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Q.1
(a) We define the degree to be dv := #{edges e s.t. v ∈ e}. Consider the set of
pairs S = {(e, v); v ∈ e}. We apply double counting to S. On the one hand,
∀e′, define Se′ := {(e′, v) ∈ S} the pairs with edge e′, then |Se| = 2,∀e and
|S| =

∑
e |Se| = 2|E|. On the other hand, ∀v′, define Sv′ := {(e, v′) ∈ S} the pairs

with vertex v′, then |Sv| = dv by our definition and |S| =
∑
v |Sv| =

∑
v dv. So∑

v dv = 2|E| is the new handshaking lemma.
(b) For any vertex v, we define d′v to be the number of non-loop edges incident to
v and d′′v to be twice the number of loops on v. And define the degree of v to be
dv = d′v + d′′v for all v ∈ V . Write E1 to be the set of all the non-loop edges and
E2 to be the set of all the loop edges. By the normal handshaking lemma, we have∑
v d
′
v = 2|E1|. We also have

∑
v d
′′
v = 2|E2|, because every loops contributes to

exactly 2 on both side. Hence
∑
v dv =

∑
v d
′
v +

∑
v d
′′
v = 2|E1|+ 2|E2| = 2|E|.

(c) Consider the set of triples S := {(e, u, v); e = [u, v]}, where [u, v] denotes the
ordered pair (a.k.a directed edge) from u to v. We count the size of S in three ways.
Firstly, ∀e′, there exists a unique triple (e′, u, v) in S containing e′ so |S| = |E|.
On the other hand, ∀u′ ∈ V , consider Su′ = {(e, u′, v) ∈ S} the triples having
the second term as u′, by definition of out-degree, we have |Su| = dout(u),∀u. So
|S| =

∑
u∈V dout(u). Finally for all v′, consider Sv′ = {(e, u, v′) ∈ S} the triples

having the third term as v′, by definition of in-degree, we have Sv = din(v),∀v. So
|S| =

∑
v∈V din(v).

Therefore we conclude,
∑
u dout(u) = |E| =

∑
v din(v) = |S|.

Q.2
(a) We claim that for any vertex v, deg(v) ≥ 3. Indeed, suppose ∃v s.t. deg(v) < 3,
there’re at most 2 edges incident to v. Removing such two edges, the resulting graph
has an isolated vertex v, which is not connected, contradicting to the hypothesis
that G is 3-connected.
Now by handshaking lemma, 2|E| =

∑
v dv ≥

∑
v 3 = 3n. Hence |E| ≥ 3n

2 .
(b) Consider the following graph G, its vertices are labeled as {A,B,C,D, a, b, c, d}
where each capital letter is adjacent to the lowercase letters other than its own
lowercase. For example, A is adjacent to b, c and d.
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Now we remove two edges e1, e2 from G, if e1 and e2 share a same vertex, WLOG
we can assume e1 = {A, b} the red edge. After we remove e1, we obtain a graph
with a cycle inside, namely

A, c,B, a,D, b, C, d,A.

As this cycle connects every vertex. After removing e2 we still get a connected
graph.
Other answers may apply to this question if appropriate.

Q.3
(a) Suppose, on the contrary, that |d(v, u) − d(v, w)| > 1. WLOG we assume
d(v, u) − d(v, w) > 1. By definition we have a walk from v to w of length d(v, w),
say its points are recorded as v0 = v, v1, . . . , vk = w where k = d(v, w). As w and
u are adjacent, we have a walk from v to u of length k + 1, namely

v0 = v, v1 . . . , vk = w, vk+1 = u.

Hence d(v, u) ≤ d(v, w) + 1, contradicting our assumption.
(b) Consider the set Vi := {u; d(v, u) = i}. Clearly Vi ∩ Vj = ∅ for i 6= j. Also
as G is connected, we can reach any vertices from v, ∪∞i=0Vi = V the whole set of

vertices. To show that ∀w ∈ V , d(v, w) ≤ 3d |V |δ+1e, it suffices to show ∀k > 3 |V |δ+1 ,

Vk = ∅. (Notice that 3 |V |δ+1 ≤ 3d |V |δ+1e.)
Next, we prove the following claim: if |Vi| 6= 0, then |Vi−1|+ |Vi|+ |Vi+1| ≥ δ + 1.
Indeed, for Vi 6= ∅, we can choose a vertex w0 ∈ Vi. By definition of minimum
degree, we can choose δ vertices w1, . . . , wδ from the neighborhood of w0. By
Q.3.(a), we see that |d(v, w0) − d(v, wj)| ≤ 1 for j = 1, . . . , δ, which means wj ∈
Vi−1 ∪ Vi ∪ Vi+1. Hence {w0, w1 . . . , wδ} ⊂ Vi−1 ∪ Vi ∪ Vi+1, proving our claim.
Now let N be the number of i ≥ 1 s.t. |Vi| 6= 0, we have

3|V | = 3

∞∑
i=0

|Vi| >
∞∑
i=1

|Vi−1|+ |Vi|+ |Vi+1|

≥
∑

i≥1,|Vi|6=0

|Vi−1|+ |Vi|+ |Vi+1|, summing over the i’s that |Vi| 6= 0

≥ N(δ + 1), by previous paragraph.

Hence N < 3|V |
δ+1 .

Notice that whenever Vi 6= ∅, we have Vi−1 6= ∅. Indeed if v0 = v, v1, . . . , vi ∈ Vi is
a path from v to some vertex in Vi, we have vi−1 ∈ Vi−1.
Therefore the i’s s.t. |Vi| 6= 0 are exactly the first N natural numbers. Hence

∀k > 3|V |
δ+1 > N we have |Vk| = 0, as wanted.


