
Announcements

• Homework 1 Due Sunday

• Feedback Survey on Canvas

• Draft slides of upcoming lectures now on
course webpage

Last Time

Leaves

• A leaf is a degree-1 vertex in a tree.

• Every tree with at least two vertices has at
least 2 leaves.

Spanning Trees

• Every connected graph G has a subgraph T
that is a tree connecting all of its vertices

• Breadth First Search produces a spanning tree.

Today

More ways to get spanning trees

• Depth First Search

• Minimum Spanning Trees

Counting Trees

Depth First Search Tree

• Start at a base vertex v

• Follow path from v until
cannot extend anymore

• Backtrack until new branch

• Repeat backtrack/extend
until nothing else to do

v

Depth First Search Tree Properties

• G has no extra edges that cross between
different branches of the tree.

– If such an edge existed, it would have been used
when exploring the first branch.

Questions: BFS Trees

The following spanning tree could be a Breadth
First Search tree starting from which of the
marked vertices?

A

B

C

D

E

Minimum Spanning Tree

• Remember Highway Repair problem

• Realistically, some roads harder to fix than
others

• Minimum Spanning Tree:

– Each edge has a weight

– Want spanning tree with least total weight

1

1
2

1 2

1

1

2

2

3
3

1+1+1+1+2+2=8

How do you find a MST?

Kruskal’s Algorithm:

• Repeatedly add lightest edge that does not
create a cycle

1
2

1 2

1

1

2

3
3

1 2

• Clearly creates spanning tree.
• Why minimal?

Proof I

Idea:

• Take any spanning tree, turn it into Kruskal’s
tree

• Change one edge at a time, each time
improving weight

• End up with Kruskal, showing that Kruskal’s
tree is at least as good as what you started
with

Proof II

1

2

3

4

5
6

7

•First edge already in tree
•Second edge not.

•Adding would create cycle
•Cycle contains more
expensive edge
•Trade one edge for other

•Third edge already in tree
•Fourth edge not

•Trade for more expensive
edge

Proof III

In general:

• If next Kruskal edge in tree, move on

• If not,
– Extra edge creates cycle

– Cycle contains edge
not in Kruskal tree

– Edge more expensive

– Swap edges give cheaper
new tree

