
Announcements 

• No more Homeworks! 

• If you need an alternative time for the final, 
please let me know by Wednesday. 

• All regrade requests due before final 



Last Time 

• Perfect Matchings in General Graphs 



Today 

• Tutte’s Theorem 

• Introduction to Ramsey Theory 



In General 

Odd vs. Even is important. 

Definition: For a graph G let Ω(G) denote the 
number of connected components of G with 
an odd number of vertices. 

Lemma: If there is a set S of vertices of G with 
|S| < Ω(G-S), then G has no perfect matching. 



Proof 

Each of the Ω(G-S) odd components would need 
at least one edge to an element of S, but there 
are not enough to go around. 

S 



Tutte’s Theorem 

Surpsingly, this is the only thing that can go 
wrong. 

Theorem (1.59): If G is a finite graph so that for 
every set S of vertices |S| ≥ Ω(G-S), then G has 
a perfect matching. 



Proof Strategy 

Need to show that if |S| ≥ Ω(G-S) for all S then G 
has a perfect matching. 

• Use induction on |V|. 

• Find maximal S so that |S| = Ω(G-S). 

• Use Hall’s Theorem to find matching on S. 

• Induct. 



A Lemma 

Lemma: If G has an even number of vertices, 
then S-Ω(G-S) is always even. 

Note: If G has an odd number of vertices, then 
for S = ∅, |S| < Ω(G-S). 

Proof: The number of vertices of G equals |S| 
plus the sum of the sizes of the connected 
components of G-S. If a collection of numbers 
adds to an even number, it must contain an 
even number of odd numbers. 



Proof 

• Use induction on |V|. 

– Base Case: |V|=0, empty pairing. 

– Assume that Tutte’s Theorem holds for all smaller 
graphs. 

• For a G satisfying our hypothesis find a 
maximal set S with |S| = Ω(G-S). 

– Since |V| is even taking S = {single point} gives |S| 
= 1, Ω(G-S) ≥ 1. 



Claim 1 

Every component of G-S has an odd number of 
vertices. 

If some component C was even, taking  
S’ = S∪{v} for v ∈ C also has |S’| = Ω(G-S’) 

S isn’t maximal. 

S 

Odd Odd Odd Odd 

Even 

C 

S’ 
Odd 



Claim 2 

For each component C of G-S and each v ∈ C 
there is a perfect matching of C-v. 

Proof Idea: 

• Inductive hypothesis on C-v. 

• Use parity lemma. 

• Use maximality of S. 



Proof of Claim 2 

• By IH, have matching of 
C-v, unless T so that  
|T| < Ω(C-T-v). 

• Parity lemma: 
|T| ≤ Ω(C-T-v)-2. 

• Ω(G-(S ∪T ∪{v})) 
= Ω(G-S)-1+Ω(C-T-v) 
≥ |S ∪T ∪{v}| 

• Contradicts maximality. 
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Strategy 

• Have |S| = Ω(G-S). 

• Want: matching 
between S and the 
components of G-S 

• If we had this, 
remaining vertices 
could be matched. 

• This is a bipartite 
matching problem! 

S 



Matching 
• Hall’s Theorem 

– Matching unless 
T⊆S adjacent to <|T| 
components. 

• Let S’ = S-T. 

• Ω(G-S’) ≥  
Ω(G-S)-|N(T)| = 
|S|-|N(T)| > |S|-|T| 
= |S’| 

• Contradiction! 
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Outline of Proof 

• Find maximal S with |S| = Ω(G-S). 

• Hall’s Theorem ⇒ matching between elements 
of S and odd components. 

• Use those edges in matching. 

• Inductive hypothesis and maximality imply 
matching of C-v for each component C and 
matched vertex v. 

• Combine to get full matching. 



Question: Algorithm 

Does the proof of Tutte’s Theorem lend itself to 
an efficient algorithm to find a matching? 

 

A) Yes 

B) No 
The proof relies on being 
able to find a maximal set S 
with |S| = Ω(G-S). 



Application: Petersen’s Theorem 

Theorem (1.60): Any bridgeless, 3-regular graph 
has a perfect matching. 

Proof Idea: Use Tutte’s Theorem. Use 3-regular 
and bridgeless to assist counting. 



Lemma 1 

Lemma: If G is 3-regular, S a subset of the 
vertices and C an odd connected component 
of G-S, then there are an odd number of edges 
between C and S. 

Proof: Apply Handshake lemma to the induced 
subgraph C. 

Sum of degrees is even. 

Sum of degrees is 3|C|- #{outgoing edges}. 



Lemma 2 

Lemma: If G is a bridgeless graph, S a subset of 
vertices and C a connected component of G-S, 
then C cannot have exactly one edge to S. 

Proof: That edge would be a bridge. 



Combined 

Corollary: If G is a 3-regular, bridgeless graph, S 
a subset of the vertices and C an odd 
connected component of G-S, then C has at 
least 3 edges to S. 



Proof 

• Let S be a subset of the vertices, let T be the 
set of odd components of G-S. 

– NTS: |T| ≤ |S| 

• Consider bipartite graph on S and T. 

• d(s) ≤ 3 for s ∈ S, d(t) ≥ 3 for t ∈ T. 

• 3|S| ≥ Σd(s) = Σd(t) ≥ 3|T| 

• |S| ≥ |T| 

• Tutte’s Theorem implies matching. 


