
Announcements 

• Please read final exam instructions 



Last Time 

• Ramsey Theory 



Ramsey’s Theorem 

Theorem: For any positive integers p and q 

there exists a number N so that for any  

n ≥ N and any red-blue coloring of the 

edges of a Kn, there is either a red Kp or a 

blue Kq. 

Definition: The smallest such number N is 

called the Ramsey Number, R(p,q). 

R(p,q) ≤ R(p-1,q) + R(p,q-1) 



Today 

• Approximating the size of Ramsey 

numbers 

• Graph Ramsey Numbers 



Computing Ramsey Numbers is 

Hard 

Computing Ramsey numbers is notoriously 

hard, which is why so few of them are 

known. The problem is that even if you 

have a coloring determining whether it has 

monochromatic subgraphs is already 

difficult. Finding the best colorings is even 

harder. And as far as anyone can tell there 

doesn’t seem to be an easy formula for 

Ramsey numbers. 



Bounds on Ramsey Numbers 

We will focus on proving bound to at least 

get an idea of how big Ramsey numbers 

are. 



Upper Bound 

Theorem: R(p,q) ≤ 2p+q. 

Proof: By induction on p+q. 

• If p=1 or q=1, R(p,q) = 1 < 2p+q. 

• Assume the inequality holds for smaller 

p+q. 

– R(p,q) ≤R(p-1,q)+R(p,q-1)  

           ≤2p+q-1+2p+q-1 ≤2p+q. 



Lower Bound 

Theorem (1.66): If n ≥ 3, R(n,n) ≥ 2n/2. 

Note: R(p,q) ≥ 2min(p,q)/2. 

Note 2: Combined with the upper bound, 
this says that symmetric Ramsey numbers 
are exponentially large. 

Note 3: Bound is hard. We want to find a 
coloring with no monochromatic subgraph. 
But actual constructions tend to produce 
patters. How do we avoid them? 



Random Construction 

Color the edges of a KN randomly. On 
average how many monochromatic Kns? 

• ≈ Nn many collections of n vertices. 

• Each has a ≈ 2-n(n-1)/2 probability of being 
monochromatic 

• Average number of monochromatic Kns is 
roughly Nn/(2n(n-1)/2) ≈ [N/2(n-1)/2]n. 

• If N much smaller than 2n/2, this is less 
than 1, so some coloring must have none. 

 



Graph Ramsey Numbers 

Traditional Ramsey Numbers look for 

complete subgraphs, but we can consider 

other kinds instead. 

Definition: For graphs G and H, we define 

the graph Ramsey number R(G,H) to be 

the minimum n so that any red-blue 

coloring of Kn has either a red copy of G or 

a blue copy of H. 



Finiteness 

Note that G and H are contained in complete 
graphs, so this is finite. 

Theorem (1.67): 
R(G,H) ≤ R(|VG|, |VH|) 

Proof: Let m = R(|VG|, |VH|). Any red-blue 
coloring of Km has either a monochromatic 
complete red graph on |VG| or 
monochromatic blue complete graph on 
|VH|. These contain a red copy of G or blue 
copy of H. 



Example 

Theorem (1.70): If m and n are integers with 

m-1 dividing n-1 and Tm is a tree with m 

vertices then 

R(Tm,K1,n) = m+n-1. 



Lower Bound 

• Need a coloring of Km+n-2 without a red Tm 

or blue Kn. 

• Note: m-1 divides m+n-2 = (m-1)+(n-1). 



Coloring 

• Red Km-1s connected by blue edges. 

• No Red Tm: All but CCs size m-1. 

• No Blue K1,n: Each vertex has blue degree 

(m+n-3) – (m-2) = n-1. 
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Upper Bound 

• Need to show that any red-blue coloring of 

a Kn+m-1 has either a red Tm or a blue K1,n. 

• If any vertex has n or more blue edges, 

have blue K1,n. 

• Otherwise, consider Gr, graph of red 

edges. 

– Note that δ(Gr) ≥ m-1. 



Lemma 

Lemma (1.16): Let T be any tree on k 

vertices and G a graph with δ(G) ≥ k-1. 

Then G contains a copy of T. 

 

Apply to Gr and Tm to get final result. 



Idea: Build T One Vertex at a Time 

T G 



Proof by Induction on k 

• Base case: k = 1 

– Can embed single point 

• Assume can embed any tree on k-1 

vertices. 

• Let v be a leaf of T. Removing v and edge 

(u,v) gives T’. 

• By IH, embed T’ in G. 

• Need new neighbor of u to be v. 

• u has k-1 neighbors, only k-2 are used. 


