Announcements

- Homework 2 Due Sunday
- Students interested in problem solving practice should attend discussion sections.

Today

- Start Chapter 1.4
- Introduction to Eulerian graphs.

Paths and Cycles (Ch 1.4)

- Eulerian Circuits
- Definition
- Classification of Eulerian graphs
- Algorithms
- Hamiltonian cycles
- Definition
- Hardness
- Some conditions

The Bridges of Konisberg

The city of Konisberg had 7 bridges as shown. People liked to go on walks touring the bridges. The mathematician Euler was asked if there was a tour that crossed each bridge exactly once.

Graph Theory

- Turn city into a (multi)graph.
- Vertices = land areas
- Edges = bridges
- Want: A walk that uses each edge exactly once.

Stuck!

Definitions

An Eulerian circuit is a circuit that uses every edge of a graph exactly once.
An Eulerian trail similarly uses each edge exactly once, but does not start and end at the same vertex.

A graph is Eulerian if it contains an Eulerian circuit and semi-Eulerian if it contains an Eulerian trail.

Question

The graph to the right is:
A) Eulerian
B) Semi-Eulerian
C) Neither

Questions we want to answer

- Which graphs are Eulerian / semi-Eulerian?
- How do we construct Eulerian circuits/trials?

Observation I

(semi-)Eulerian graphs must be connected!
(except for isolated vertices)

If there is no path from u to v, certainly no Eulerian circuit/trail that connects both of them either.

Observation II

How does Eulerian circuit interact with vertex v?

Each time we take edge into v , then take different edge out of v.

Observation II

If G is Eulerian, $\operatorname{deg}(\mathrm{v})$ must be even!

Conclusion

So if G is Eulerian then it must:

- Be connected (except for isolated vertices)
- Have all vertices of even degree

Is this enough?
Yes!
Theorem (1.20): A finite, connected graph G is Eulerian if and only if all vertices have even degree.

Question: Eulerian Graphs

Which of these graphs are Eulerian?

B

Proof

- "Only if" already done.
- If G has Eulerian circuit, each time the circuit passes through v it uses two of its edges.
- Since Eulerian, eventually uses all of v's edges
- Therefore, deg(v) must be even.
- This must hold for all vertices v .
- Need to prove that this is sufficient
- Show how to construct an Eulerian circuit.

Constructing a Circuit I

As a first step, we will show you can construct a circuit.

Basic facts:

- Every degree is even
- Every non-isolated vertex has degree at least 2.

Constructing a Circuit II

- Start at any non-isolated vertex v.
- Construct a trail by adding new edges until you get stuck.

Constructing a Circuit III

Claim: Can only get stuck at v.
Once you get stuck, you will have a circuit!

Proof:

- Suppose you got stuck at some other w.
- Each time you pass through w, use up 2 edges.
- Takes another edge to reach w. If at w used an odd number of edges.
- At least one left!

Constructing a Circuit IV

Are we done?

We have a circuit. Does it necessarily cover all the edges?

No.

How do we fix this?

Two ideas:

- Can find more circuits
- Glue circuits together

More Circuits

- Existing circuit uses an even number of edges at each vertex.
- Removing those edges, have an even number left at each vertex.
- Can create new circuit in remainder.

Combining Circuits

- Have two circuits that share a vertex.
- Turn them into one big circuit.

Final Algorithm

- Find a circuit.
- If all of G -> done.
- Otherwise, find v on circuit with unused edge.
- Find additional circuit through v.
- Merge with existing circuit.
- Repeat

Analysis

- By connectivity, if circuit isn't all of G, contains some vertex with an extra edge. (Otherwise your circuit would be a full connected component)
- Each step increases the number of edges in your circuit. Eventually, you must get all of G.

