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Solution of Question 1.

(a) Given a proper schedule for the tournament, we consider the complete graph Kn whose vertices are labeled
by the n teams, and if teams a and b play against each other on kth week, then we color edge ab with
color k. Since no team plays more than one game each week, such edge coloring on Kn should be proper.
So a proper schedule in m weeks corresponds to an edge-coloring with at most m colors. Also it is not
hard to see that such correspondence is a bijection. Recall that by Vizing’s Theorem, the edge chromatic
number of Kn is either n−1 or n, so the minimum number of weeks needed for the tournament is either
n− 1 or n.

(b) When n is odd, since no team plays more than one game each week, at most (n − 1)/2 games can be
played each week. The total number of games to be played is n(n− 1)/2, so we need at least

n(n−1)
2

n−1
2

= n

weeks. When the equality holds, exactly (n − 1)/2 games should be played each week. Therefore there
will be one team sitting out each week.

(c) For n even, n − 1 is odd. By part (b), we know that we can arrange a tournament for the first n − 1
teams in n− 1 weeks, where there will be exactly one team sitting out each week. Each of the first n− 1
team must sit out for exactly one week, since they need to play exactly n − 2 games. Now for the nth

team, we let it play against the sitting-out team each week. This will give us a schedule for n teams in
n− 1 weeks.

Solution of Question 2.

(a) If the countries can be arbitrary disconnected sets, then any pair of countries can be adjacent(Imagine
for each country there is a correspondent disc on the plane, and for each other country, there is a small
area as an embassy in that disc.) In this setting, a map for k countries will corresponds to a complete
graph on k vertices, which required k colors to be properly colored.

(b) Given a map such that each country can have at most 2 disconnected regions. Let G be a graph whose
vertices are the countries, and two countries form an edge if they are adjacent. We claim that the
minimum degree of G is at most 11. If this is true, we can show that 12 colors is sufficient by induction
on number of vertices n. For base case, when n < 13, this argument holds trivially. For n ≥ 13, take a
vertex u with degree at most 11, and let G′ = G− {u}. By inductive assumption, we can properly color
G′ with 12 colors. Now add vertex u back to G′ with such coloring. Since u is connected to at most 11
vertices in G′, it can be greedily colored with one of the existing 12 colors. Hence we get a proper coloring
of G with 12 colors and we are done. So it is suffices to prove the claim that minimum degree is at most
11. Let H be a graph whose vertices are regions, and two regions form an edge if they are adjacent. By
definition we know that H is a planar graph, so we have

e(H) ≤ 3v(H)− 6

For any pair of adjacent regions, we can map it to the correspond pair of adjacent countries. Not hard to
see that this map is surjective, so we have e(G) ≤ e(H). Since each country can have at most 2 regions,
we have v(H) ≤ 2v(G). Therefore,

e(G) ≤ e(H) ≤ 3v(H)− 6 ≤ 6v(G)− 6 < 6v(G)
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By hand shaking lemma we know that
∑

u∈V (G) d(u) = 2e(G). Together with the inequality above, we
have ∑

u∈V (G) d(u)

v(G)
< 12

This means that the average degree of G is less than 12, so the minimum degree of G must be less than
12, that is, at most 11. This completes the proof.

(c) See example below. This is a map for 9 countries a, b, c, d, e, f, g, h, i. Notice that any pair of them are
adjacent, so 9 colors are required to color the map.
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Solution of Question 3. Suppose there is a positioning of bishops on the chessboard such that at least k
diagonals is needed to contain all bishops, we want to show that the number of squares occupied or attacked is
at least kn− k2. We claim that there must be k bishops such that no two of them are on the same diagonal.
Consider a graph G whose vertices are the diagonals, and two diagonals form an edge if there is a bishop
on the intersection square of these diagonals. There is no intersection between positive slope diagonals or
between negative slope diagonals. So this graph must be bipartite, where one part consists of the positive slope
diagonals, and the other consists of negative slope diagonals. In this setting, a set of diagonals that contains
all bishops is a vertex cover of graph G, and a set of bishops that share no diagonal is a matching. Since
at least k diagonals is needed to contain all bishops, we know that minimum vertex cover of G is at least
k. Then by Konig’s Theorem, there is a matching of size k in G, that is k bishops that share no diagonal.
Now we count the number of squares occupied or attacked by these k bishops. Observe that if a bishop is
on a diagonal with n − i squares, then the other diagonal it is on will have at least i + 1 squares. So any
bishop will occupy or attack at least (n− i) + (i+ 1)− 1 = n squares, here −1 represent the occupied square
which is counted twice. Therefore,if we sum up the number of squares occupied or attacked by all bishops, we
have at least kn. However, in this counting some squares may be double counted. Notices that for any two
bishops that share no diagonal, there are exactly 2 squares that are attacked by both of them. So the number
of double counted squares is exactly 2

(
k
2

)
. So the total number of square occupied or attacked is at least

kn− 2

(
k

2

)
> kn− k2.
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