
Question 1 (Tree List, 25 points). Our proof of Caley’s Theorem described how to associate a list of numbers
to a labelled tree. What is the list corresponding to the tree given below?

We repeatedly remove the leaf with the smallest index and record the index of its neighbor. This gives
the sequence: 4,5,6,13,3,7,6,7,8,4,8.
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Question 2 (Block Decomposition, 25 points). What are the blocks in the graph below?

The cut vertices are C, D, F, G, N, P. Looking at the sets of vertices between the cuts, we get blocks:
ABC, CDF, DE, FG, GH, GIJ, GKLMNP, NO, PQRSTUVW.
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Question 3 (Minimum Cut, 25 points). Give a minimum cut for the following network.

We compute a maximum flow, for example the one given below: We note that the specified cut matches

the flow and must therefore be minimal. In particular, our cut has s,D,E,J,K on one side and all other
vertices on the other.

3



Question 4 (Planarity, 25 points). Prove that the graph below is not planar.

We note that the following is a subgraph that is a subdivision of a K3,3 with the parts of the K3,3 being
the red and blue vertices, respectively. Therefore, it is not planar.
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Question 5 (Sum of Eulerian Graphs, 25 points). Suppose that G and H are two connected, Eulerian graphs
on the same vertex set that do not share any edges. Show that G ∪H is Eulerian where G ∪H denotes the
graph whose edges are all of those in either G or H.

It is enough to show that G ∪ H is connected and has every vertex of even degree. To show that it is
connected, we note that by assumption since G is connected, there is a path between any pair of vertices in
G. Since these paths also exist in G ∪H, there are paths between every pair of vertices in that graph, and
therefore, it is also connected. Next, we need to show that every vertex in G∪H has even degree. However,
it is easy to see that for any vertex v that dG∪H(v) = dG(v) + dH(v). Since G and H are Eulerian, we must
have dG(v) and dH(v) are both even. Since the sum of two even numbers is even, dG∪H(v) is even for all v.
Therefore, G ∪H is Eulerian.
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Question 6 (Chromatic Number of Unions, 25 points). Let G and H be two graphs sharing the same vertex
set. Let G ∪H denote the graph consisting of the union of their edges. Show that χ(G ∪H) ≤ χ(G) + τ(H)
where τ(H) denotes the size of the minimum vertex cover of H.

Let S be a minimum vertex cover of H. So |S| = τ(H). Begin by coloring G using χ(G) colors. Then
assign each element of S a new, distinct color. This is clearly a way of coloring the vertices of G∪H using at
most χ(G) + τ(H) distinct colors. We need to show that it is a valid coloring, namely that and two adjacent
vertices, u and v are colored differently.

If either u or v is in S, then it is colored a unique color and thus, the two are different colors. Otherwise,
since S is a vertex cover of H, the edge u, v cannot be in H (since every edge in H will have a vertex in S).
Thus, since the edge is in G∪H, (u, v) is an edge in G. Since our initial coloring of G is valid, u and v must
have been assigned different colors by this coloring, which are still the colors that they have after recoloring
the vertices of S.

This completes our proof.
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Question 7 (Perfect Matchings and Degrees of Independent Triples, 25 points). Let G be a connected
graph on 2n vertices. Suppose that for any vertices u, v, w of G with no two of them connected by an edge,
d(u) + d(v) + d(w) ≥ 3n− 2. Show that G has a perfect matching.

Assume for sake of contradiction that G does not have a perfect matching. We note by Tutte’s Theorem
that there must be a set S with |S| < Ω(G− S). Since G is connected and has an even number of vertices,
|S| must be at least 1, and by the parity argument Ω(G−S) must be at least 3. Let u, v and w be from the
three smallest components of G − S (there must be at least 3 since Ω(G − S) is at least 3). We note that
u, v, and w can only have neighbors either in S or as other elements of their component. If |S| = m < n,
then the contribution of neighbors in S to the sum of their degrees is at most 3m. The sum of the sizes of
their components is at most b3(2n −m)/(m + 2)c, since there are at least m + 2 components using up the
remaining 2n−m vertices and we picked the smallest 3. Therefore we have that

d(u) + d(v) + d(w) ≤ 3m+ b3(2n−m)/(m+ 2)c − 3.

We claim that this is at most 3n−3, which would give us a contradiction. If not, 3m+3(2n−m)/(m+2) ≥ 3n.
However, it is easy to see that 3m+3(2n−m)/(m+2) is maximized when m takes one of the extreme values
m = 1 or m = n− 1, but in either case the inequality fails. This completes our proof.
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Question 8 (Cycle and Star Ramsey Numbers, 25 points). Show for any positive integer n that R(C2n,K1,n) =
2n.
Hint: There is a result from early in the course that will be useful here.

We note that R(C2n,K1,n) ≥ 2n since if you color the edges of a K2n−1 all red, you have no red C2n nor
blue K1,n.

To show the other direction consider a red-blue coloring of the edges of a K2n. Let G be the subgraph
consisting of the red edges. If δ(G) < n then there is some vertex v with at least 2n− 1− (n− 1) = n blue
edges out of it. This gives us a blue K1,n. Otherwise, we have a graph on 2n vertices with minimum degree
at least n = (2n)/2. Therefore, as proved in class, G has a Hamiltonian cycle. This cycle correspond to a
red C2n in our original graph. Thus, any coloring has either a red C2n or a blue K1,n and this completes
our proof.
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