Announcements

e No more Homeworks!

* |f you need an alternative time for the final,
please let me know by Wednesday.

* All regrade requests due before final



Last Time

e Perfect Matchings in General Graphs



Today

e Tutte’s Theorem
* Introduction to Ramsey Theory



In General

Odd vs. Even is important.

Definition: For a graph G let Q(G) denote the
number of connected components of G with
an odd number of vertices.

Lemma: If there is a set S of vertices of G with
|S| < Q(G-S), then G has no perfect matching.




Proof

Each of the Q(G-S) odd components would need
at least one edge to an element of S, but there
are not enough to go around.




Tutte’s Theorem

Surpsingly, this is the only thing that can go
wrong.

Theorem (1.59): If G is a finite graph so that for
every set S of vertices |S| =2 Q(G-S), then G has
a perfect matching.




Proof Strategy

Need to show that if |S| = Q(G-S) for all S then G
has a perfect matching.

* Use induction on |V|.

* Find maximal S so that |S| = Q(G-S).

* Use Hall’s Theorem to find matching on S.
* Induct.



A Lemma

Lemma: If G has an even number of vertices,
then S-Q(G-S) is always even.

Note: If G has an odd number of vertices, then
forS=0@, |S| < Q(G-S).

Proof: The number of vertices of G equals |S|
plus the sum of the sizes of the connected
components of G-S. If a collection of numbers
adds to an even number, it must contain an
even number of odd numbers.




Proof

* Use induction on |V].
— Base Case: |V|=0, empty pairing.
— Assume that Tutte’s Theorem holds for all smaller
graphs.
* For a G satisfying our hypothesis find a
maximal set S with |S| = Q(G-S).

— Since | V| is even taking S = {single point} gives |S]
=1, Q(G-S) > 1.



Claim 1

Every component of G-S has an odd number of
vertices.

If some component C was even, taking
S’ =SU{v} for v € Calso has |S"| = Q(G-5’)

S isn’t maximal.




Claim 2

For each component C of G-S and eachv € C
there is a perfect matching of C-v.

Proof Idea:

* Inductive hypothesis on C-v.
e Use parity lemma.
e Use maximality of S.



Proof of Claim 2

By IH, have matching of T

C-v, unless T so that
| T| < Q(C-T-v).

Parity lemma:

| T| < Q(C-T-v)-2.
Q(G-(S UT U{v}))

= Q(G-S)-1+Q(C-T-v)

> |S UT U{v}|
Contradicts maximality.

OO



Strategy

Have |S]| = Q(G-S).

Want: matching
between S and the
components of G-S

If we had this,

remaining vertices
could be matched.
This is a bipartite

matching problem!




Matching

Hall’'s Theorem

— Matching unless
TCS adjacent to <|T|
components.

Let S’ = S-T.

Q(G-5') 2

Q(G-S)-|N(T)| =

[S[-IN(T)| > [S]-]|T]

= |S']

Contradiction!

)



Outline of Proof

Find maximal S with |S| = Q(G-S).

Hall’s Theorem = matching between elements
of S and odd components.

Use those edges in matching.

Inductive hypothesis and maximality imply
matching of C-v for each component C and
matched vertex v.

Combine to get full matching.



Question: Algorithm

Does the proof of Tutte’s Theorem lend itself to
an efficient algorithm to find a matching?

A) Yes The proof relies on being
B) No able to find a maximal set S
with [S] = Q(G-S).



Application: Petersen’s Theorem

Theorem (1.60): Any bridgeless, 3-regular graph
has a perfect matching.

Proof Idea: Use Tutte’s Theorem. Use 3-regular
and bridgeless to assist counting.




Lemma 1

Lemma: If G is 3-regular, S a subset of the
vertices and C an odd connected component
of G-S, then there are an odd number of edges
between C and S.

Proof: Apply Handshake lemma to the induced
subgraph C.

Sum of degrees is even.
Sum of degrees is 3| C|- #{outgoing edges}.



Lemma 2

Lemma: If G is a bridgeless graph, S a subset of
vertices and C a connected component of G-S,
then C cannot have exactly one edge to S.

Proof: That edge would be a bridge.




Combined

Corollary: If G is a 3-regular, bridgeless graph, S
a subset of the vertices and C an odd
connected component of G-S, then C has at
least 3 edges to S.




Proof

Let S be a subset of the vertices, let T be the
set of odd components of G-S.

— NTS: |T| £ |S]

Consider bipartite graph on Sand T.
d(s)<3fors€S,d(t)>23forteT.
3|S| =2 2d(s) = 2d(t) = 3| T|

S| 2 [T|

Tutte’s Theorem implies matching.



