Last Time

- Graph definition
- Vertices connected by edges
- Types of graphs:
- Multigraph (multiple edges between same vertices)
- Pseudograph (allows self loops)
- Simple graph (neither of the above)
- Hypergraph (edges between more than two vertices)
- Directed graph (edges have orientation)

Question: Graph Generalizations

Which graph types are exhibited by the graph below?

A) Multigraph
B) Pseudograph
C) Simple Graph
D) Hypergraph
E) Directed Graph

Today

- Graph Terminology
- Handshake Lemma
- Walks, paths and Cycles

Graph Terminology I

- Two vertices u and v are adjacent if there is an edge connecting them.
- A vertex v is incident on an edge e (or is an endpoint of e) if v is one of the vertices e connects.

Graph Terminology II

- The neighborhood of a vertex v (denoted $N(v)$) is the set of vertices adjacent to v along with v .
- The degree of $v($ denoted $d(v))$ is the number of vertices adjacent to v.

$$
d(v)=4
$$

Graph Terminology III

- A graph is d-regular if all vertices have degree d. It is regular if it is d-regular for some d.

This graph is 3-regular

This graph is not regular

Question: Degrees

Which vertex in this graph has the smallest degree?

The Handshake Lemma

(Theorem 1.1) For any graph $G=(V, E)$,

$$
\sum_{v \in V} d(v)=2|E|
$$

d=2

$$
2+3+1+2=8=2 \cdot 4
$$

Proof I

Strategy: Counting things in two different ways.

Show both sides are equal to the number of pairs of (v, e) where v is a vertex incident on an edge e.

Proof II

Right Hand Side:

Each edges $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ has two incident vertices, u and v .

Total number of pairs is $2|\mathrm{E}|$.

Proof III

Left Hand Side:

Each vertex v is incident on $d(v)$ edges.

Total number of pairs is $\sum_{v \in V} d(v)$.

Proof IV

Equating the two sides we find:
$\sum_{v \in V} d(v)=\#\{$ Incidence pairs $\}=2|E|$.

QED.

Question

How many edges does a 3-regular graph with 5 vertices have?
A) 3
B) 6
C) 7.5
D) 10
E) There is no such graph

Examples of Graphs I

A complete graph on n vertices (denoted K_{n}) is a graph with n vertices and an edge between every pair of them

Examples of Graphs II

A cycle on n vertices (denoted C_{n}) is a graph with n vertices connected in a loop.

A path on n vertices (denoted P_{n}) is a graph with n vertices connected in a chain.

Examples of Graphs III

A graph H is a subgraph of G if $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

A subgraph H is an induced subgraph if it contains all the edges of G connecting two vertices in $V(H)$.

Examples of Graphs IV

A bipartite graph is a graph whose vertices can be split into two parts where all edges connect one part to the other.

A complete bipartite graph (denoted $\mathrm{K}_{\mathrm{n}, \mathrm{m}}$) has an edge connecting every element of one part (of size n) to every element of the other (of size m).

Question: Cycle Identification

Which of the graphs below are cycles?

Question: Edge Counts

Which of these graphs has the greatest number of edges?
A) C_{10}
(10 edges)
B) P_{12} (11 edges)
C) $K_{5} \quad$ (10 edges)
D) $K_{3,4} \quad$ (12 edges)

