HW5 SOLUTIONS

JI ZENG

Q. 1

(a) Let G be the planar graph (embedded in the plane) which corresponds to the polyhedron. By hypothesis each vertex has degree k, so by handshaking lemma, $\frac{v k}{2}=e:=|E|$ the number of edges.
Write $\left\{m_{1}, \ldots, m_{l}\right\}$ the distinct numbers in the sequence $\left(n_{1}, \ldots, n_{k}\right)$ and r_{i} the number of occurrences of m_{i} in the sequence, $i=1, \ldots, l$. Let F_{i} be the set of faces of G that has m_{i} sides, and $f_{i}:=\left|F_{i}\right|$. We have the set of all faces $F=\cup_{i} F_{i}$ and $f:=|F|=\sum_{i} f_{i}$.
We do a double counting on number of the pairs (a, x) where $a \in V x \in F_{i}$ and a is a vertex of x. We have

$$
r_{i} v=m_{i} f_{i} .
$$

So we have $f=\sum_{i} f_{i}=\sum_{i} v \frac{r_{i}}{m_{i}}$. Notice by definition of m_{i} and $r_{i}, \sum_{j} \frac{1}{n_{j}}=\sum_{i} \frac{r_{i}}{m_{i}}$, so $f=\sum_{j} v \frac{1}{n_{j}}$. Therefore we conclude

$$
v\left(1-\frac{k}{2}+\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}\right)=v-e+f=2
$$

where the last identity is by Euler.
(b) For any $j, n_{j} \geq 3$, hence $-\frac{1}{2}+\frac{1}{n_{j}} \leq-\frac{1}{6}$. By Q.1.(a), we must have $1+$ $\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$, so $k \leq 5$. As k is the number of faces we have at a vertex, $k \geq 3$. So we have three cases $k=3,4,5$.
When $k=3$: WLOG assume $n_{1} \leq n_{2} \leq n_{3}$. We proved in class that $n_{1} \leq 5$. If $n_{1}=3$, look at a triangle face T, suppose the three polygon that shares edges with it are (counter-clockwisely) a-gon, b-gon and c-gon. But a, b, c takes values in $\left\{n_{2}, n_{3}\right\}$, so WLOG we must have, say, $a=b=n_{2}$. Then look at the vertex of T where the a-gon and b-gon share, we see the degree sequence gives $\left(n_{1}, n_{2}, n_{3}\right)=(3, a, b)=\left(3, n_{2}, n_{2}\right)$, which means $n_{1}=n_{2}$. Now the condition $1+\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$ becomes $\frac{2}{n_{2}}-\frac{1}{6}>0$ so $n_{2} \in\{3, \ldots, 11\}$. Now check for all possible n_{2} 's, we only have the following solutions: $(3,3,3),(3,4,4),(3,6,6)$, $(3,8,8),(3,10,10)$.
If $n_{1}=n_{2}=4$, we have infinitely many solutions $(4,4, n)$.
If $n_{1}=4$ and $n_{2}>4$, we see $1+\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$ implies $\frac{1}{n_{3}}-\frac{1}{20}>0$, so $n_{3} \in\{5, \ldots, 19\}$, we can check all possibilities and found the following solutions: $(4,6,6),(4,6,8),(4,6,10)$.
If $n_{1}=5,1+\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$ implies $\frac{1}{n_{3}}-\frac{1}{10}>0$, we can check all possibilities and found the following solutions: $(5,5,5),(5,6,6)$.
When $k=4$: WLOG assume $n_{1} \leq n_{2} \leq n_{3} \leq n_{4}$. If $n_{1}=4,5,1+\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>$ 0 isn't satisfied. So WLOG $n_{1}=3$. If $n_{2}=n_{3}=3$, we see any n_{4} gives a solution: $(3,3,3, n)$. If $n_{3}>3,1+\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$ implies $\frac{1}{n_{4}}-\frac{1}{12}>0$. So
$\left\{n_{4}, n_{3}\right\} \subset\{4, \ldots, 11\}$, and by checking all possibilities we have the following solutions: $(3,4,4,5),(3,3,5,5),(3,4,4,4),(3,3,4,4)$.
When $k=5$: WLOG assume $n_{1} \leq n_{2} \leq n_{3} \leq n_{4} \leq 5$. Clearly $n_{1} \geq 3$, then $1+$ $\sum_{i=1}^{k}\left(-\frac{1}{2}+\frac{1}{n_{j}}\right)>0$ already implies $\frac{1}{n_{5}}-\frac{1}{6}>0$, which means $n_{5} \in\{3,4,5\}$. Check all the possibilities we only have solutions: $(3,3,3,3,5),(3,3,3,3,4),(3,3,3,3,3)$. Finally numerically we have above solutions, in order to claim that they are indeed from a semi-regular solid, we need to construct the semi-regular solid manually. We have found 5 sequences with all number equal, they corresponds to the Platonic polyhedra. We have found two class of solutions $(4,4, n)$ and $(3,3,3, n)$, and they corresponds to prisms and antiprisms. The remaining 13 polyhedra are Archimedean solids, please check Wikipedia page "Archimedean solid" to convince yourself they really exists!

Q. 2

(a) We prove by induction on $\operatorname{cr}(G)$. The base case when $\operatorname{cr}(G)=0$, we have $0 \geq e-3 v+6$ as a property of planar graphs proved in the lecture.
Now suppose $\operatorname{cr}(G)=k>0$. Let f be a planar embedding of G with k crossings. Now at a point (of \mathbb{R}^{2}, not a vertex of G yet) where two edges $e_{1}=\left\{v_{1}, v_{2}\right\}, e_{2}=$ $\left\{v_{3}, v_{4}\right\}$ cross, we introduce a new vertex v_{0} and connects v_{0} to $v_{1}, v_{2}, v_{3}, v_{4}$ along the trajectory of the previous edges e_{1}, e_{2}. We call the new graph G^{\prime} and write $e^{\prime}=\left|E\left(G^{\prime}\right)\right|, v^{\prime}=\left|V\left(G^{\prime}\right)\right|$. We notice that $\operatorname{cr}\left(G^{\prime}\right) \leq k-1$. So by strong induction hypothesis, $k-1 \geq \operatorname{cr}\left(G^{\prime}\right) \geq e^{\prime}-3 v^{\prime}+6$. Observe that $e^{\prime}=e+2$ and $v^{\prime}=v+1$, substitute into previous inequality we have $k \geq e-3 v+6$ which is what we want. (b) Let $f_{i}: G_{i} \rightarrow \mathbb{R}^{2}$ be the planar embedding s.t. the number of crossing for each graph is $\operatorname{cr}\left(G_{i}\right)$. WLOG, we can translate the image of f_{i} s.t. their images, as sets on \mathbb{R}^{2}, are disjoint. (It should be noted here that a planar embedding of a graph also embeds the edges into the plane, we also requires the embedded edges are disjoint for distinct G_{i} 's.) Now we consider a planar embedding $f: G \rightarrow \mathbb{R}^{2}$ s.t. $\forall v \in V_{i}$, we map $f(v):=f_{i}(v)$. We also wish to embed the edges, $\forall e=\{u, v\} \in E(G)$, by hypothesis on G_{i} being connected components, $\exists i$ s.t. $e \in E\left(G_{i}\right)$ so we define that f maps the edge e into the plane as how f_{i} maps e into the plane. By assumption that images of f_{i} are disjoint, we have the total number of crossings in the planar embedding f is $\sum_{i} \operatorname{cr}\left(G_{i}\right)$, hence $\operatorname{cr}(G) \leq \sum_{i} \operatorname{cr}\left(G_{i}\right)$.
On the other hand, let $f: G \rightarrow \mathbb{R}^{2}$ be a planar embedding s.t. the number of crossings is $c=\operatorname{cr}(G)$. Now consider the restriction $f_{i}: G_{i} \rightarrow \mathbb{R}^{2}$, these are planar embeddings of G_{i} 's. Write the number of crossings happened in the embedding f_{i} as c_{i}. By definition we have $\operatorname{cr}\left(G_{i}\right) \leq c_{i}$. Then we have

$$
\operatorname{cr}(G)=c \geq \sum_{i} c_{i} \geq \sum_{i} \operatorname{cr}\left(G_{i}\right)
$$

which is what we want.
(c) Let $q=\left\lfloor\frac{n^{2}}{2 m}\right\rfloor$. We do a division with remainder $n=q k+r$ s.t. $q, r \in \mathbb{Z}$ and $0 \leq r<q$. Consider q groups of vertices V_{1}, \ldots, V_{q} s.t. $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{r}\right|=$ $k+1$ and $\left|V_{r+1}\right|=\left|V_{r+2}\right|=\cdots=\left|V_{q}\right|=k$. Let the vertex set $V=\cup_{i=1}^{q} V_{i}$, clearly we have $|V|=n$ vertices. Now we place vertices each V_{i} on disjoint circles on the plane. We keep adding edges as straight lines inside the circle between vertices on the same circle. Also fix $v_{i} \in V_{i}$, we can add edges as curves outside the circles from each v_{i} to every point in $V_{i+1} \backslash\left\{v_{i+1}\right\}$ s.t. the outside edges don't cross each
other (this is possible because we can place the circles s.t. the line T tangent to the circle at v_{i+1} has V_{i} and $V_{i+1} \backslash\left\{v_{i}\right\}$ on the same side and we connects v_{i} to $V_{i+1} \backslash\left\{v_{i}\right\}$ with curves not intersecting T).
Firstly we prove it's possible to add more than m edges into V in the way described above. Indeed, the maximum number of edges that we can add to V is achieved when each V_{i} is a complete graph. Also there are n edges outside of the circles. So in total we have

$$
\begin{aligned}
& r \frac{(k+1) k}{2}+(q-r) \frac{k(k-1)}{2}+n \\
= & r k+q \frac{k(k-1)}{2}+n=r k+(n-r) \frac{k-1}{2}+n=r \frac{k+1}{2}+n \frac{k-1}{2}+n \\
= & n \frac{k+1}{2}, \text { because } r \frac{k+1}{2} \geq 0 \\
= & n \frac{\left\lfloor\frac{n}{q}\right\rfloor+1}{2}>n \frac{\frac{n}{q}}{2} \quad, \text { because } k=\left\lfloor\frac{n}{q}\right\rfloor>\frac{n}{q}-1 \\
\geq & n \frac{n \frac{2 m}{n^{2}}}{2} \quad, \text { because } q=\left\lfloor\frac{n^{2}}{2 m}\right\rfloor \leq \frac{n^{2}}{2 m} \\
= & m .
\end{aligned}
$$

This means we can at least add m edges into V following our rule. We can do so and call such a resulting graph G.
Then we prove for above $G, \operatorname{cr}(G) \leq \frac{m^{3}}{n^{2}}$. The crossings only happen inside of the circles, and as each circle has at most $k+1$ vertices, we have at most $\binom{k+1}{4}$ crossings in each circle. So an upper bound for $\operatorname{cr}(G)$ is

$$
\begin{aligned}
& q\binom{k+1}{4}=q \frac{(k+1) k(k-1)(k-2)}{1 \cdot 2 \cdot 3 \cdot 4} \\
\leq & n \frac{(k+1)(k-1)(k-3)}{1 \cdot 2 \cdot 3 \cdot 4} \quad, \text { because } q k=n-r \leq n \\
\leq & n \frac{k^{3}}{1 \cdot 2 \cdot 3 \cdot 4} \quad, \text { because }(k-1)(k+1)=k^{2}-1
\end{aligned}
$$

Now as $q=\left\lfloor\frac{n^{2}}{2 m}\right\rfloor$, we have $q>\frac{n^{2}}{4 m}$ by property of floor function. So $k=\left\lfloor\frac{n}{q}\right\rfloor \leq$ $\frac{n}{q}<\frac{4 m}{n}$. Combining this inequality to above inequality, we have $\operatorname{cr}(G)<\frac{8}{3} \frac{m^{3}}{n^{2}}$.

