Announcement

Homework 1 Due Sunday
Reminder: OH's
Daniel: Thursday 12-1, Friday 12-2, or by appointment, https://ucsd.zoom.us/my/dankane
Ji: Monday, Wednesday 1:00-2:30 https://ucsd.zoom.us/my/izeng
Jiaxi: Tuesday, Thursday 4:00-5:30pm https://ucsd.zoom.us/i/6511860878

Last Time

Trees:
Graph that is

- Connected
- Has no cycles

Today

- Number of Edges in a Tree
- Spanning Trees

5-Vertex Trees

Here are all the trees on 5-vertices:

Notice that they all have exactly 4 edges. This is not a coincidence.

Edge Count

Theorem (1.10): Any tree with n vertices has exactly n -1 edges.

Idea: Look at connected components.

Lemma: Any graph $G=(V, E)$ with no cycles has
$|V|-|E|$ connected components.

Proof Idea

Idea: Each edge you add connects two different components, thus reducing the number of connected components by 1 .
We proceed by induction on the number of edges in G.

Base Case: |E|=0

- G is the empty graph.
- Each vertex is a connected component.
- \#CCs = \#Vertices $=|V|=|V|-|E|$.

Inductive Step

- Assume that for any graph with fewer edges that \#CCs $=|V|-|E|$.
- Pick any edge e $=(u, v)$ in G.
- Consider G' = G-e.
- $\# C C\left(G^{\prime}\right)=|V|-(|E|-1)=|V|-|E|+1$.

Claim

Claim: u and v are in different connected components of G^{\prime}.

Assume for sake of contradiction, they are in same component.

- Must be a u-v path in G'
- Adding e gives a cycle in G
- Contradiction!

Putting it Together

- G^{\prime} has $|V|-|E|+1$ components
- e connects two different components of G'
- Components of G are same as those of G^{\prime} except two are merged
- G has |V|-|E| CCs

Question: Graphs with Cycles

Suppose graph G has at least one cycle. What can we say about the number of connected components?
A) \#CCs < $|\mathrm{V}|-|E|$
B) $\# C C s=|V|-|E|$
C) \#CCs > |V| - |E|
D) Impossible to tell

If a new edge forms a cycle, it increases |E| without decreasing the number of CCs.

Leaves

A leaf in a tree is a vertex of degree 1.
Lemma (Thrm 1.14): Any tree on $n>1$ vertices has at least two leaves.
Proof: Handshake Lemma:

- $\Sigma d(v)=2|E|=2 n-2$
- $\Sigma(2-d(v))=2 n-(2 n-2)=2$
- Leaves contribute 1 , non-leaves at most 0
- At least 2 leaves.

Question: Maximum Leaves

What is the greatest number of leaves a tree on $n>2$ vertices can have?
A) 0
B) 2
C) $\mathrm{n}-1$
D) n

E) None of the above

Spanning Trees

Recall our highway repair problem

Want a subgraph T of G so that:

- $\mathrm{V}(\mathrm{T})=\mathrm{V}(\mathrm{G})$
- T is a tree

Such a T is called a spanning tree of G .

Construction

Does a connected graph G always have a spanning tree? Yes!

Algorithm:

1) Start with no edges in T
2) While T not connected, add an edge connecting different components
3) Once T is connected, you have a tree

Since G is connected, it must have edges between different components of T

Types of Spanning Trees

This algorithm leaves you with a lot of freedom. You can pick any edge that doesn't create a cycle at any stage. This leaves many possible spanning trees.

We'll discuss a few standard ways to produce spanning trees.

Breadth First Search Tree

- Start at a base vertex v
- Connect v to all its neighbors
- Connect them to all their
 neighbors (without creating cycles)
- Repeat until you've reached all vertices

Breadth First Search Properties

- Finds shortest paths from v to other vertices.
- $\mathrm{d}^{\text {th }}$ round of edges finds all vertices reachable from v with paths of length d.
- No edges in G provide shortcuts from a vertex to its descendants further down.

