
Announcements 

• Homework 1 Due Sunday 

• Feedback Survey on Canvas 

• Draft slides of upcoming lectures now on 
course webpage 



Last Time 

Leaves 

• A leaf is a degree-1 vertex in a tree. 

• Every tree with at least two vertices has at 
least 2 leaves. 

Spanning Trees 

• Every connected graph G has a subgraph T 
that is a tree connecting all of its vertices 

• Breadth First Search produces a spanning tree. 



Today 

More ways to get spanning trees 

• Depth First Search 

• Minimum Spanning Trees 

Counting Trees 



Depth First Search Tree 

• Start at a base vertex v 

• Follow path from v until 
cannot extend anymore 

• Backtrack until new branch 

• Repeat backtrack/extend 
until nothing else to do 

v 



Depth First Search Tree Properties 

• G has no extra edges that cross between 
different branches of the tree. 

– If such an edge existed, it would have been used 
when exploring the first branch. 



Questions: BFS Trees 

The following spanning tree could be a Breadth 
First Search tree starting from which of the 
marked vertices? 
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Minimum Spanning Tree 

• Remember Highway Repair problem 

• Realistically, some roads harder to fix than 
others 

• Minimum Spanning Tree: 

– Each edge has a weight 

– Want spanning tree with least total weight 
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How do you find a MST? 

Kruskal’s Algorithm:  

• Repeatedly add lightest edge that does not 
create a cycle 
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• Clearly creates spanning tree. 
• Why minimal? 



Proof I 

Idea: 

• Take any spanning tree, turn it into Kruskal’s 
tree 

• Change one edge at a time, each time 
improving weight 

• End up with Kruskal, showing that Kruskal’s 
tree is at least as good as what you started 
with 



Proof II 
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•First edge already in tree 
•Second edge not. 

•Adding would create cycle 
•Cycle contains more 
expensive edge 
•Trade one edge for other 

•Third edge already in tree 
•Fourth edge not 

•Trade for more expensive 
edge 



Proof III 

In general: 

• If next Kruskal edge in tree, move on 

• If not, 
– Extra edge creates cycle 

– Cycle contains edge 
not in Kruskal tree 

– Edge more expensive 

– Swap edges give cheaper 
new tree 


