Announcements

- HW 6 (the last homework!) Due on Sunday
- Please Remember to fill out your CAPEs
- Exam 2 grades out (median 68)

Exam 2 Q4

Proof

- $\chi(\mathrm{G}) \geq \max (\chi(\mathrm{EUH}), \chi(\mathrm{FUH}))$
- Chromatic number of a graph at least the chromatic number of subgraph.
- $\chi(\mathrm{G}) \leq \max (\chi(\mathrm{EUH}), \chi(\mathrm{FUH}))$
- Color EUH with appropriate number of colors
- Color FUH with appropriate number of colors
- To combine, need colorings to agree on H
- H complete so both give H distinct colors, by recoloring can make them agree

Notes

- Need to show both directions
- Need to use the fact that H is complete (false otherwise)

Today

- Introduction to Flows
- Maxflow-Mincut
- Applications

Evacuation Planning

You are an emergency planner for a city. You need to plan evacuation routes to be used in the case of a disaster. You need to know two things:

1) Which routes to use
2) How quickly you can get people out of the city to the designated safe area
Note: You cannot just use all the roads out equally, some routes might get bottlenecked unless you plan carefully.

Formal Setup

- Have city (s) and evacuation site (t).
- Have (directed) graph of roads.
- Pick some roads to use.
- Need: For each vertex other than s, t, number of incoming roads used equals outgoing

Definitions

A network is a directed graph G with designated source and sink vertices s and t .
A flow is a subgraph of G so that for each vertex v other than s and $t d_{\text {in }}(v)=d_{\text {out }}(v)$.
The size of a flow is $d_{\text {out }}(\mathrm{s})-\mathrm{d}_{\text {in }}(\mathrm{s})$.

Problems

- Given a network G, what is the largest size of a flow in the network?
- How do we find such a flow?
- How can we show that there isn't a larger flow?

Question: Maxflow

What is the largest flow size in this network?
A) 1
B) 2
C) 3
D) 4
E) 5

Creating Flow

- How do you find a flow?
- Path from s to t
- Find more flow:
- Add s-t paths
- Even better: these paths can "cancel" existing edges.

Augmenting Paths

Definition: Given a graph G and flow F an augmenting path is an s-t path that uses either edges of G unused by F in the forwards direction, or edges used by F in the backwards direction.
Lemma: Given an augmenting path, you can add it to F to get a path with 1 more unit of flow.

Question: Augmenting Path

Does this flow have an augmenting path?
A) Yes
B) No

When Can't You Augment?

Bottleneck

Cuts

Definition: A cut is a partition of the vertices into two sets S and T , which contain s and t , respectively.
The size of a cut is the total number of edges from vertices in S to vertices in T.

Question: Cut Size

What is the size of the cut below?
A) 1
B) 2
C) 3
D) 4
E) 5

Cuts and Flows

Lemma (V 8.3.1): For a network G a flow F and a cut (S, T) it is the case that
Size(F) = \#\{edges in F from S to T\} - \#\{edges in F from T to $S\}$
Remark: This says that the number of people leaving the city, is the number crossing into the next state (assuming that's where they are headed).

Proof

Consider the sum over all v in S of $d_{\text {out }}(v)-d_{\text {in }}(v)$.
On the one hand this is 0 except for $v=s$, where it is Size(F).
On the other hand, each edge contributes to one in degree and one out degree. This makes its total contribution 0 unless it crosses the cut. This gives 1 for each edge from S to T and -1 for each edge from T to S.

Note

If we take $T=\{t\}$, we find: $\operatorname{Size}(F)=d_{\text {in }}(t)-d_{\text {out }}(t)$.

The total flow out of s equals the total flow into t.

Maxflow-Mincut

Theorem (V. 8.3.2): For any network G the size of a maximum flow in G is the same as the size of a minimum cut.

