HW1 SOLUTION

JI ZENG

Q.1
(a) We define the degree to be d, := #{edges e s.t. v € e}. Consider the set of
pairs S = {(e,v);v € e}. We apply double counting to S. On the one hand,
Ve', define Ser := {(¢/,v) € S} the pairs with edge €', then |S.| = 2,Ve and
|S| = >".1Se| = 2|E|. On the other hand, Vv', define S,/ := {(e,v’) € S} the pairs
with vertex v’, then |S,| = d, by our definition and [S| = >, |S,| = >, dv. So
>y dv = 2|E]| is the new handshaking lemma.

(b) For any vertex v, we define d;, to be the number of non-loop edges incident to
v and d!) to be twice the number of loops on v. And define the degree of v to be
d, = d, + dJ for all v € V. Write E; to be the set of all the non-loop edges and
E5 to be the set of all the loop edges. By the normal handshaking lemma, we have
Yo dy = 2|E1|. We also have ) di| = 2|Es|, because every loops contributes to
exactly 2 on both side. Hence Y d, = >, di, + >, di = 2|Ei| + 2|E>| = 2|E|.

(c) Consider the set of triples S := {(e,u,v);e = [u,v]}, where [u,v] denotes the
ordered pair (a.k.a directed edge) from u to v. We count the size of S in three ways.
Firstly, Ve, there exists a unique triple (e’,u,v) in S containing ¢’ so |S| = |E|.
On the other hand, Vu' € V, consider S, = {(e,u/,v) € S} the triples having
the second term as v/, by definition of out-degree, we have |S,| = dout(u), Vu. So
|S| = > uev dout(u). Finally for all v’, consider S, = {(e,u,v’) € S} the triples
having the third term as v’, by definition of in-degree, we have S, = d;,,(v),Vv. So
181 = Yoy din(v).

Therefore we conclude, ), dout(u) = |E| =3, din(v) = |S|.

Q.2
(a) We claim that for any vertex v, deg(v) > 3. Indeed, suppose v s.t. deg(v) < 3,
there’re at most 2 edges incident to v. Removing such two edges, the resulting graph
has an isolated vertex v, which is not connected, contradicting to the hypothesis
that G is 3-connected.
Now by handshaking lemma, 2|E| =3 d, > >, 3 = 3n. Hence |E| > 22
(b) Consider the following graph G, its vertices are labeled as {4, B,C, D, a,b, ¢, d}
where each capital letter is adjacent to the lowercase letters other than its own
lowercase. For example, A is adjacent to b, ¢ and d.

A a
B b
C c
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Now we remove two edges e1, eo from G, if e; and ey share a same vertex, WLOG
we can assume e; = {A,b} the red edge. After we remove e;, we obtain a graph
with a cycle inside, namely

A c,B,a,D,b,C,d, A.

As this cycle connects every vertex. After removing e, we still get a connected
graph.
Other answers may apply to this question if appropriate.

Q.3
(a) Suppose, on the contrary, that |d(v,u) — d(v,w)] > 1. WLOG we assume
d(v,u) —d(v,w) > 1. By definition we have a walk from v to w of length d(v,w),
say its points are recorded as vy = v,v1, ..., = w where k = d(v,w). As w and
u are adjacent, we have a walk from v to u of length k + 1, namely

Vo =V,V1...,Vp = W,Vf41 = U.

Hence d(v,u) < d(v,w) + 1, contradicting our assumption.

(b) Consider the set V; := {u;d(v,u) = i}. Clearly V;NV; = 0 for i # j. Also
as (G is connected, we can reach any vertices from v, U2,V; = V the whole set of
vertices. To show that Vw € V, d(v,w) < 3[14], it suffices to show Vk > 311

5+1 S+10
Vi = 0. (Notice that 35‘% < 3[%])
Next, we prove the following claim: if [V;| # 0, then |V;_1| + |Vi| + |Viq1| > 0 + 1.
Indeed, for V; # 0, we can choose a vertex wg € V;. By definition of minimum
degree, we can choose § vertices wq,...,ws from the neighborhood of wgy. By
Q.3.(a), we see that |d(v,wp) — d(v,w;)| < 1 for j =1,...,d, which means w; €
Vi1 UV; UViqq. Hence {wp,w; ..., ws} C Vi1 UV; UV;41, proving our claim.
Now let N be the number of ¢ > 1 s.t. |V;| # 0, we have

BIVI =3 Vil > Y [Vica| + [Vil + Vi |
i=0 i=1
> Z [Vici| + [Vi| + |Vig1|, summing over the ¢’s that [V;| #0
i>1,|V;|#0
> N(d+1), by previous paragraph.

3|V
Hence N < 31

Notice that whenever V; # (), we have V;_; # 0. Indeed if vg = v,vy,...,v; €V} is
a path from v to some vertex in V;, we have v;_1 € V;_1.
Therefore the i’s s.t. |V;] # 0 are exactly the first N natural numbers. Hence

Yk > % > N we have |Vj| = 0, as wanted.



