structure a thing so that there are b_n B-structures on a set of size n.

Ordinary generating function multiplication talks about the number of ways to find an A-structure and a B-structure of total size n.

Exponential generating function multiplication has $c_n = \text{number of ways to partition } [n] \text{ into two sets and put an A-structure on one and a B-structure on the other}$.

If A-structure of size k, $\binom{n}{k}$ ways to partition $[n]$, a_k A-structures and b_{n-k} B-structures.
Powers of Generating Functions

Let \(A(x) = a_1x + a_2x^2/2 + a_3x^3/6 + \ldots \)

\[
A(x)^k/k! = \sum_{n=0}^{\infty} \frac{x^n}{n!} \left(\sum_{m_1+m_2+\ldots+m_k=n} \binom{n}{m_1, m_2, \ldots, m_k} a_{m_1} a_{m_2} \cdots a_{m_k} \right) / k!
\]

Define A-structure so that there are \(a_m \) A-structures on a set of size \(m \).

Number of partitions of \([n]\) into \(k \) nonempty sets with an A-structure on each.

Number of partitions of \([n]\) into \(A_1, A_2, \ldots, A_k \) with \(|A_i| = m_i\) and put A-structure on each.

Number of partitions on \([n]\) into \(A_1, A_2, \ldots, A_k \) and put an A-structure on each.
Composition of Generating Functions

So if $A(x) = a_1 x + a_2 x^2/2! + a_3 x^3/3! + ...$ and $B(x) = b_0 + b_1 x + b_2 x^2/2! + b_3 x^3/3! + ...$

What is $B(A(x))$?

It equals $b_0 + b_1 A(x) + b_2 A(x)^2/2! + b_3 A(x)^3/3! + ...$

The $x^n/n!$ coefficient is:

b_1 times the number of partitions of $[n]$ into one part with an A-structure plus

b_2 times the number of partitions of $[n]$ into two parts with an A-structure on each plus

b_3 times the number of partitions of $[n]$ into three parts with an A-structure on each plus ...
Composition of Generating Functions

So the $x^n/n!$ coefficient of $B(A(x))$ counts the number of ways to partition $[n]$ into subsets, put an A-structure on each subset, and put a B-structure on the collection of subsets.
Total Number of Permutations

So how many permutations of \([n]\) are there?

• **A-structure** is a cycle.
• **B-structure** is just a set (just partition into any number of cycles)

 \[
 B(x) = 1 + x + \frac{x^2}{2} + \ldots = e^x.
 \]

Generating function for number of permutations

\[
B(A(x)) = e^{\log\left(\frac{1}{1-x}\right)} = \frac{1}{1-x}.
\]

\[
\frac{1}{1-x} = \sum_n x^n = \sum_n n!(x^n/n!).
\]

There are \(n!\) permutations of \([n]\).
Sterling Number Generating Function

Theorem:

\[
\sum_{n,k=0}^{\infty} \frac{c(n, k)x^n}{n!y^k} = \left(\frac{1}{1-x} \right)^y.
\]