Announcements

- Homework 2 online, due Sunday
- Homework 1 solutions on course webpage
- Feedback survey on Canvas

Reminder: DO NOT submit homework questions to websites (outside of course ones) for help.

And: If you do stumble on Homework solutions online, you must cite them.

Last Time

Minimum Spanning Tree:

- Given a tree with edge weights find a spanning tree with total weight as small as possible.
- Kruskal - Find this by repeatedly adding lightest edge that does not create a cycle

Today

- Prim's Algorithm for Minimum Spanning Tree
- Counting Trees

Prim's Algorithm

Another way to find MST:

- Start at base vertex
- Repeatedly add cheapest new edge connected base vertex to something new

Correctness

Same idea as Kruskal:

- Take arbitrary tree
- Change to Prim's Tree one edge at a time, each change making things better
- New edge still creates cycle with more expensive old edge, can swap to get new tree

Example

Question: MST

Which of the lettered edges below are in the Minimum Spanning Tree?

Counting Trees

Question: How many trees of size n are there?

It depends a bit on how you count...
Want the number of trees on labeled vertices $1,2, \ldots, n$.

Examples

$$
\mathrm{n}=2
$$

$\mathrm{n}=4$

Cayley's Theorem

Theorem (1.18): There are $\mathrm{n}^{\mathrm{n}-2}$ labeled trees of order n.
Sequence grows quickly:
1,1,3,16,125,1296,16807,262144, 4782969,100000000...
Proof idea: Find a bijection between trees and sequences of $n-2$ numbers from 1,2,..,n

How to get a List from a Tree

- Take lowest labeled leaf, v
- Record label of v's neighbor
- Remove v from G
- Repeat until G has

3 only 2 vertices

$$
5,6,2,3,5,2,6
$$

Next Step

- To every tree on vertices $1,2, \ldots, \mathrm{n}$ assign a list of $n-2$ numbers from 1 to n.
- There are $\mathrm{n}^{\mathrm{n}-2}$ many such lists.
- Need to show: This is 1-1. Each such list comes from one and only one tree.

How to find the tree

- Find missing numbers. These $5,6,2,3,5,2,6$ are the leaves.
- Smallest missing number is v .
- Connect v to first element of list.
- Remove v from available numbers and first element of list
- Repeat until list gone

Missing: 1, 4, 7, 8, 9 3, 5, 2,

- Connect remaining elements

$$
1,2,3,4,5,6,7,8,9
$$

Check

Why does this work?

Produces a tree:

- Each vertex connects to one eliminated later, so no loops.
- Number of edges correct Produces same tree:
- Follows algorithm for getting labels.
- Lowest missing (remaining) number must connect to next element of the list.

Generalization: Matrix Tree Theorem

Cayley's Theorem counts the number of spanning trees of K_{n}. What about other graphs?
Given G compute matrices:

- D - diagonal matrix $D_{i i}=\operatorname{deg}(i)$
- A - adjacency matrix
$-\mathrm{A}_{\mathrm{ij}}=1$ if i\&j adjacent, 0 otherwise
- $\mathrm{M}=\mathrm{D}-\mathrm{A}$
- $\mathrm{M}^{\prime}=\mathrm{M}$ with first row and column removed

Theorem (1.19): \#Spanning Trees of $G=\operatorname{det}\left(\mathrm{M}^{\prime}\right)$

