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Q.1
(a) Let G be the planar graph (embedded in the plane) which corresponds to the
polyhedron. By hypothesis each vertex has degree k, so by handshaking lemma,
vk
2 = e := |E| the number of edges.

Write {m1, . . . ,ml} the distinct numbers in the sequence (n1, . . . , nk) and ri the
number of occurrences of mi in the sequence, i = 1, . . . , l. Let Fi be the set of faces
of G that has mi sides, and fi := |Fi|. We have the set of all faces F = ∪iFi and
f := |F | =

∑
i fi.

We do a double counting on number of the pairs (a, x) where a ∈ V x ∈ Fi and a
is a vertex of x. We have

riv = mifi.

So we have f =
∑

i fi =
∑

i v
ri
mi

. Notice by definition of mi and ri,
∑

j
1
nj

=
∑

i
ri
mi

,

so f =
∑

j v
1
nj

. Therefore we conclude

v(1− k

2
+

1

n1
+ · · ·+ 1

nk
) = v − e + f = 2,

where the last identity is by Euler.
(b) For any j, nj ≥ 3, hence − 1

2 + 1
nj
≤ −1

6 . By Q.1.(a), we must have 1 +∑k
i=1(− 1

2 + 1
nj

) > 0, so k ≤ 5. As k is the number of faces we have at a vertex,

k ≥ 3. So we have three cases k = 3, 4, 5.
When k = 3: WLOG assume n1 ≤ n2 ≤ n3. We proved in class that n1 ≤ 5.
If n1 = 3, look at a triangle face T , suppose the three polygon that shares edges
with it are (counter-clockwisely) a-gon, b-gon and c-gon. But a, b, c takes val-
ues in {n2, n3}, so WLOG we must have, say, a = b = n2. Then look at the
vertex of T where the a-gon and b-gon share, we see the degree sequence gives
(n1, n2, n3) = (3, a, b) = (3, n2, n2), which means n1 = n2. Now the condition

1 +
∑k

i=1(− 1
2 + 1

nj
) > 0 becomes 2

n2
− 1

6 > 0 so n2 ∈ {3, . . . , 11}. Now check for

all possible n2’s, we only have the following solutions: (3, 3, 3), (3, 4, 4), (3, 6, 6),
(3, 8, 8), (3, 10, 10).
If n1 = n2 = 4, we have infinitely many solutions (4, 4, n).

If n1 = 4 and n2 > 4, we see 1 +
∑k

i=1(− 1
2 + 1

nj
) > 0 implies 1

n3
− 1

20 > 0, so

n3 ∈ {5, . . . , 19}, we can check all possibilities and found the following solutions:
(4, 6, 6), (4, 6, 8), (4, 6, 10).

If n1 = 5, 1+
∑k

i=1(− 1
2 + 1

nj
) > 0 implies 1

n3
− 1

10 > 0, we can check all possibilities

and found the following solutions: (5, 5, 5), (5, 6, 6).

When k = 4: WLOG assume n1 ≤ n2 ≤ n3 ≤ n4. If n1 = 4, 5, 1+
∑k

i=1(− 1
2 + 1

nj
) >

0 isn’t satisfied. So WLOG n1 = 3. If n2 = n3 = 3, we see any n4 gives a solu-

tion: (3, 3, 3, n). If n3 > 3, 1 +
∑k

i=1(− 1
2 + 1

nj
) > 0 implies 1

n4
− 1

12 > 0. So
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{n4, n3} ⊂ {4, . . . , 11}, and by checking all possibilities we have the following solu-
tions: (3, 4, 4, 5), (3, 3, 5, 5), (3, 4, 4, 4), (3, 3, 4, 4).
When k = 5: WLOG assume n1 ≤ n2 ≤ n3 ≤ n4 ≤ 5. Clearly n1 ≥ 3, then 1 +∑k

i=1(− 1
2 + 1

nj
) > 0 already implies 1

n5
− 1

6 > 0, which means n5 ∈ {3, 4, 5}. Check

all the possibilities we only have solutions: (3, 3, 3, 3, 5), (3, 3, 3, 3, 4), (3, 3, 3, 3, 3).
Finally numerically we have above solutions, in order to claim that they are indeed
from a semi-regular solid, we need to construct the semi-regular solid manually.
We have found 5 sequences with all number equal, they corresponds to the Pla-
tonic polyhedra. We have found two class of solutions (4, 4, n) and (3, 3, 3, n),
and they corresponds to prisms and antiprisms. The remaining 13 polyhedra are
Archimedean solids, please check Wikipedia page ”Archimedean solid” to convince
yourself they really exists!

Q.2
(a) We prove by induction on cr(G). The base case when cr(G) = 0, we have
0 ≥ e− 3v + 6 as a property of planar graphs proved in the lecture.
Now suppose cr(G) = k > 0. Let f be a planar embedding of G with k crossings.
Now at a point (of R2, not a vertex of G yet) where two edges e1 = {v1, v2}, e2 =
{v3, v4} cross, we introduce a new vertex v0 and connects v0 to v1, v2, v3, v4 along
the trajectory of the previous edges e1, e2. We call the new graph G′ and write
e′ = |E(G′)|, v′ = |V (G′)|. We notice that cr(G′) ≤ k − 1. So by strong induction
hypothesis, k − 1 ≥ cr(G′) ≥ e′ − 3v′ + 6. Observe that e′ = e + 2 and v′ = v + 1,
substitute into previous inequality we have k ≥ e− 3v + 6 which is what we want.
(b) Let fi : Gi → R2 be the planar embedding s.t. the number of crossing for each
graph is cr(Gi). WLOG, we can translate the image of fi s.t. their images, as sets
on R2, are disjoint. (It should be noted here that a planar embedding of a graph also
embeds the edges into the plane, we also requires the embedded edges are disjoint
for distinct Gi’s.) Now we consider a planar embedding f : G → R2 s.t. ∀v ∈ Vi,
we map f(v) := fi(v). We also wish to embed the edges, ∀e = {u, v} ∈ E(G), by
hypothesis on Gi being connected components, ∃i s.t. e ∈ E(Gi) so we define that
f maps the edge e into the plane as how fi maps e into the plane. By assumption
that images of fi are disjoint, we have the total number of crossings in the planar
embedding f is

∑
i cr(Gi), hence cr(G) ≤

∑
i cr(Gi).

On the other hand, let f : G → R2 be a planar embedding s.t. the number of
crossings is c = cr(G). Now consider the restriction fi : Gi → R2, these are planar
embeddings of Gi’s. Write the number of crossings happened in the embedding fi
as ci. By definition we have cr(Gi) ≤ ci. Then we have

cr(G) = c ≥
∑
i

ci ≥
∑
i

cr(Gi),

which is what we want.
(c) Let q = b n

2

2mc. We do a division with remainder n = qk + r s.t. q, r ∈ Z and
0 ≤ r < q. Consider q groups of vertices V1, . . . , Vq s.t. |V1| = |V2| = · · · = |Vr| =
k + 1 and |Vr+1| = |Vr+2| = · · · = |Vq| = k. Let the vertex set V = ∪qi=1Vi, clearly
we have |V | = n vertices. Now we place vertices each Vi on disjoint circles on the
plane. We keep adding edges as straight lines inside the circle between vertices on
the same circle. Also fix vi ∈ Vi, we can add edges as curves outside the circles
from each vi to every point in Vi+1\{vi+1} s.t. the outside edges don’t cross each
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other (this is possible because we can place the circles s.t. the line T tangent to
the circle at vi+1 has Vi and Vi+1\{vi} on the same side and we connects vi to
Vi+1\{vi} with curves not intersecting T ).
Firstly we prove it’s possible to add more than m edges into V in the way described
above. Indeed, the maximum number of edges that we can add to V is achieved
when each Vi is a complete graph. Also there are n edges outside of the circles. So
in total we have

r
(k + 1)k

2
+ (q − r)

k(k − 1)

2
+ n

=rk + q
k(k − 1)

2
+ n = rk + (n− r)

k − 1

2
+ n = r

k + 1

2
+ n

k − 1

2
+ n

=n
k + 1

2
, because r

k + 1

2
≥ 0

=n
bnq c+ 1

2
> n

n
q

2
, because k = bn

q
c > n

q
− 1

≥n
n 2m

n2

2
, because q = b n

2

2m
c ≤ n2

2m
=m.

This means we can at least add m edges into V following our rule. We can do so
and call such a resulting graph G.

Then we prove for above G, cr(G) ≤ m3

n2 . The crossings only happen inside of the

circles, and as each circle has at most k+1 vertices, we have at most
(
k+1
4

)
crossings

in each circle. So an upper bound for cr(G) is

q

(
k + 1

4

)
= q

(k + 1)k(k − 1)(k − 2)

1 · 2 · 3 · 4

≤n (k + 1)(k − 1)(k − 3)

1 · 2 · 3 · 4
, because qk = n− r ≤ n

≤n k3

1 · 2 · 3 · 4
, because (k − 1)(k + 1) = k2 − 1.

Now as q = b n
2

2mc, we have q > n2

4m by property of floor function. So k = bnq c ≤
n
q < 4m

n . Combining this inequality to above inequality, we have cr(G) < 8
3
m3

n2 .


