HW1 SOLUTION

JI ZENG

Q. 1
(a) We define the degree to be $d_{v}:=\#\{$ edges e s.t. $v \in e\}$. Consider the set of pairs $S=\{(e, v) ; v \in e\}$. We apply double counting to S. On the one hand, $\forall e^{\prime}$, define $S_{e^{\prime}}:=\left\{\left(e^{\prime}, v\right) \in S\right\}$ the pairs with edge e^{\prime}, then $\left|S_{e}\right|=2, \forall e$ and $|S|=\sum_{e}\left|S_{e}\right|=2|E|$. On the other hand, $\forall v^{\prime}$, define $S_{v^{\prime}}:=\left\{\left(e, v^{\prime}\right) \in S\right\}$ the pairs with vertex v^{\prime}, then $\left|S_{v}\right|=d_{v}$ by our definition and $|S|=\sum_{v}\left|S_{v}\right|=\sum_{v} d_{v}$. So $\sum_{v} d_{v}=2|E|$ is the new handshaking lemma.
(b) For any vertex v, we define d_{v}^{\prime} to be the number of non-loop edges incident to v and $d_{v}^{\prime \prime}$ to be twice the number of loops on v. And define the degree of v to be $d_{v}=d_{v}^{\prime}+d_{v}^{\prime \prime}$ for all $v \in V$. Write E_{1} to be the set of all the non-loop edges and E_{2} to be the set of all the loop edges. By the normal handshaking lemma, we have $\sum_{v} d_{v}^{\prime}=2\left|E_{1}\right|$. We also have $\sum_{v} d_{v}^{\prime \prime}=2\left|E_{2}\right|$, because every loops contributes to exactly 2 on both side. Hence $\sum_{v} d_{v}=\sum_{v} d_{v}^{\prime}+\sum_{v} d_{v}^{\prime \prime}=2\left|E_{1}\right|+2\left|E_{2}\right|=2|E|$.
(c) Consider the set of triples $S:=\{(e, u, v) ; e=[u, v]\}$, where $[u, v]$ denotes the ordered pair (a.k.a directed edge) from u to v. We count the size of S in three ways. Firstly, $\forall e^{\prime}$, there exists a unique triple $\left(e^{\prime}, u, v\right)$ in S containing e^{\prime} so $|S|=|E|$. On the other hand, $\forall u^{\prime} \in V$, consider $S_{u^{\prime}}=\left\{\left(e, u^{\prime}, v\right) \in S\right\}$ the triples having the second term as u^{\prime}, by definition of out-degree, we have $\left|S_{u}\right|=d_{\text {out }}(u), \forall u$. So $|S|=\sum_{u \in V} d_{\text {out }}(u)$. Finally for all v^{\prime}, consider $S_{v^{\prime}}=\left\{\left(e, u, v^{\prime}\right) \in S\right\}$ the triples having the third term as v^{\prime}, by definition of in-degree, we have $S_{v}=d_{i n}(v), \forall v$. So $|S|=\sum_{v \in V} d_{i n}(v)$.
Therefore we conclude, $\sum_{u} d_{\text {out }}(u)=|E|=\sum_{v} d_{\text {in }}(v)=|S|$.

Q. 2

(a) We claim that for any vertex $v, \operatorname{deg}(v) \geq 3$. Indeed, suppose $\exists v$ s.t. $\operatorname{deg}(v)<3$, there're at most 2 edges incident to v. Removing such two edges, the resulting graph has an isolated vertex v, which is not connected, contradicting to the hypothesis that G is 3 -connected.
Now by handshaking lemma, $2|E|=\sum_{v} d_{v} \geq \sum_{v} 3=3 n$. Hence $|E| \geq \frac{3 n}{2}$.
(b) Consider the following graph G, its vertices are labeled as $\{A, B, C, D, a, b, c, d\}$ where each capital letter is adjacent to the lowercase letters other than its own lowercase. For example, A is adjacent to b, c and d.

Now we remove two edges e_{1}, e_{2} from G, if e_{1} and e_{2} share a same vertex, WLOG we can assume $e_{1}=\{A, b\}$ the red edge. After we remove e_{1}, we obtain a graph with a cycle inside, namely

$$
A, c, B, a, D, b, C, d, A
$$

As this cycle connects every vertex. After removing e_{2} we still get a connected graph.
Other answers may apply to this question if appropriate.

Q. 3

(a) Suppose, on the contrary, that $|d(v, u)-d(v, w)|>1$. WLOG we assume $d(v, u)-d(v, w)>1$. By definition we have a walk from v to w of length $d(v, w)$, say its points are recorded as $v_{0}=v, v_{1}, \ldots, v_{k}=w$ where $k=d(v, w)$. As w and u are adjacent, we have a walk from v to u of length $k+1$, namely

$$
v_{0}=v, v_{1} \ldots, v_{k}=w, v_{k+1}=u
$$

Hence $d(v, u) \leq d(v, w)+1$, contradicting our assumption.
(b) Consider the set $V_{i}:=\{u ; d(v, u)=i\}$. Clearly $V_{i} \cap V_{j}=\emptyset$ for $i \neq j$. Also as G is connected, we can reach any vertices from $v, \cup_{i=0}^{\infty} V_{i}=V$ the whole set of vertices. To show that $\forall w \in V, d(v, w) \leq 3\left\lceil\frac{|V|}{\delta+1}\right\rceil$, it suffices to show $\forall k>3 \frac{|V|}{\delta+1}$, $V_{k}=\emptyset$. (Notice that $3 \frac{|V|}{\delta+1} \leq 3\left\lceil\frac{|V|}{\delta+1}\right\rceil$.)
Next, we prove the following claim: if $\left|V_{i}\right| \neq 0$, then $\left|V_{i-1}\right|+\left|V_{i}\right|+\left|V_{i+1}\right| \geq \delta+1$. Indeed, for $V_{i} \neq \emptyset$, we can choose a vertex $w_{0} \in V_{i}$. By definition of minimum degree, we can choose δ vertices $w_{1}, \ldots, w_{\delta}$ from the neighborhood of w_{0}. By Q.3.(a), we see that $\left|d\left(v, w_{0}\right)-d\left(v, w_{j}\right)\right| \leq 1$ for $j=1, \ldots, \delta$, which means $w_{j} \in$ $V_{i-1} \cup V_{i} \cup V_{i+1}$. Hence $\left\{w_{0}, w_{1} \ldots, w_{\delta}\right\} \subset V_{i-1} \cup V_{i} \cup V_{i+1}$, proving our claim. Now let N be the number of $i \geq 1$ s.t. $\left|V_{i}\right| \neq 0$, we have

$$
\begin{aligned}
3|V|=3 \sum_{i=0}^{\infty}\left|V_{i}\right| & >\sum_{i=1}^{\infty}\left|V_{i-1}\right|+\left|V_{i}\right|+\left|V_{i+1}\right| \\
& \geq \sum_{i \geq 1,\left|V_{i}\right| \neq 0}\left|V_{i-1}\right|+\left|V_{i}\right|+\left|V_{i+1}\right|, \quad \text { summing over the } i \text { 's that }\left|V_{i}\right| \neq 0 \\
& \geq N(\delta+1), \quad \text { by previous paragraph. }
\end{aligned}
$$

Hence $N<\frac{3|V|}{\delta+1}$.
Notice that whenever $V_{i} \neq \emptyset$, we have $V_{i-1} \neq \emptyset$. Indeed if $v_{0}=v, v_{1}, \ldots, v_{i} \in V_{i}$ is a path from v to some vertex in V_{i}, we have $v_{i-1} \in V_{i-1}$.
Therefore the i 's s.t. $\left|V_{i}\right| \neq 0$ are exactly the first N natural numbers. Hence $\forall k>\frac{3|V|}{\delta+1}>N$ we have $\left|V_{k}\right|=0$, as wanted.

